Abstract

We numerically investigated the performance of N-polar AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) with different Al contents in quantum wells (QWs) and barriers. We found that N-polar structures could improve the maximum internal quantum efficiency (IQE) and suppress the efficiency droop, especially for deep-UV LEDs. Compared to metal-polar LEDs, N-polar ones retained higher IQE values even when the acceptor concentrations in the p-layers were one order of magnitude lower. The enhanced performance originated from the higher injection efficiencies of N-polar structures in terms of efficient carrier injection into QWs and suppressed electron overflow at high current densities.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) have attracted considerable attention to replace toxic mercury-based UV lamps. There are a wide range of potential applications in this regard, such as water purification, UV curing, environmental sensing, disinfection, and plant-growth lighting [13]. Many techniques were proposed to develop high power AlGaN-based UV LEDs, for example, utilizing vicinal substrates with large misfit angles [46], a nanometer-scale thin p-AlN as a p-ohmic contact layer [7], and thin-film LEDs by removing SiC substrates [8,9]. However, the external quantum efficiency (EQE) of state-of-art AlGaN-based deep-UV LEDs is 20.3% [10], so there is a need for further improvements compared to commercial InGaN-based visible LEDs [11]. One troublesome problem is that AlGaN-based UV LEDs suffer from poor carrier injection [2,12], resulting in relatively low injection efficiency. The low injection efficiency is commonly attributed to weak carrier confinement in active regions [13], severe electron leakage with a reduced potential barrier [14], and low hole concentrations due to the high activation energy of Mg acceptors [15].

Many efforts have been devoted to promoting the carrier injection with various approaches, such as Mg delta-doping or modulation-doping [16], polarization-induced p-doping techniques [17], multiple quantum barriers with different Al composition [13], and a composite p-AlGaN/AlN electron-blocking heterostructure [18]. In contrast to traditional metal-polar LEDs, N-polar LEDs present opposite electric fields in the whole epitaxial structures [19]. As a result, N-polar devices have demonstrated enhanced carrier injection in both simulations and experiments [20,21]. This advantage of N-polar structures was demonstrated to be possible to suppress the efficiency droop in visible InGaN-based LEDs [22], and achieved a flat EQE curve up to 400 A/cm2 even without electron blocking layers [23].

Generally, high-quality N-polar nitride materials can be grown on foreign substrates such as c-plane sapphire, SiC and Si (111) with misoriented angles [2426]. Researchers have obtained a smooth surface of N-polar GaN films by introducing indium as a surfactant during growth [27,28]. N-polar InGaN-based visible LEDs have been fabricated [29,30], but they could not exhibit a better luminescence compared to metal-polar ones [31]. This weak performance of N-polar LEDs was originated from higher impurity concentrations of N-polar GaN barriers in the active region compared to metal-polar ones when grown by metalorganic vapor phase epitaxy [31]. Fortunately, the impurity concentrations could be reduced by increasing the growth temperature [32]. Thus, unlike N-polar InGaN visible LEDs, N-polar AlGaN UV LEDs grown at high temperature are promising to reduce the impurity concentrations and obtain a better luminescence compared to metal-polar devices. Besides, N-polar AlN templates were fabricated on 4H-SiC substrates with a misfit angle [33]. The X-ray rocking curve full width half maximums (FWHMs) were 203 arcsec and 389 arcsec for (002) and (102) reflections, respectively. These FWHMs demonstrated that high-quality N-polar AlN templates were possible to be achieved by optimal growth conditions. Very recently, researchers have started to investigate the polarization effect in AlGaN-based UV LEDs, and proposed compositional grading electron blocking layers [34] and a lateral-polarity structure with metal-polar and N-polar domains on the same wafer [35]. However, the polarization effect is strongly dependent on the Al contents in LED structures, which needs to be clarified clearly before experiments.

This work numerically examines the performance of N-polar AlGaN-based UV LEDs with different Al contents in quantum wells (QWs) and barriers. The maximum internal quantum efficiencies (IQEs) were calculated for N-polar UV LEDs with electroluminescence (EL) peaks at 258 to 327 nm and compared with those of metal-polar LEDs. We simulated the carrier concentrations, radiative recombination rates and band-diagrams to explain the enhanced performance of the N-polar LED structures. Furthermore, the IQE performance obtained with different levels of acceptor doping was investigated for both types of LEDs.

2. Device structures and parameters

We systematically designed and analyzed the performance of N-polar UV LEDs using the commercial packaged software SiLENSe (version 5.14, STR group). The software implements a one-dimensional drift-diffusion model and solves the Schrödinger, Poisson, and continuity equations with proper boundary conditions. The designed structure of AlGaN-based UV LEDs is shown in Fig. 1. It consists of a 500-nm-thick n-type contact layer with Si doping concentration of 2×1018 cm-3, an active region comprising 5 pairs of 3-nm-thick QWs and 10-nm-thick barrier layers, followed by a 10-nm-thick p-type electron blocking layer (EBL), and finally, a 50-nm-thick p-type contact layer. The Mg doping concentration of the p-type EBL and contact layer is 5×1019 cm-3. The ionization energy of Si is set to be 13 meV [36], and that of Mg scales linearly from 170 (GaN) to 470 meV (AlN) with Al composition increasing [34]. All layers are AlGaN alloys with an assumed dislocation density of 2×108 cm-2. The conduction and valence band offset ratio for AlGaN alloy is set to be 0.7/0.3 [37]. Other material parameters can be found on the website of the STR group [38].

 figure: Fig. 1.

Fig. 1. Schematic of metal-polar [0001] or N-polar [000$\bar{1}$] UV LEDs.

