Abstract

Free-standing structures that do not require any holder or substrate show high levels of flexibility and stretchability and hence are well-suited for THz applications. In this work, a free-standing three-dimensional metallic woven mesh is experimentally and numerically investigated at terahertz frequencies. Such mesh fabricated by weaving techniques exhibits sharp Fano-like resonances, which has not been found in previous studies. Investigation results indicate that the high Q resonances originate from the bending effect in bent wires, which can be termed as Wood’s anomalies. The resonance field longitudinally covers the input and output end faces of the woven mesh, thereby obtaining a large field volume. These properties in this kind of meshes are well suited for wave manipulation and biomolecular sensing in the terahertz regime.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Terahertz (THz) waves (0.1–10 THz) have been applied to wide practical applications such as imaging, sensing, and spectroscopy, due to its unique properties, namely, non-ionization and low photon energy (4.1 meV at 1 THz) [12]. For example, many molecules show the molecular vibrational and rotational polar modes in THz regions, making THz spectroscopy an ideal tool for biological sensing [2]. However, most THz systems are based on bulky free-space optics, which needs precise alignment and servicing; thus, the application of THz systems is limited [3]. A mismatch between the THz waves and the sensed target size exists because the use of THz waves is hindered by its long wavelength in relation to the size of the sample to be characterized [4]. Thus, a device manipulating the THz waves is greatly desirable for these applications.

Plasmonic structures can overcome some of these challenges because of their enhanced field and high confinement [5]. Plasmonic structures with surface plasmon polaritons (SPPs) based on periodic structures have been investigated in the past decades [613]. The SPPs originate from the coupling between light and the collective oscillations of the electron plasma at a metal-air interface [6]. Several THz plasmonic structures with different surface metallic patterns have been recently demonstrated [1426]. Typical structures, such as metal groove arrays [24], metal gratings [25], and rectangular blind holes [26], have been reported. These structures are limited to THz applications because they need a bulky prism or another additional coupler to excite SPPs. Plasmonic metamaterials can be applied to THz applications because no additional coupler is needed. Metamaterials are composed of subwavelength periodic metallic resonators in which the localized fields are strongly enhanced. Metamaterials, such as asymmetric split-ring resonators [2021], C-shaped resonators [22], and corrugated metallic disks [23], have been proposed. Sharp Fano resonances with high quality (Q) factors can be obtained by breaking the structural symmetry of metamaterials. These metamaterials need dielectric substrates to sustain, resulting in additional material absorptions. Free-standing structures do not need additional substrates and couplers offer wide potential applications in THz regions. Free-standing metal hole arrays (MHAs) with Fano resonances under oblique wave incidences are used for DNA molecule detection [1719]. Double-layer MHAs have been investigated to enhance the SPP field. The enhanced localized SPP field is confined inside the gap between two layers [27,28]. However, the enhanced field is difficult to manipulate, and double-layer MHAs suffer from high losses. Two-layered MHA structures are non-compact and difficult to control precisely. Thus, a mechanically self-supported metal structure with a miniature size is highly required. The self-supporting structure of woven-steel meshes has been investigated due to its properties, such as flexible design, deformability, and potentially low cost [2931]. Abnormal group velocities with 88% high-power transmission can be achieved by the woven-steel mesh in the sub-1 THz regime. The THz spectroscopic analysis on the meshes is revealed, but the sharp spectral and modal properties induced by the mesh structure remain unknown.

In this work, a free-standing metal structure based on three-dimensional (3D) metallic woven meshes (MWM) is experimentally and numerically investigated at THz frequencies. Compared with the planer metal hole array, such mesh performs a sharp resonance with high-Q factor. The experimental results agree well with that of simulation, and the calculated results show that the sharp resonance originates from the bending effects in meshes, which can be termed as Wood’s anomalies. The resonance frequency, bandwidth, and Q factor of sharp dips can be modulated by changing the bending parameter of metallic bent wire arrays. Our works analyzed the physical mechanisms of sharp resonance in this 3D woven meshes, which is attractive for the design of the filter and sensors in the THz gap.

2. Three-dimensional metallic woven meshes

Figure 1 schematically plots the portion (3×3 cells) of the 3D MWM. The proposed 3D metallic woven meshes (MWM) with the square holes were constructed by vertical cross layers of periodic metal wires. In contrast to thin-film metamaterials [2023], the mesh is mechanically self-supporting without using a dielectric substrate; thus, it opens important degrees of freedom to the design of multilayer stacked structures. For example, as shown in Fig. 1, the mesh can be folded and bent, presenting high flexible properties. In addition, the experimental sample is cheap, which is suitable for low-cost sensing applications. Furthermore, this mesh is made of metal, which can be used for reusable sensors because it is easy to clean by acetone and alcohol after used for material sensing. The structural parameters are expressed as follows: Λ=0.466 mm, D=0.080 mm. Figure 1 shows the microscopic photograph of the experimental sample. Metallic woven mesh structures are also known as wire-cloth meshes in industry. The experimental sample A is made of stainless steel, which is typically made from round wires via one of several weaving techniques [29]. The measured sample A is a rough sample, which is bought from the MIMI metal products company (China). The structural inhomogeneity is created in the fabrication process. All the numerical simulations are performed by employing a Finite-difference time-domain (FDTD) method. Different from experimental samples, the structure in the FDTD simulation is perfect that has the best homogeneity and smooth metal surfaces. Also, the material of woven meshes in FDTD is assumed to be perfect electric conductors (PECs) without Ohmic losses. For the simulation boundary, the cells along the X- and Y-axes are infinitely and periodically extended. The perfectly matched layers are occupied along the Z-axis of the meshes. A plane wave is used in FDTD, where the electric fields of the input transverse magnetic (TM) and transverse electric (TE) waves are perpendicular to the Y- and X-axes, respectively.

 figure: Fig. 1.