Download Full Size | PPT Slide | PDF

The parameters XW and XB indicate the Al contents in QWs and barriers. N-type and p-type contact layers have the same Al contents with barriers in the active region, while the p-type EBL has an Al content of XB+0.15. Mg acceptors diffuse to underlayers at high growth temperatures above 1000°C [39], so we presumed that the Mg concentration is linearly graded from 0 to 5×1019 cm-3 for the last barrier layer. The device area was 0.001 cm2 (316 µm × 316 µm), and the operation temperature of the LEDs was set as 300 K. A device structure with the same parameters for a metal-polar UV LED is considered as a reference device for comparison.

3. Results and discussion

The peak wavelengths of metal-polar and N-polar UV LEDs were investigated using different Al contents in both QWs and barriers. As shown in Figs. 2(a) and 2(b), the EL peak wavelengths of both metal-polar and N-polar LEDs varied from 327 to 258 nm as the Al contents in QWs (XW) varied from 0.2 to 0.6. However, when the difference in Al content between barriers and QWs (XB-XW) was varied from 0.1 to 0.2, the EL peak shifts were small for both types of LEDs.

 figure: Fig. 2.

Fig. 2. EL peak wavelengths of (a) metal-polar and (b) N-polar UV LEDs with different Al contents in QWs and barriers at 20 mA. The step of Al contents in QWs and barriers is 0.01. (c) Peak differences (λN-polar – λmetal-polar) of N-polar LEDs compared to metal-polar ones at 20 mA. Electric fields in QWs for metal-polar and N-polar UV LEDs with the Al contents of (d) XW=0.2 in QWs and XB=0.4 in barriers, and (e) XW=0.6 in QWs and XB=0.8 in barriers at 20 mA.

Download Full Size | PPT Slide | PDF

To compare the differences between metal-polar and N-polar devices, we calculated the peak shifts and mapped them, as shown in Fig. 2(c). Positive values mean that the EL peaks from N-polar LEDs exhibit redshifts compared to those of the metal-polar LEDs. In most cases, the values of peak shifts in Fig. 2(c) were within ±1 nm, meaning that metal-polar and N-polar LEDs had similar EL peaks as long as the Al contents in QWs and barriers were the same. When XB-XW was less than 0.13, all N-polar LEDs exhibited redshifts compared to the metal-polar ones. However, when XB-XW was greater than 0.13, blue shifts were obtained from N-polar devices with high-Al AlGaN QWs.

To explain these peak shift behaviors, the electric fields in QWs were calculated in two cases of XW=0.2 and XW=0.6. The electric fields of metal-polar and N-polar structures have opposite directions, so the absolute values of the electric fields are compared in Figs. 2(d) and 2(e). In the case of XW=0.2, metal-polar and N-polar QWs exhibited almost the same absolute electric fields except that the first and last N-polar QWs from the p-side were a little higher value than those of the metal-polar QWs. As a result, the N-polar QWs suffered a bit more from the quantum-confined Stark effect (QCSE) than the metal-polar ones did.

In nitride LEDs, QCSE shifts the emission peaks to a longer wavelength [4042], so N-polar LEDs with more QCSE showed small red peak shifts compared to metal-polar devices. In contrast, the opposite result was obtained for XW=0.6. Most N-polar QWs exhibited distinctly lower electric fields, which resulted in less QCSE in QWs and small blue peak shifts. Therefore, the different peak shift behavior is attributed to the different features of the electric field in metal-polar and N-polar QWs.

Although IQE values depend on the current density, we extracted the maximum IQE values (IQEmax) for comparison. Figures 3(a) and 3(b) show the IQEmax mappings for metal-polar and N-polar UV LEDs, respectively. When XW is less than 0.35 (corresponding to peak wavelengths greater than 300 nm), both metal-polar and N-polar LEDs exhibit similar IQEmax mapping. This means that N-polar UV LEDs are not better at achieving higher IQE values at emission wavelengths above 300 nm.

 figure: Fig. 3.

Fig. 3. Maximum IQEs of (a) metal-polar and (b) N-polar UV LEDs with different Al contents in QWs and barriers. (c) Current density dependencies of IQE (ηIQE) and injection efficiency (ηinj) for metal-polar and N-polar deep-UV LEDs with Al content of XW=0.52 in QWs and XB=0.65 in barriers. The devices here correspond to the black stars in (a) and (b). (d) Current density dependencies of IQEs for metal-polar and N-polar deep-UV LEDs with different acceptor concentrations. The Al contents of devices are XW=0.52 in QWs and XB=0.65 in barriers.

Download Full Size | PPT Slide | PDF

Both IQEmax values depend on XB-XW rather than XB, and they saturate at around 45% in the range of XB-XW≥0.16. This behavior indicates that the value of XB-XW=0.16 is enough to design QWs structures for both metal-polar and N-polar UV LEDs with peak wavelengths above 300 nm. It is not necessary to introduce AlGaN barriers with higher Al content (XB>XW+0.16) because such AlGaN barriers might have a risk to cause more lattice mismatches with QWs and introduce defects in them during experimental epitaxy [43].

However, when XW is greater than 0.35 (corresponding to peak wavelengths less than 300 nm), there are different behaviors in the IQEmax mappings of metal-polar and N-polar UV LEDs. N-polar LEDs retained high IQEmax values, while those of the metal-polar LEDs degraded significantly with increasing XW. Especially for the deep-UV region (peak wavelength ≤280 nm) with XW≥0.45, the IQEmax values of N-polar LEDs were enhanced by 1.10-1.50 times in comparison to those of metal-polar LEDs. The enhancements demonstrate that N-polar structures are superior to metal-polar ones in the deep-UV region. For efficient N-polar deep-UV LEDs, XB-XW can be as low as 0.13, as shown in Fig. 3(b).