Fig. 1. Configuration of 3D metallic woven meshes (MWM) and the experiment sample photography.

Download Full Size | PPT Slide | PDF

3. Results and discussion

3.1 Experimental and simulated results of 3D metallic woven meshes

The experimental results measured by the fiber-based THz-TDS (Menlo Systems Tera K15) are shown in Figs. 2(a-b). With the fiber pulse laser (1.5 µm), and a computer together with the home-made software, this spectrometer can equip an ultrafast optical lab for extending into the research field of THz spectroscopy with high cut-off frequency (2.5 THz). Photoconductor antenna (PCA), illuminated by ultrashort laser pulses, is used for THz radiation and detection [13]. Figure 2(a) shows the THz waveform of reference and metallic woven meshes (MWM). A signal of air space is used as a reference. The time-domain signal is attenuated by the meshes due to the rough metal edges. The THz signal shows clear attenuating oscillation after passing through meshes, indicating a strong interaction between the THz waves and the MWM. The frequency-domain spectra obtained by Fourier transformation are shown in Fig. 2(b). A clear sharp dip at 0.695 THz with distinctly low transmittance can be observed in the transmission spectra. In the previous study with the same meshes [29], sharp dips have not been found in these transmission spectra probably because of the THz beam size in the experiment. For example, a 10 mm parallel beam is used for this measurement, whereas a focused one with a smaller size might be utilized in the previous study.

 figure: Fig. 2.

Fig. 2. (a) Measured THz waveform and (b) transmission spectra of MWM and MHA, where the blue line is the simulation result of MHA. Electric field distribution in the Z–X cut plane at 0.695 THz (c) and 0.742 THz (d).

Download Full Size | PPT Slide | PDF

In order to investigate the resonant behavior of the MWMs, a planar metal hole array (MHA) with the metal wire diameter (D) of 0.08 mm and a period of 0.233 mm have been studied for comparative analysis. The simulated transmittance spectra for MWMs and MHAs are presented in Fig. 2(b). As shown in Fig. 2(b), for the MHA, the transmittance increases with the increasing frequency. The resonance wavelength is above 1.0 THz, corresponding to the lowest mode of SPPs [16,19,32]. The transmittance of the spectral peaks is correlated to the field of resonances in the X- or Y-axes inside the hole. Different from MHAs, one sharp dip is observed at 0.70 THz for the experimental spectrum of 0.466 mm-Λ MWMs, where the simulated dip with a high power–distinction ratio of approximately 100 is located at 0.695 THz. Note that the measurement bandwidth of dips is limited by sweep resolution (9.6 GHz) and signal-to-noise ratio. The simulated dip is sharper than the measured one because the bandwidth of the simulated dip is about 9.0 GHz when the transmittance is 0.1 (see the inset in Fig. 2(b)). The simulated resolution is significantly higher than that of THz-TDS systems, whose resolution is 1 GHz. Hence, the sharp dip cannot be measured by our THz-TDS system. By using higher resolution measurement systems, the difference between experimental and simulated dips can be reduced. The remaining transmittance discrepancies between the experimental and numerical results are due to the structural inhomogeneity in samples and rough metal surfaces. Furthermore, the structures have been regarded as PEC in the FDTD simulation and hence the Ohmic losses in the real metal have not been considered. This sharp dip with nearby blocking propagation can be excited by TM and TE modes resulting from the special woven structures. Fano resonance indicates that a discrete bound state is coupled with a continued state [3335]. The profile of this sharp dip resembles that of Fano resonances and is thus termed as Fano-like resonances. The insets in Fig. 2(a) illustrates the Z-component (Ez) of the electric fields at 0.695 THz, representing the waves at the resonant spectral dip. The field patterns on the metal-air interfaces exhibit opposite dipolar plasmonic modes, which are similar to those of MHAs [1617]. The high intensity of the electric field is strongly confined in the wire edge and gradually decays along the Z-direction away from the mesh–air interface, and it can be regarded as SPP fields. The high confinement of SPP modes associated with the sharp Fano-like dips makes this woven mesh suitable as THz sensors and filters. As discussed in the previous studies [1423], the coupling between the EM waves and the metallic structures results in an enhanced field on the metal-air interface. Here, we explored the field distributions of MWMs and shown in Figs. 2(c-d). We simulated the electric field distribution at 0.695 THz and 0.742 THz in the Z–X cut plane (Y=0 mm), representing the waves at the sharp Fano-like dip and high transmission peak, respectively. At 0.695 THz, a strong SPP field is concentrated on the upper surface of bent wires. An extraordinary optical transmission is occurred at a high frequency of 0.742 THz, in contrast to 0.695 THz, the induced fields at 0.742 THz are primarily confined inside mesh cavities, where the strong fields are located at both metal surfaces. Because strong electric fields cover the input and output end faces of the woven meshes, this kind of meshes can be used as sensors in THz sensing. Also, this woven mesh is made of metal, which is easy to clean by acetone and alcohol after used for sensing. In contrast to the sensors based on metamaterials with high-cost, the woven mesh is very cheap and thus suitable for low-cost sensing applications.