Typical examples of metal-polar and N-polar UV LEDs were investigated in detail and are indicated by black stars in Figs. 3(a) and 3(b). The values of XB and XW were 0.52 and 0.65 for both samples, respectively. Figure 3(c) shows the current-density dependencies of IQEs for the two UV LEDs. The IQE of the metal-polar deep-UV LED reached a maximum value of 35.6% at 30 A/cm2 and then decreased with the current density. Its efficiency droop was prominent. We define the droop value as

$$\textrm{droop value = }{{({{\eta_{\max }} - {\eta_J}} )} / {{\eta _{\max }}}}, $$
where ηmax and ηJ are the maximum efficiency and the efficiency at the current density of J, respectively.

From Eq. (1), we obtained an IQE droop value of 48.1% at 300 A/cm2. In contrast, the IQE values of the N-polar UV LEDs increased with the current density, reached a maximum value of 44.4% at 138 A/cm2, and exhibited no significant droop even at 300 A/cm2. The IQE droop value for the N-polar LED was as low as 3.4% at 300 A/cm2, demonstrating that N-polar structures could suppress the IQE droop effectively.

The injection efficiency influences the IQE as a critical factor [2], so we plotted the current-density dependence of the injection efficiency in Fig. 3(c) for comparison. The injection efficiency curves for the metal-polar and N-polar LEDs exhibited droop values of 58.5% and 3.9% at 300 A/cm2, respectively. These droop values in the injection efficiency are consistent with those in the IQE for metal-polar and N-polar LEDs. This demonstrates that the suppressed IQE droop in N-polar structures was mainly due to the improvement of the injection efficiency.

P-type doping in high-Al AlGaN layers is an obstacle to achieving highly efficient deep-UV LEDs [2,44]. Figure 3(d) shows the current density dependencies of IQEs for metal-polar and N-polar deep-UV LEDs with different acceptor concentrations. The Al contents of the devices in Fig. 3(d) are XW=0.52 in QWs and XB=0.65 in barriers. The maximum IQE values of metal-polar deep-UV LEDs were from 35% to less than 10% when the acceptor concentration of the p-type region varied from 5×1019 cm-3 to 5×1018 cm-3. Therefore, a higher doping level of p-AlGaN layers was required to improve the efficiency of these LEDs.

In the case of N-polar devices, the lower p-doping levels also resulted in the lower maximum IQE values, but the higher efficiency levels were maintained. The IQE curve for the N-polar LED with [Mg] = 5×1018 cm-3 was better than that of the metal-polar one with [Mg] = 5×1019 cm-3. This result indicates that N-polar structures do not require very high acceptor doping in p-layers like metal-polar ones do, which is greatly beneficial for the epitaxial growth of N-polar deep-UV LEDs. Since the Mg activation would become more difficult in high-Al p-layers, this result also explained the reason why N-polar structures were superior to metal-polar ones in the deep-UV region [Figs. 3(a)–3(b)].

We studied the carrier transport to clarify the improved IQE performance of N-polar LEDs. Figure 4(a) shows the electron and hole currents in the case of 198 mA (198 A/cm2), and the electron and hole currents are normalized by their counterparts in the n-type and p-type regions, respectively. Each current can indicate an overflow current of each carrier. Electron and hole currents in N-polar devices become zero at the opposite cladding layer, indicating that both overflow currents were well suppressed. However, the electron current for the metal-polar LED does not reach zero but remains 0.5 at the p-layer. The value is almost the same as 1-ηinj_Metal-polar in Fig. 3(c). As a result, N-polar devices have improved injection efficiency.

 figure: Fig. 4.

Fig. 4. (a) Normalized electron and hole currents, (b) electron concentration in QWs, (c) hole concentration in QWs, and (d) radiative recombination rate krad in QWs for metal-polar/N-polar deep-UV LEDs. Band diagrams of (e) metal-polar and (f) N-polar deep-UV LEDs. All the results are for devices with the Al contents of XW=0.52 in QWs and XB=0.65 in barriers at 198 mA. The acceptor concentration in metal-polar/N-polar p-layers was 5×1019 cm-3.

Download Full Size | PPT Slide | PDF

Figures 4(b) and 4(c) show the electron and hole concentrations in metal-polar and N-polar QWs at 198 mA. N-polar QWs have higher electron and hole concentrations than metal-polar QWs. This result supports the better carrier confinement in QWs for N-polar LEDs. Using these carrier profiles in the QW region, it is possible to calculate the radiative recombination rate (krad). The radiative efficiency is another critical factor of IQE [2].

The spatial profiles of krad are shown in Fig. 4(d). The values of krad for N-polar LEDs are almost twice the values of the metal-polar ones. The high radiative recombination originates from the higher electron and hole concentrations in N-polar QWs, which provides two advantages. First, more electrons and holes in N-polar QWs enhance the radiative recombination process. Second, the increased electrons and holes screened the electric fields in N-polar QWs [like Fig. 2(e)], which reduces the QCSE and enhances the overlap of the electron and hole wave functions.

To examine the underlying physics in the carrier transport, the energy band diagrams of metal-polar and N-polar deep-UV LEDs are shown in Figs. 4(e) and 4(f). The effective barrier height for electrons and holes was estimated from the difference between their quasi-Fermi levels and the conduction and valence bands, respectively [13], as shown in Table 1. We refer to the effective barriers for carrier injection and overflow blocking as the injection barrier and the blocking barrier, respectively. N-polar structures have higher blocking barriers for both electrons and holes, indicating strong suppression of the overflow current, which supports the results in Fig. 4(a).

Tables Icon

Table 1. Effective barrier heights for electrons and holes

In terms of the injection barrier, N-polar LEDs have a lower height for both electrons and holes (Table 1). This lower height illustrated that both electrons and holes could be injected into the N-polar QWs more easily, resulting in efficient carrier injection. Besides, the electric fields in N-polar QWs and barriers were able to oppose the escape of electrons and holes in QWs, leading to better carrier confinement. This improved carrier injection and confinement in N-polar structures support the higher carrier concentrations in Figs. 4(b)–4(c).

4. Conclusion

In summary, we numerically investigated the performance of metal-polar and N-polar AlGaN-based UV LEDs with different Al contents in the QWs and barriers. N-polar UV LEDs exhibited higher maximum IQE values and less efficiency droop than metal-polar ones, especially in the deep-UV region. Even when the acceptor concentration of N-polar p-layers was one order of magnitude lower, N-polar deep-UV LEDs still had higher IQE values than the metal-polar devices. This better performance occurred because N-polar structures helped to enhance the carrier injection into QWs and provided better carrier confinement in QWs. Also, N-polar structures avoid carrier leakages at high current densities. The simulation data illustrate the great potential of N-polar structures for achieving high-efficiency deep-UV LEDs.

Funding

King Abdullah University of Science and Technology (BAS/1/1676-01-01).

Acknowledgments

This work was supported by King Abdullah University of Science and Technology (KAUST).

Disclosures

The authors declare no conflicts of interest.

References

1. J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency,” ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017). [CrossRef]  

2. M. Kneissl, T. Y. Seong, J. Han, and H. Amano, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics 13(4), 233–244 (2019). [CrossRef]  

3. Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29(8), 084004 (2014). [CrossRef]  

4. Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020). [CrossRef]  

5. H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019). [CrossRef]  

6. M. Hayakawa, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1−xN-Based Quantum Wells Fabricated on Macrosteps Effectively Suppressing Nonradiative Recombination,” Adv. Opt. Mater. 7(2), 1801106 (2019). [CrossRef]  

7. J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019). [CrossRef]  

8. B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020). [CrossRef]  

9. C. Huang, H. Zhang, and H. Sun, “Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system,” Nano Energy 77, 105149 (2020). [CrossRef]  

10. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017). [CrossRef]  

11. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010). [CrossRef]  

12. Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020). [CrossRef]  

13. H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019). [CrossRef]  

14. Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016). [CrossRef]  

15. M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998). [CrossRef]  

16. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003). [CrossRef]  

17. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010). [CrossRef]  

18. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014). [CrossRef]  

19. K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012). [CrossRef]  

20. J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011). [CrossRef]  

21. H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019). [CrossRef]  

22. G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018). [CrossRef]  

23. F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012). [CrossRef]  

24. S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007). [CrossRef]  

25. D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008). [CrossRef]  

26. S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010). [CrossRef]  

27. D. Won, X. Weng, and J. M. Redwing, “Metalorganic chemical vapor deposition of N-polar GaN films on vicinal SiC substrates using indium surfactants,” Appl. Phys. Lett. 100(2), 021913 (2012). [CrossRef]  

28. T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014). [CrossRef]  

29. K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015). [CrossRef]  

30. Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015). [CrossRef]  

31. H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009). [CrossRef]  

32. S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014). [CrossRef]  

33. J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018). [CrossRef]  

34. Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017). [CrossRef]  

35. W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018). [CrossRef]  

36. J.B. Webb, H. Tang, and J.A. Bardwell, Proc. Int. Workshop on Nitride Semicond, IPAP Conf.Series (2000) 228–232.

37. J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016). [CrossRef]  

38. STR group website. http://www.str-soft.com/learn/InAlGaN_Alloys/index.htm

39. K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005). [CrossRef]  

40. M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009). [CrossRef]  

41. P. Dong, J. Yan, Y. Zhang, J. Wang, C. Geng, H. Zheng, X. Wei, Q. Yan, and J. Li, “Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes,” Opt. Express 22(S2), A320–A327 (2014). [CrossRef]  

42. Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116(17), 173501 (2020). [CrossRef]  

43. L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017). [CrossRef]  

44. S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005). [CrossRef]  

References

  • View by:

  1. J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency,” ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017).
    [Crossref]
  2. M. Kneissl, T. Y. Seong, J. Han, and H. Amano, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics 13(4), 233–244 (2019).
    [Crossref]
  3. Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29(8), 084004 (2014).
    [Crossref]
  4. Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
    [Crossref]
  5. H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
    [Crossref]
  6. M. Hayakawa, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1−xN-Based Quantum Wells Fabricated on Macrosteps Effectively Suppressing Nonradiative Recombination,” Adv. Opt. Mater. 7(2), 1801106 (2019).
    [Crossref]
  7. J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019).
    [Crossref]
  8. B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
    [Crossref]
  9. C. Huang, H. Zhang, and H. Sun, “Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system,” Nano Energy 77, 105149 (2020).
    [Crossref]
  10. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
    [Crossref]
  11. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
    [Crossref]
  12. Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
    [Crossref]
  13. H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
    [Crossref]
  14. Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
    [Crossref]
  15. M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
    [Crossref]
  16. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
    [Crossref]
  17. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
    [Crossref]
  18. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
    [Crossref]
  19. K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
    [Crossref]
  20. J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
    [Crossref]
  21. H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
    [Crossref]
  22. G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
    [Crossref]
  23. F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012).
    [Crossref]
  24. S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
    [Crossref]
  25. D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
    [Crossref]
  26. S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
    [Crossref]
  27. D. Won, X. Weng, and J. M. Redwing, “Metalorganic chemical vapor deposition of N-polar GaN films on vicinal SiC substrates using indium surfactants,” Appl. Phys. Lett. 100(2), 021913 (2012).
    [Crossref]
  28. T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
    [Crossref]
  29. K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
    [Crossref]
  30. Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
    [Crossref]
  31. H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
    [Crossref]
  32. S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
    [Crossref]
  33. J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
    [Crossref]
  34. Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
    [Crossref]
  35. W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
    [Crossref]
  36. J.B. Webb, H. Tang, and J.A. Bardwell, Proc. Int. Workshop on Nitride Semicond, IPAP Conf.Series (2000) 228–232.
  37. J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
    [Crossref]
  38. STR group website. http://www.str-soft.com/learn/InAlGaN_Alloys/index.htm
  39. K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
    [Crossref]
  40. M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
    [Crossref]
  41. P. Dong, J. Yan, Y. Zhang, J. Wang, C. Geng, H. Zheng, X. Wei, Q. Yan, and J. Li, “Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes,” Opt. Express 22(S2), A320–A327 (2014).
    [Crossref]
  42. Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116(17), 173501 (2020).
    [Crossref]
  43. L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
    [Crossref]
  44. S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
    [Crossref]