To further prove the sharp dips induced in MWMs, two additional samples (B and C) are demonstrated. The experimental samples B and C are made of copper, whose structural parameters are Λ=0.608 mm (D=0.104 mm) and Λ=1.034 mm (D=0.146 mm), respectively. As shown in Fig. 3, the measured dip frequencies are 0.534 THz and 0.314 THz for sample B and sample C, respectively. The corresponding measured Q factor is 25 and 20.8 for samples B and C, respectively. The small discrepancy between the experimental and numerical results also comes from the structural inhomogeneity in samples and rough metal surfaces.

 figure: Fig. 3.

Fig. 3. (a), (b) Experimental and simulated transmission spectra of MWMs with various structural parameters. Samples B and C are made of copper.

Download Full Size | PPT Slide | PDF

The strong coupling in the metal structures results in an evident phase change. Figure 4(a) shows the simulated phase for air space and MWMs (sample A). The simulated phase of MWMs is larger than that of air space for the entire observed spectral region. Importantly, one sharp phase change at 0.695 THz with a 1.0 π phase change (Δ$\varphi$) can be observed. We calculated the effective refractive index of MWMs using n=(λ$\varphi$/2πt) +1, where t is the structural thickness [2]. As shown in Fig. 4(b), (a) sharp dip occurs at the frequency of 0.695 THz in the effective refractive index spectrum. In the frequency of 0.1–1.0 THz, the effective refractive index of MWMs is lower than n=1, indicating that the phase velocity of the light in the MWMs is faster than the speed of light; this finding is in good agreement with the Ref. 29. Therefore, the resonant dip originates from the strong coupling between the EM waves and the meshes, resulting in a sharp change in the phase and transmission spectra.

 figure: Fig. 4.

Fig. 4. Simulated phase (a) and effective refractive index (b) for 3D MWMs (sample A).

Download Full Size | PPT Slide | PDF

Figure 5 shows the electric field vector and power vector distributions of MWMs. Frequencies 0.634 THz, 0.695 THz, and 0.742 THz are selected as examples to investigate, representing the waves at the low spectral peak, sharp Fano-like dip, and high transmission band, respectively. As shown in Fig. 5(a), at 0.634 THz, the electric dipoles in the center of mesh holes are arranged in vertical. Interestingly, the out-phase alignment between the electric dipoles can be found at the 0.695 THz (Fig. 5(b)), which is different from the resonance at 0.634 THz. A similar dipole alignment can also be found in Fig. 5(c). At 0.742 THz, the electric dipoles align out-phase but the direction is contrary with that of 0.695 THz because of the different phases. For instance, in the top left hole, at 0.695 THz, the direction of electric dipoles is upward, but it is downward when the frequency is 0.742 THz. Figures 5(d-f) present power vector distributions. Owing to the extraordinary optical transmission, a high energy density in the mesh cavity is achieved at 0.742 THz. Inversely, a loose power density can be observed at 0.695 THz because of low transmittance. A phenomenon of circumfluence-like energy flows can be found in the mesh cavities, comes from the bending effect within meshes. Interestingly, the flow direction is out-phase in the neighboring cavities. The patterns of energy flow at 0.742 THz are opposite to that of 0.634 THz and 0.695 THz.

 figure: Fig. 5.

Fig. 5. Electric field vector (a-c) and power vector distributions (d-f) for MWMs at 0.634 THz, 0.695 THz, and 0.742 THz, respectively.