2020 (5)

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

C. Huang, H. Zhang, and H. Sun, “Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system,” Nano Energy 77, 105149 (2020).
[Crossref]

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116(17), 173501 (2020).
[Crossref]

2019 (6)

H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
[Crossref]

M. Kneissl, T. Y. Seong, J. Han, and H. Amano, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics 13(4), 233–244 (2019).
[Crossref]

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

M. Hayakawa, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1−xN-Based Quantum Wells Fabricated on Macrosteps Effectively Suppressing Nonradiative Recombination,” Adv. Opt. Mater. 7(2), 1801106 (2019).
[Crossref]

J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019).
[Crossref]

H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
[Crossref]

2018 (3)

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
[Crossref]

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

2017 (4)

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
[Crossref]

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency,” ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017).
[Crossref]

2016 (2)

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

2015 (2)

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

2014 (5)

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29(8), 084004 (2014).
[Crossref]

P. Dong, J. Yan, Y. Zhang, J. Wang, C. Geng, H. Zheng, X. Wei, Q. Yan, and J. Li, “Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes,” Opt. Express 22(S2), A320–A327 (2014).
[Crossref]

2012 (3)

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012).
[Crossref]

D. Won, X. Weng, and J. M. Redwing, “Metalorganic chemical vapor deposition of N-polar GaN films on vicinal SiC substrates using indium surfactants,” Appl. Phys. Lett. 100(2), 021913 (2012).
[Crossref]

2011 (1)

J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
[Crossref]

2010 (3)

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref]

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

2009 (2)

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

2008 (1)

D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
[Crossref]

2007 (1)

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

2005 (2)

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

2003 (1)

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

1998 (1)

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Aisaka, T.

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

Akasaki, I.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Akyol, F.

F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012).
[Crossref]

Almogbel, A. S.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

Amano, H.

M. Kneissl, T. Y. Seong, J. Han, and H. Amano, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics 13(4), 233–244 (2019).
[Crossref]

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Anbe, C.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Bardwell, J.A.

J.B. Webb, H. Tang, and J.A. Bardwell, Proc. Int. Workshop on Nitride Semicond, IPAP Conf.Series (2000) 228–232.

Bonef, B.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

Brown, D.

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

Brown, D. F.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
[Crossref]

Chang, H.

Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
[Crossref]

Chang, J.

Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
[Crossref]

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

Chang, J. J.

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

Chen, C.

H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
[Crossref]

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Chen, D.

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

Chen, D. J.

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

Chen, F.

Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
[Crossref]

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

Chen, L.

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

Chen, P.

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

Chen, X.

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

Chen, Z.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Cho, H.-K.

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

Cho, J.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency,” ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017).
[Crossref]

Choi, J. H.

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

Chowdury, S.

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

Cui, G.

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

Dai, J.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
[Crossref]

DenBaars, S. P.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
[Crossref]

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

Deng, G.

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

Di Fabrizio, E.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Dong, K.

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

Dong, K. X.

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

Dong, P.

Dora, Y.

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

Du, G.

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

Einfeldt, S.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Fang, X. Z.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Fellows, N.

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

Fichtenbaum, N. A.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

Funato, M.

M. Hayakawa, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1−xN-Based Quantum Wells Fabricated on Macrosteps Effectively Suppressing Nonradiative Recombination,” Adv. Opt. Mater. 7(2), 1801106 (2019).
[Crossref]

Furukawa, M.

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

Gao, Y.

J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019).
[Crossref]

Gaska, R.

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

Ge, W. K.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Geng, C.

Gherasimova, M.

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

Gil, Y.-U.

J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019).
[Crossref]

Giugni, A.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Guo, S.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Guo, W.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Guttmann, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Han, J.

M. Kneissl, T. Y. Seong, J. Han, and H. Amano, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics 13(4), 233–244 (2019).
[Crossref]

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

Han, X.

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

Hanada, T.

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

Hao, Y.

H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
[Crossref]

Hasegawa, R.

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

Hayakawa, M.

M. Hayakawa, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1−xN-Based Quantum Wells Fabricated on Macrosteps Effectively Suppressing Nonradiative Recombination,” Adv. Opt. Mater. 7(2), 1801106 (2019).
[Crossref]

Hayashi, H.

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

He, L.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Hirayama, H.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Hu, Y.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

Huang, C.

C. Huang, H. Zhang, and H. Sun, “Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system,” Nano Energy 77, 105149 (2020).
[Crossref]

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

Ichikawa, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Ichikawa, S.

M. Hayakawa, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1−xN-Based Quantum Wells Fabricated on Macrosteps Effectively Suppressing Nonradiative Recombination,” Adv. Opt. Mater. 7(2), 1801106 (2019).
[Crossref]

Iida, D.

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116(17), 173501 (2020).
[Crossref]

Iza, M.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

Jena, D.

J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
[Crossref]

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref]

Jeon, S.-R.

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

Jiang, H. X.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Jiang, J.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Kang, X. N.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Katayama, R.

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

Katsuragawa, M.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Kauppinen, C.

J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
[Crossref]

Kawakami, Y.

M. Hayakawa, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1−xN-Based Quantum Wells Fabricated on Macrosteps Effectively Suppressing Nonradiative Recombination,” Adv. Opt. Mater. 7(2), 1801106 (2019).
[Crossref]

Keller, S.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
[Crossref]

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

Kennedy, R.

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

Kim, I.

J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
[Crossref]

Kim, J. K.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency,” ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017).
[Crossref]

Kim, K. H.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Kim, K.-M.

J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019).
[Crossref]

Kimura, M.

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29(8), 084004 (2014).
[Crossref]

Kimura, T.

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

Knauer, A.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kneissl, M.

M. Kneissl, T. Y. Seong, J. Han, and H. Amano, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics 13(4), 233–244 (2019).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Köhler, K.

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

Kolbe, T.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Komori, M.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Kosel, T.

J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
[Crossref]

Krishnamoorthy, S.

F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012).
[Crossref]

Kuboya, S.

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

Kueller, V.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kuhn, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kunzer, M.

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

Kuo, Y.

Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
[Crossref]

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

Kurihara, K.

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

Lai, W.

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

Lang, J.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Lapeyrade, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Laurent, M.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

Lee, M.

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

Lemettinen, J.

J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
[Crossref]

Li, H.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

Li, J.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

P. Dong, J. Yan, Y. Zhang, J. Wang, C. Geng, H. Zheng, X. Wei, Q. Yan, and J. Li, “Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes,” Opt. Express 22(S2), A320–A327 (2014).
[Crossref]

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Li, K.-H.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Li, L.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Li, P.

H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
[Crossref]

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

Li, X.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Lian, C.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref]

Lin, J. Y.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Lin, R.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Lin, Z.

H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
[Crossref]

Liou, B.

Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
[Crossref]

Liu, B.

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

Liu, B. Y.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Liu, K.

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

Liu, Y.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Liu, Z.

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

Long, S.

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
[Crossref]

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Lu, H.

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

Lu, J.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

Maier, M.

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

Masui, H.

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

Matsuoka, T.

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

Mehnke, F.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Mino, T.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Mishra, U. K.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
[Crossref]

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

Mitra, S.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Mukai, T.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Muramoto, Y.

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29(8), 084004 (2014).
[Crossref]

Nakamura, S.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

Nakarmi, M. L.

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

Narukawa, Y.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Nath, D. N.

F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012).
[Crossref]

Ng, T. K.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Noguchi, N.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Nouda, S.

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29(8), 084004 (2014).
[Crossref]

Ohkawa, K.

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116(17), 173501 (2020).
[Crossref]

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

Okumura, H.

J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
[Crossref]

Ooi, B. S.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Palacios, T.

J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
[Crossref]

Park, J. S.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency,” ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017).
[Crossref]

Park, P. S.

F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012).
[Crossref]

Perona, A.

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

Pfaff, N.

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

Protasenko, V.

J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
[Crossref]

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref]

Qin, Z. X.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Rajan, S.

F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012).
[Crossref]

Rass, J.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Redwing, J. M.

D. Won, X. Weng, and J. M. Redwing, “Metalorganic chemical vapor deposition of N-polar GaN films on vicinal SiC substrates using indium surfactants,” Appl. Phys. Lett. 100(2), 021913 (2012).
[Crossref]

Reich, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Ren, Z.

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
[Crossref]

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

Roqan, I. S.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Rosales, A.

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

SaifAddin, B. K.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

Sakai, H.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Sakai, J.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Sanga, D.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Sano, M.

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Seong, T. Y.

M. Kneissl, T. Y. Seong, J. Han, and H. Amano, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics 13(4), 233–244 (2019).
[Crossref]

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency,” ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017).
[Crossref]

Shakfa, M. K.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Shatalov, M.

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

Sheikhi, M.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Shen, B.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Shen, Z.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Sheu, J.

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

Shih, Y.

Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
[Crossref]

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

Shimma, R.

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

Shiohama, K.

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

Shojiki, K.

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

Shur, M.

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

Simon, J.

J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
[Crossref]

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref]

Sota, S.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Speck, J. S.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
[Crossref]

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

Stephan, T.

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

Su, J.

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

Subedi, R. C.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Suihkonen, S.

J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
[Crossref]

Sun, H.

C. Huang, H. Zhang, and H. Sun, “Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system,” Nano Energy 77, 105149 (2020).
[Crossref]

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
[Crossref]

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Sun, W.

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

Sun, Y. H.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Takano, T.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Takeuchi, T.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

Tamulaitis, G.

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

Tang, H.

J.B. Webb, H. Tang, and J.A. Bardwell, Proc. Int. Workshop on Nitride Semicond, IPAP Conf.Series (2000) 228–232.

Tanikawa, T.

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

Tao, H.

H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
[Crossref]

Torre, B.

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Tsubaki, K.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Verma, J.

J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
[Crossref]

Wagner, J.

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

Wang, D.

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

Wang, J.

Wang, J. M.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Wang, L. B.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Wang, W.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Wang, X. Q.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Wang, Y.

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

Webb, J.B.

J.B. Webb, H. Tang, and J.A. Bardwell, Proc. Int. Workshop on Nitride Semicond, IPAP Conf.Series (2000) 228–232.

Wei, X.

Weng, X.

D. Won, X. Weng, and J. M. Redwing, “Metalorganic chemical vapor deposition of N-polar GaN films on vicinal SiC substrates using indium surfactants,” Appl. Phys. Lett. 100(2), 021913 (2012).
[Crossref]

Wernicke, T.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Weyers, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Wiegert, J.

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

Won, D.

D. Won, X. Weng, and J. M. Redwing, “Metalorganic chemical vapor deposition of N-polar GaN films on vicinal SiC substrates using indium surfactants,” Appl. Phys. Lett. 100(2), 021913 (2012).
[Crossref]

Wu, F.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
[Crossref]

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

Wu, Z.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Xie, N.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Xing, C.

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

Xing, H.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref]

Xing, H. G.

J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
[Crossref]

Xu, F. J.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Xu, S.

H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
[Crossref]

Xue, J. J.

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

Yamamoto, T.

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

Yan, J.

Yan, L.

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

Yan, Q.

Yang, F.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Yang, J.

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

Yang, X. L.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Ye, J.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Yu, H.

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
[Crossref]

Yu, Y.

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

Zhang, B.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Zhang, H.