Download Full Size | PPT Slide | PDF

3.2 Sharp resonant dips dependent on the structural parameters

The transmission spectra with various mesh period and wire diameters are calculated and depicted in Fig. 6 to characterize the dependence of the structural parameters on spectral dips. The dip of resonances shifts to low frequencies with the increase of period, whereas the other parameters maintain fixed values (Fig. 6(a)). Indicates that the wavelength of the resonant dips is dominated by the hole width [3638]. Also, the linewidth of the resonant dips becomes narrower with an increased period. Hence, the frequency and bandwidth of the resonance dips can be critically controlled by the period of meshes. In Fig. 6(b), we summarized the results of the sharp dip wavelength and structural parameters of the period (Λ), to have an in-depth understanding of the relation between structural parameters and sharp dips. The dip wavelength shifts to a long one as the period (Λ) increases. The data are well-fitted to the linear equation λdip=0.96*Λ, where the adjusted coefficient of determination (R2) is 0.9998. The trend of the resonance wavelength shifts is consistent with that of the MHA investigated in previous studies [1617]. The wire diameter of MWMs is a critical parameter to manipulate the spectral dip. By tuning the wire diameter, the field coupling between the top and bottom faces of the metal wire can be controlled. Here, we varied the wire diameter of meshes to study the wire diameter dependence of the geometrical structures on the dip, whereas the period is kept as 0.466 mm. As depicted in Fig. 6(c), with the increase of wire diameter, the bandwidth of dips becomes broader. Correspondingly, the Q factor of dips is decreased. For example, when the diameter of the metallic wire is 0.02 mm, the resonant dip achieves a high-Q factor of 217.7, where the Q factor can be calculated by the equation of f0/Δf in which f0 and Δf is resonance frequency at the dip and the resonant width (Δf = fpeak-fdip), respectively. With the wire diameter increases from 0.02 mm to 0.10 mm, the corresponding Q factor reduces from 217.7 to 8.6 (Fig. 6(d)). Thus, by reducing the diameter of metal wires, the high Q factor can be realized. Note that the high Q factors are not easy to realize experimentally because of the limited fabricated conditions. For instance, to realize a high Q factor of 217.7, the structural fabrication process needs high accuracy because of the diameter of metal wires as low as 0.02 mm. Also, the transmittance of the low resonant peak is dissipated with the increased wire diameter. When the wire diameter is sufficiently large, the SPPs on both sides show a weak coupling effect. The reduced transmitted magnitude comes from the low coupling efficiency of SPPs between the input and the output faces of MWMs. The wire diameter considerably affects the resonance dip and high passband because the diameter alteration changes the effective plasma frequency of meshes [29,38].

 figure: Fig. 6.

Fig. 6. Transmission spectra of MWMs with various periods (a) and the relation between the wavelength of dips and the structural periods (b). Transmission spectra of MWMs with various wire diameters (c) and the relation among the wire diameter, resonant dip frequency, and Q factor of the resonant dips (d).

Download Full Size | PPT Slide | PDF

3.3 Sharp resonant dips excited by single-layer metallic bent wire arrays

Figure 2 shows that a strong resonance occurs on the transmittance spectra of MHA when the periodic hole array is constructed by two across layers of the periodic metal wires with a 3D structure. We analyzed the spectral characteristics and resonance field by simplifying the woven mesh to a single-layer metallic bent wire array to understand the mechanism of induced Fano-like resonance in MWMs. The period (Λ) of the metallic wire array is 0.466 mm, and the wire diameter (D) is 0.08 mm. The single-layer metallic wire array is straight, which is depicted in Fig. 7(a). The metallic bent wire arrays consist of periodic bent wires positioned in-phase and out-phase. The electric field of TM and TE modes are perpendicular and parallel to the wire array, respectively. The results of in- and out-phases bent wire arrays are presented in Fig. 7 and Fig. 9.

 figure: Fig. 7.

Fig. 7. Transmission spectra of the single-layer metallic wire and metallic bent wire (in-phase) arrays for the TM (a) and TE (b) modes. The inset shows the electric field distribution of the TE modes at 0.641 THz.

Download Full Size | PPT Slide | PDF

Figures 7(a) and (b) depict the calculated transmission spectra of the single-layer metallic wire and bent wire arrays. The bent wire array’s arrangement is in-phase. The metallic wire arrays with a subwavelength slit have been studied in previous work [8]. Under the TM modes incidence, a small discrepancy can be found in the transmission spectra of the metallic wire and bent wire arrays, where the electric field is perpendicular to the slit in wire arrays (Fig. 7(a)). A sharp dip with low transmittance occurs at 0.641 THz when the TE mode incidents into the bent wire array (Fig. 7(b)). This sharp dip with low transmittance can be induced by the TE mode rather than the TM one, where the electric field of TE modes is parallel to the metal wires. The induced Fano-like resonance comes from the continuum spectrum constructively or destructively interacting with the bending wire through an interference-effect. The inset in Fig. 7(b) exhibits the electric field distribution, where a strong localized field of 0.641 THz is concentrated at the bending regions of the metal wires.