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

C. Huang, H. Zhang, and H. Sun, “Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system,” Nano Energy 77, 105149 (2020).
[Crossref]

H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, and H. Sun, “Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier,” Opt. Express 27(20), A1544–A1553 (2019).
[Crossref]

Zhang, J.

J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019).
[Crossref]

H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
[Crossref]

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Zhang, N.

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

Zhang, R.

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

Zhang, X.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Zhang, Y.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

P. Dong, J. Yan, Y. Zhang, J. Wang, C. Geng, H. Zheng, X. Wei, Q. Yan, and J. Li, “Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes,” Opt. Express 22(S2), A320–A327 (2014).
[Crossref]

Zhang, Z.

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

Zhao, D.

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

Zheng, H.

Zheng, Y.

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

Zheng, Y. D.

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

Zhou, L.

J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019).
[Crossref]

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

Zhuang, Z.

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116(17), 173501 (2020).
[Crossref]

Zollner, C. J.

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

ACS Photonics (1)

B. K. SaifAddin, A. S. Almogbel, C. J. Zollner, F. Wu, B. Bonef, M. Iza, S. Nakamura, S. P. DenBaars, and J. S. Speck, “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates,” ACS Photonics 7(3), 554–561 (2020).
[Crossref]

Adv. Funct. Mater. (2)

H. Sun, S. Mitra, R. C. Subedi, Y. Zhang, W. Guo, J. Ye, M. K. Shakfa, T. K. Ng, B. S. Ooi, I. S. Roqan, Z. Zhang, J. Dai, C. Chen, and S. Long, “Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate,” Adv. Funct. Mater. 29(48), 1905445 (2019).
[Crossref]

W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, and J. Ye, “Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence,” Adv. Funct. Mater. 28(32), 1802395 (2018).
[Crossref]

Adv. Opt. Mater. (1)

M. Hayakawa, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1−xN-Based Quantum Wells Fabricated on Macrosteps Effectively Suppressing Nonradiative Recombination,” Adv. Opt. Mater. 7(2), 1801106 (2019).
[Crossref]

Appl. Phys. Express (2)

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

K. Shojiki, T. Tanikawa, J. H. Choi, S. Kuboya, T. Hanada, R. Katayama, and T. Matsuoka, “Red to blue wavelength emission of N-polar (000(1)over-bar) lnGaN light-emitting diodes grown by metalorganic vapor phase epitaxy,” Appl. Phys. Express 8(6), 061005 (2015).
[Crossref]

Appl. Phys. Lett. (10)

M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82(18), 3041–3043 (2003).
[Crossref]

F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11), 111118 (2012).
[Crossref]

S. Keller, Y. Dora, F. Wu, X. Chen, S. Chowdury, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition,” Appl. Phys. Lett. 97(14), 142109 (2010).
[Crossref]

D. Won, X. Weng, and J. M. Redwing, “Metalorganic chemical vapor deposition of N-polar GaN films on vicinal SiC substrates using indium surfactants,” Appl. Phys. Lett. 100(2), 021913 (2012).
[Crossref]

Y. H. Sun, F. J. Xu, N. Xie, J. M. Wang, N. Zhang, J. Lang, B. Y. Liu, X. Z. Fang, L. B. Wang, W. K. Ge, X. N. Kang, Z. X. Qin, X. L. Yang, X. Q. Wang, and B. Shen, “Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission,” Appl. Phys. Lett. 116(21), 212102 (2020).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

K. Dong, D. Chen, B. Liu, H. Lu, P. Chen, R. Zhang, and Y. Zheng, “Characteristics of polarization-doped N-face III-nitride light-emitting diodes,” Appl. Phys. Lett. 100(7), 073507 (2012).
[Crossref]

J. Verma, J. Simon, V. Protasenko, T. Kosel, H. G. Xing, and D. Jena, “N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping,” Appl. Phys. Lett. 99(17), 171104 (2011).
[Crossref]

Z. Zhuang, D. Iida, and K. Ohkawa, “Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes,” Appl. Phys. Lett. 116(17), 173501 (2020).
[Crossref]

S.-R. Jeon, Z. Ren, G. Cui, J. Su, M. Gherasimova, J. Han, H.-K. Cho, and L. Zhou, “Investigation of Mg doping in high-Al content p-type AlxGa1−xN (0.3<x<0.5),” Appl. Phys. Lett. 86(8), 082107 (2005).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency,” ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Kuo, J. Chang, H. Chang, F. Chen, Y. Shih, and B. Liou, “Polarization Effect in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes,” IEEE J. Quantum Electron. 53(1), 1–6 (2017).
[Crossref]

IEEE Photonics J. (1)

J. J. Chang, D. J. Chen, J. J. Xue, K. X. Dong, B. Liu, H. Lu, R. Zhang, and Y. D. Zheng, “AlGaN-Based Multiple Quantum Well Deep Ultraviolet Light-Emitting Diodes With Polarization Doping,” IEEE Photonics J. 8(1), 1600207 (2016).
[Crossref]

IEEE Trans. Electron Devices (2)

H. Tao, S. Xu, J. Zhang, P. Li, Z. Lin, and Y. Hao, “Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping,” IEEE Trans. Electron Devices 66(1), 478–484 (2019).
[Crossref]

Y. Shih, J. Chang, J. Sheu, Y. Kuo, F. Chen, M. Lee, and W. Lai, “Design of Hole-Blocking and Electron-Blocking Layers in AlxGa1–xN-Based UV Light-Emitting Diodes,” IEEE Trans. Electron Devices 63(3), 1141–1147 (2016).
[Crossref]

J. Appl. Phys. (4)

S. Keller, N. A. Fichtenbaum, F. Wu, D. Brown, A. Rosales, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition,” J. Appl. Phys. 102(8), 083546 (2007).
[Crossref]