To clarify the origin of this Fano-like dip, the transmission spectra of the bent wire arrays with different periods are carried out based on FDTD methods. Figure 8(a) depicts the calculated transmission spectra of the single-layer bent wire arrays with the different period in Y-axis (Λy), while the period in X-axis (Λx) is kept as 0.5* Λ (Λ=0.466 mm), where the definition of Λx and Λy is presented in Fig. 8(a) (the inset). As the Λy increases, from 0.466 mm to 0.626 mm, the dip reduces from 0.641 THz to 0.478 THz, which is summarized in Fig. 8(b). The relation between the wavelength of dips and structural period is also shown in Fig. 8(b). The dip wavelength shifts to a long one as period (Λy) increases. The data are well-fitted to the linear equation λdip=0.94*Λ, where the adjusted coefficient of determination (R2) is 0.999. It means that the frequency of this resonant dip is tightly correlated with the period in the Y-axis. Figure 8(c) shows the transmission spectra of metallic wire arrays with different Λx, as depicted in the inset. The cut-off frequency of TE modes can be expressed as fc=c/2w, which is inversely proportional to the slit width (w) [13]. As the slit width increases, the transmission peak shifts to lower frequencies. As shown in Fig. 8(c), when the Λx=0.5*Λ up to 1.0*Λ, the spectral peak shifts to lower frequencies and locates at around 0.648 THz, where the diameter of the wire is kept as 0.08 mm. Figure 8(d) depicts the calculated transmission spectra of the single-layer bent wire arrays with the period in the X-axis of Λx=0.5*Λ and 1.0*Λ. One sharp dip is observed at 0.641 THz when the Λx is 0.5*Λ. When the Λx up to 1.0*Λ, the dip shows a small red-shift of 7 GHz and locates at 0.634 THz. It means that the resonant dip is dominated by the period of the Y-axis rather than the period in the X-axis. According to the theory of Wood's anomalies ($f_{WA}=c \sqrt{i^{2}+j^{2}}/(\Lambda \ast n)$), the resonant dip with minima transmittance is dominated by the structural period Λ [3941]. The transmission peaks red-shifted when the X-axis period of the wire array increased, whereas the transmission dip representing the Wood’s anomalies stayed at the same frequency [41]. Hence, the resonance at 0.641 THz with low minima transmittance can be termed as Wood's anomalies, where the theory result of Wood’s anomalies is 0.643 THz. This distinct type of anomalies can also be called as “plasmon anomalies”, where the surface plasmons of metallic bent wires are excited [40]. Owing to the cut-off frequency of TE modes, the low resonance peak at 0.58 THz shows a high transmittance of 0.96 when the Λx is 1.0*Λ, which is higher than the Λx=0.5*Λ bent wire arrays of 0.3 at 0.595 THz.

 figure: Fig. 8.

Fig. 8. (a) Transmission spectra of the single-layer metallic bent wire (in-phase) arrays for with different period Λy. (b) The summarized dip frequency and wavelength with the change of period in the Y-axis (Λy). (c) The simulated transmission spectra of metallic wire arrays with various Λx, where the diameter of wire is kept as 0.08 mm. (d) The simulated transmission spectra of metallic wire arrays with various Λx, where Λ=0.466 mm.

Download Full Size | PPT Slide | PDF

A similar phenomenon can be found in Fig. 9. Figure 9(a) presents that the sharp dip under the TM modes has not occurred in the transmission spectrum of the bent wire arrays. In contrast to the straight wire arrays, the out-phase bent wire array under TE modes exhibits a sharp resonant dip with nearly zero transmittance at 0.560 THz. Also, the high pass-band has been extended from 0.64 THz to 0.90 THz. This result suggests that the out-phase alignment makes the structure more compact. The bending effect in 3D space accelerates the mesh with compact size, which can be also be used for 2D structure designing. The inset in Fig. 9(b) is the electric field distribution. The 0.534 THz field is confined in the bending regions of the out-phase bent wire array, similar to that of in-phase ones in Fig. 7(b). The tail of the induced field in the out-phase wire array is shorter than that of the in-phase one (inset in Fig. 7(b)) due to the out-phase arrangement.

 figure: Fig. 9.

Fig. 9. Transmission spectra of the single-layer metallic wire and metallic bent wire (out-phase) arrays for the TM (a) and TE (b) modes. The inset exhibits the electric field distribution of TE modes at 0.560 THz.

Download Full Size | PPT Slide | PDF

To further reveal the underlying physics of the sharp resonances, the simulated spectra for bent wire arrays with different structural parameters are included. Here, we analyze the response of the resonant dip by changing the bending parameters in the single-layer metallic bent wire arrays (out-phase) (Fig. 10). The inset in Fig. 10(c) illustrates that the Z-axial space above the X–Y plane surface can be defined as the bending parameter (d). In Fig. 10(a), the transmission spectra of the bent wire arrays with a bending parameter of 0.08 mm achieve one sharp dip at 0.560 THz in comparison with metal wire arrays without bending. With the bending parameter increase from 0.02 mm to 0.08 mm, the resonant dip shows a redshift of Δf=0.07 THz. Figure 10(b) shows the contour map of the transmittance spectra for the single-layer bent wire arrays with different bending parameters. One clear sharp dip is induced when the bending parameter of the bent wire arrays is larger than zero. The bandwidth of the resonance decreases with the decrease in bending parameters in correspondence to the enhancement of the resonance Q factor. The performance trend of the Q factor versus the bending parameter (d) variation is summarized in Fig. 10(c). The investigation shows that the maximum Q factor of about 746.3 can be achieved when the bending parameter is 0.01 mm. The Q factor of sharp dips can be improved by reducing the bending parameters of the metallic wire arrays. The bending parameter in the bent wire arrays is critical to induce the special Wood's anomalies and different bent levels formed various 3D structures can modulate the spectral range of the field resonance. It is noted that the high Q factors are not easy to realize experimentally because of the limited fabricated conditions. For instance, to realize a high Q factor of 746.3, the structural fabrication process needs high accuracy because of the diameter of metal wires as low as 0.01 mm.

 figure: Fig. 10.

Fig. 10. (a) Transmission spectra of the single-layer metallic bent wire (out-phase) with different bending parameters. (b) Contour map of the transmittance spectra for the single-layer bent wire arrays (out-phase) with various bending parameters. (c) Q factor of the resonance dips of bent wire arrays.

Download Full Size | PPT Slide | PDF

4. Conclusion

Free-standing metallic woven meshes (MWMs) are experimentally and numerically investigated at THz frequencies. Investigation results demonstrate that a sharp Fano-like resonance with a high power–distinction ratio can be induced by such structures. The 3D metallic mesh is divided into single-layer metallic bent wire arrays to reveal the origin of sharp dips. A sharp dip with low transmittance is induced when the incidence waves are TE modes because of the bending effect within bent wire arrays, which can be termed as Wood’s anomalies. The resonant frequency and Q factor can be manipulated by tuning the bending parameter. The sharp resonance at 0.695 THz for 0.466 mm-Λ meshes shows a high-Q factor of 17.4, which can be improved by changing the structural parameters such as wire diameters. The resonance field longitudinally covers the input and output end faces of the woven mesh, thereby obtaining a large field volume. The investigation result reveals that 3D metallic woven meshes improve the surface field of metal hole array for THz wave sensing applications. In contrast to the sensor based on metamaterials with high-cost, this woven mesh is cheap and thus very suitable for low-cost sensing applications. Furthermore, this mesh is made of metal, which can be used for reusable sensors because it is easy to clean by acetone and alcohol after used for material sensing. Therefore, 3D meshes are suitable as THz sensing devices because of the sharp spectral and free-standing properties.

Funding

Shanghai Municipal Education Commission (2019-01-07-00-02-E00032); Science and Technology Commission of Shanghai Municipality (18590780100, 19590746000); Shanghai Normal University (SK202010); China Scholarship Council (201606890003).

Author contributions

D. Liu performed the measurements and simulations. D. Liu and T. Hattori analyzed data and wrote the manuscript. All authors have contributions to the organization of this manuscript.

Disclosures

The authors declare no conflicts of interest.

References

1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002). [CrossRef]  

2. Y. S. Lee, Principles of terahertz science and technology (Springer Science & Business Media, 2009).

3. S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013). [CrossRef]  

4. B. Ng, Terahertz sensing with spoof plasmon surfaces (Imperial College London, 2014).

5. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]  

6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef]  

7. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonicss 4(2), 83–91 (2010). [CrossRef]  

8. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]  

9. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef]  

10. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonicss 3(7), 388–394 (2009). [CrossRef]  

11. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonicss 6(11), 709–713 (2012). [CrossRef]  

12. S. Pillaia, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]  

13. D. Liu, L. Chen, X. Wu, and F. Liu, “Terahertz composite plasmonic slabs based on double-layer metallic gratings,” Opt. Express 28(12), 18212–18223 (2020). [CrossRef]  

14. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014). [CrossRef]  

15. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonicss 11(9), 543–554 (2017). [CrossRef]  

16. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006). [CrossRef]  

17. H. Yoshida, Y. Ogawa, and Y. Kawai, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007). [CrossRef]  

18. T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single-and double-stranded DNA,” J. Appl. Phys. 112(9), 094702 (2012). [CrossRef]  

19. L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019). [CrossRef]  

20. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011). [CrossRef]  

21. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015). [CrossRef]  

22. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014). [CrossRef]  

23. L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017). [CrossRef]  

24. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013). [CrossRef]  

25. Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017). [CrossRef]  

26. G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys. 13(3), 033024 (2011). [CrossRef]  

27. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005). [CrossRef]  

28. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009). [CrossRef]  

29. C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011). [CrossRef]  

30. M. Ghebrebrhan, F. J. Aranda, D. P. Ziegler, J. B. Carlson, J. Perry, D. M. Archambault, D. A. DiGiovanni, A. J. Gatesman, R. H. Giles, W. Zhang, E. R. Brown, and B. R. Kimball, “Tunable millimeter and sub-millimeter spectral response of textile metamaterial via resonant states,” Opt. Express 22(3), 2853–2859 (2014). [CrossRef]  

31. D. Liu, B. You, J. Y. Lu, and T. Hattori, “Characterization of Terahertz Plasmonic Structures Based on Metallic Meshes, Progress in Electromagnetics Research Symposium (PIERS-Toyama),” IEEE588–591 (2018).

32. C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A: Mater. Sci. Process. 66(6), 593–598 (1998). [CrossRef]  

33. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]  

34. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010). [CrossRef]  

35. C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013). [CrossRef]  

36. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005). [CrossRef]  

37. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef]  

38. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef]  

39. A. Hessel and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt. 4(10), 1275 (1965). [CrossRef]  

40. M. Sarrazin, J. Vigneron, and J. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003). [CrossRef]  

41. Y. Jiang, L. Tzuang, Y. Ye, Y. Wu, M. Tsai, C. Chen, and S. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009). [CrossRef]  

References

  • View by:

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  2. Y. S. Lee, Principles of terahertz science and technology (Springer Science & Business Media, 2009).
  3. S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
    [Crossref]
  4. B. Ng, Terahertz sensing with spoof plasmon surfaces (Imperial College London, 2014).
  5. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  7. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonicss 4(2), 83–91 (2010).
    [Crossref]
  8. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  9. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref]
  10. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonicss 3(7), 388–394 (2009).
    [Crossref]
  11. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonicss 6(11), 709–713 (2012).
    [Crossref]
  12. S. Pillaia, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  13. D. Liu, L. Chen, X. Wu, and F. Liu, “Terahertz composite plasmonic slabs based on double-layer metallic gratings,” Opt. Express 28(12), 18212–18223 (2020).
    [Crossref]
  14. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
    [Crossref]
  15. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonicss 11(9), 543–554 (2017).
    [Crossref]
  16. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
    [Crossref]
  17. H. Yoshida, Y. Ogawa, and Y. Kawai, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
    [Crossref]
  18. T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single-and double-stranded DNA,” J. Appl. Phys. 112(9), 094702 (2012).
    [Crossref]
  19. L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
    [Crossref]
  20. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref]
  21. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
    [Crossref]
  22. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  23. L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
    [Crossref]
  24. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
    [Crossref]
  25. Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
    [Crossref]
  26. G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys. 13(3), 033024 (2011).
    [Crossref]
  27. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
    [Crossref]
  28. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
    [Crossref]
  29. C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011).
    [Crossref]
  30. M. Ghebrebrhan, F. J. Aranda, D. P. Ziegler, J. B. Carlson, J. Perry, D. M. Archambault, D. A. DiGiovanni, A. J. Gatesman, R. H. Giles, W. Zhang, E. R. Brown, and B. R. Kimball, “Tunable millimeter and sub-millimeter spectral response of textile metamaterial via resonant states,” Opt. Express 22(3), 2853–2859 (2014).
    [Crossref]
  31. D. Liu, B. You, J. Y. Lu, and T. Hattori, “Characterization of Terahertz Plasmonic Structures Based on Metallic Meshes, Progress in Electromagnetics Research Symposium (PIERS-Toyama),” IEEE588–591 (2018).
  32. C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A: Mater. Sci. Process. 66(6), 593–598 (1998).
    [Crossref]
  33. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  34. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  35. C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
    [Crossref]
  36. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
    [Crossref]
  37. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [Crossref]
  38. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref]
  39. A. Hessel and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt. 4(10), 1275 (1965).
    [Crossref]
  40. M. Sarrazin, J. Vigneron, and J. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
    [Crossref]
  41. Y. Jiang, L. Tzuang, Y. Ye, Y. Wu, M. Tsai, C. Chen, and S. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
    [Crossref]

2020 (1)

2019 (1)

L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
[Crossref]

2017 (3)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonicss 11(9), 543–554 (2017).
[Crossref]

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref]

2015 (1)

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

2014 (3)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

M. Ghebrebrhan, F. J. Aranda, D. P. Ziegler, J. B. Carlson, J. Perry, D. M. Archambault, D. A. DiGiovanni, A. J. Gatesman, R. H. Giles, W. Zhang, E. R. Brown, and B. R. Kimball, “Tunable millimeter and sub-millimeter spectral response of textile metamaterial via resonant states,” Opt. Express 22(3), 2853–2859 (2014).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

2013 (3)

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

2012 (2)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonicss 6(11), 709–713 (2012).
[Crossref]

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single-and double-stranded DNA,” J. Appl. Phys. 112(9), 094702 (2012).
[Crossref]

2011 (3)

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011).
[Crossref]

2010 (3)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonicss 4(2), 83–91 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

2009 (3)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonicss 3(7), 388–394 (2009).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Y. Jiang, L. Tzuang, Y. Ye, Y. Wu, M. Tsai, C. Chen, and S. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
[Crossref]

2008 (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2007 (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]

S. Pillaia, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

H. Yoshida, Y. Ogawa, and Y. Kawai, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[Crossref]

2006 (1)

2005 (2)

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref]

2003 (2)

M. Sarrazin, J. Vigneron, and J. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

2001 (1)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref]

1998 (1)

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A: Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

1965 (1)

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Abbott, D.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Afshar, S.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Al-Naib, I.

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Al-Naib, I. A. I.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Aranda, F. J.

Archambault, D. M.

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Atakaramians, S.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonicss 4(2), 83–91 (2010).
[Crossref]

Breese, M. B. H.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Brener, I.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonicss 6(11), 709–713 (2012).
[Crossref]

Brown, E. R.

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Carlson, J. B.

Catchpole, K. R.

S. Pillaia, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Chen, C.

Chen, L.

D. Liu, L. Chen, X. Wu, and F. Liu, “Terahertz composite plasmonic slabs based on double-layer metallic gratings,” Opt. Express 28(12), 18212–18223 (2020).
[Crossref]

L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
[Crossref]

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

Cong, L.

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cui, A.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Cui, T.

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

DiGiovanni, D. A.

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Evers, J.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fernández-Domínguez, A. I.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

García-Meca, C.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref]

Gatesman, A. J.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]

Ghebrebrhan, M.

Giles, R. H.

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonicss 4(2), 83–91 (2010).
[Crossref]

Green, M. A.