D. F. Brown, S. Keller, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Growth and characterization of N-polar GaN films on SiC by metal organic chemical vapor deposition,” J. Appl. Phys. 104(2), 024301 (2008).
[Crossref]

K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, M. Kunzer, and J. Wagner, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys. 97(10), 104914 (2005).
[Crossref]

M. Shatalov, J. Yang, W. Sun, R. Kennedy, R. Gaska, K. Liu, M. Shur, and G. Tamulaitis, “Efficiency of light emission in high aluminum content AlGaN quantum wells,” J. Appl. Phys. 105(7), 073103 (2009).
[Crossref]

J. Cryst. Growth (3)

Y. Wang, R. Shimma, T. Yamamoto, H. Hayashi, K. Shiohama, K. Kurihara, R. Hasegawa, and K. Ohkawa, “The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE,” J. Cryst. Growth 416, 164–168 (2015).
[Crossref]

J. Lemettinen, H. Okumura, I. Kim, C. Kauppinen, T. Palacios, and S. Suihkonen, “MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality,” J. Cryst. Growth 487, 12–16 (2018).
[Crossref]

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189-190, 528–531 (1998).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

G. Deng, Y. Zhang, Y. Yu, L. Yan, P. Li, X. Han, L. Chen, D. Zhao, and G. Du, “Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer,” J. Mater. Sci.: Mater. Electron. 29(11), 9321–9325 (2018).
[Crossref]

J. Phys. D: Appl. Phys. (2)

Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, “White light emitting diodes with super-high luminous efficacy,” J. Phys. D: Appl. Phys. 43(35), 354002 (2010).
[Crossref]

Z. Ren, H. Yu, Z. Liu, D. Wang, C. Xing, H. Zhang, C. Huang, S. Long, and H. Sun, “Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: a review,” J. Phys. D: Appl. Phys. 53(7), 073002 (2020).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama, and T. Matsuoka, “Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth,” Jpn. J. Appl. Phys. 53(8), 085501 (2014).
[Crossref]

H. Masui, S. Keller, N. Fellows, N. A. Fichtenbaum, M. Furukawa, S. Nakamura, U. K. Mishra, and S. P. DenBaars, “Luminescence Characteristics of N-Polar GaN and InGaN Films Grown by Metal Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 48(7), 071003 (2009).
[Crossref]

Nano Energy (1)

C. Huang, H. Zhang, and H. Sun, “Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system,” Nano Energy 77, 105149 (2020).
[Crossref]

Nat. Photonics (1)

M. Kneissl, T. Y. Seong, J. Han, and H. Amano, “The emergence and prospects of deep-ultraviolet light-emitting diode technologies,” Nat. Photonics 13(4), 233–244 (2019).
[Crossref]

Opt. Express (2)

Phys. Status Solid A (1)

L. He, L. Li, Y. Zheng, F. Yang, Z. Shen, Z. Chen, W. Wang, J. Zhang, X. Zhang, L. He, Z. Wu, B. Zhang, and Y. Liu, “The influence of Al composition in AlGaN back barrier layer on leakage current and dynamic RON characteristics of AlGaN/GaN HEMTs,” Phys. Status Solid A 214(8), 1600824 (2017).
[Crossref]

Proc. SPIE (1)

J. Zhang, Y. Gao, L. Zhou, Y.-U. Gil, and K.-M. Kim, “Transparent deep ultraviolet light-emitting diodes with a p-type AlN ohmic contact layer,” Proc. SPIE 10940, 1094002 (2019).
[Crossref]

Science (1)

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref]

Semicond. Sci. Technol. (2)

S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides,” Semicond. Sci. Technol. 29(11), 113001 (2014).
[Crossref]

Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29(8), 084004 (2014).
[Crossref]

Other (2)

STR group website. http://www.str-soft.com/learn/InAlGaN_Alloys/index.htm

J.B. Webb, H. Tang, and J.A. Bardwell, Proc. Int. Workshop on Nitride Semicond, IPAP Conf.Series (2000) 228–232.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of metal-polar [0001] or N-polar [000$\bar{1}$] UV LEDs.
Fig. 2.
Fig. 2. EL peak wavelengths of (a) metal-polar and (b) N-polar UV LEDs with different Al contents in QWs and barriers at 20 mA. The step of Al contents in QWs and barriers is 0.01. (c) Peak differences (λN-polar – λmetal-polar) of N-polar LEDs compared to metal-polar ones at 20 mA. Electric fields in QWs for metal-polar and N-polar UV LEDs with the Al contents of (d) XW=0.2 in QWs and XB=0.4 in barriers, and (e) XW=0.6 in QWs and XB=0.8 in barriers at 20 mA.
Fig. 3.
Fig. 3. Maximum IQEs of (a) metal-polar and (b) N-polar UV LEDs with different Al contents in QWs and barriers. (c) Current density dependencies of IQE (ηIQE) and injection efficiency (ηinj) for metal-polar and N-polar deep-UV LEDs with Al content of XW=0.52 in QWs and XB=0.65 in barriers. The devices here correspond to the black stars in (a) and (b). (d) Current density dependencies of IQEs for metal-polar and N-polar deep-UV LEDs with different acceptor concentrations. The Al contents of devices are XW=0.52 in QWs and XB=0.65 in barriers.
Fig. 4.
Fig. 4. (a) Normalized electron and hole currents, (b) electron concentration in QWs, (c) hole concentration in QWs, and (d) radiative recombination rate krad in QWs for metal-polar/N-polar deep-UV LEDs. Band diagrams of (e) metal-polar and (f) N-polar deep-UV LEDs. All the results are for devices with the Al contents of XW=0.52 in QWs and XB=0.65 in barriers at 198 mA. The acceptor concentration in metal-polar/N-polar p-layers was 5×1019 cm-3.

Tables (1)

Tables Icon

Table 1. Effective barrier heights for electrons and holes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

droop value =  ( η max η J ) / η max ,

Metrics