S. Pillaia, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Greene, C. H.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Gu, J.

Guo, X.

L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
[Crossref]

Han, J.

Hangyo, M.

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[Crossref]

Hanham, S. M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Hasebe, T.

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single-and double-stranded DNA,” J. Appl. Phys. 112(9), 094702 (2012).
[Crossref]

Hattori, T.

D. Liu, B. You, J. Y. Lu, and T. Hattori, “Characterization of Terahertz Plasmonic Structures Based on Metallic Meshes, Progress in Electromagnetics Research Symposium (PIERS-Toyama),” IEEE588–591 (2018).

Hayashi, S.

Helm, H.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A: Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Hessel, A.

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Hong, M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonicss 3(7), 388–394 (2009).
[Crossref]

Jiang, Y.

Kaldun, A.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Kato, E.

Kawabe, S.

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single-and double-stranded DNA,” J. Appl. Phys. 112(9), 094702 (2012).
[Crossref]

Kawai, Y.

H. Yoshida, Y. Ogawa, and Y. Kawai, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[Crossref]

Kawase, K.

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonicss 3(7), 388–394 (2009).
[Crossref]

Keitel, C. H.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Kimball, B. R.

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonicss 11(9), 543–554 (2017).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Klein, N.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Koch, M.

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Kumar, G.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Laux, M.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Lee, S.

Lee, Y. S.

Y. S. Lee, Principles of terahertz science and technology (Springer Science & Business Media, 2009).

Lewen, F.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A: Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Li, S.

Li, Y.

Liao, D.

L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
[Crossref]

Liew, Y. F.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonicss 11(9), 543–554 (2017).
[Crossref]

Liu, D.

D. Liu, L. Chen, X. Wu, and F. Liu, “Terahertz composite plasmonic slabs based on double-layer metallic gratings,” Opt. Express 28(12), 18212–18223 (2020).
[Crossref]

D. Liu, B. You, J. Y. Lu, and T. Hattori, “Characterization of Terahertz Plasmonic Structures Based on Metallic Meshes, Progress in Electromagnetics Research Symposium (PIERS-Toyama),” IEEE588–591 (2018).

Liu, F.

Lu, J. Y.

D. Liu, B. You, J. Y. Lu, and T. Hattori, “Characterization of Terahertz Plasmonic Structures Based on Metallic Meshes, Progress in Electromagnetics Research Symposium (PIERS-Toyama),” IEEE588–591 (2018).

Maier, S. A.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Manjappa, M.

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Martí, J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martínez, A.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref]

Matsui, H.

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single-and double-stranded DNA,” J. Appl. Phys. 112(9), 094702 (2012).
[Crossref]

Meng, F.

C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011).
[Crossref]

Meyer, K.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Miyamaru, F.

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[Crossref]

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[Crossref]

Monro, T. M.

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Moreno, E.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref]

Nahata, A.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Ng, B.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

B. Ng, Terahertz sensing with spoof plasmon surfaces (Imperial College London, 2014).

Ogawa, Y.

H. Yoshida, Y. Ogawa, and Y. Kawai, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[Crossref]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[Crossref]

Oliner, A. A.

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Otani, C.

Ott, C.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Ouyang, C.

Pandey, S.

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Perry, J.

Pfeifer, T.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Pillaia, S.

S. Pillaia, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonicss 11(9), 543–554 (2017).
[Crossref]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref]

Raith, P.

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Roskos, H. G.

C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonicss 11(9), 543–554 (2017).
[Crossref]

Sabaha, C.

C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011).
[Crossref]

Sarrazin, M.

M. Sarrazin, J. Vigneron, and J. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Singh, L.

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

Singh, R.

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Tabata, H.

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single-and double-stranded DNA,” J. Appl. Phys. 112(9), 094702 (2012).
[Crossref]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref]

Thomson, M. D.

C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011).
[Crossref]

Tian, C.

Tian, Z.

Trupke, T.

S. Pillaia, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsai, M.

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Tzanova, S.

C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011).
[Crossref]

Tzuang, L.

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonicss 3(7), 388–394 (2009).
[Crossref]

Vigneron, J.

M. Sarrazin, J. Vigneron, and J. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Vigoureux, J.

M. Sarrazin, J. Vigneron, and J. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Winnewisser, C.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A: Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Wu, J.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Wu, X.

Wu, Y.

Xu, N.

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Xu, Q.

Ye, Y.

Yoshida, H.

H. Yoshida, Y. Ogawa, and Y. Kawai, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[Crossref]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[Crossref]

You, B.

D. Liu, B. You, J. Y. Lu, and T. Hattori, “Characterization of Terahertz Plasmonic Structures Based on Metallic Meshes, Progress in Electromagnetics Research Symposium (PIERS-Toyama),” IEEE588–591 (2018).

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Zhang, W.

Y. Zhang, S. Li, Q. Xu, C. Tian, J. Gu, Y. Li, Z. Tian, C. Ouyang, J. Han, and W. Zhang, “Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders,” Opt. Express 25(13), 14397–14405 (2017).
[Crossref]

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

M. Ghebrebrhan, F. J. Aranda, D. P. Ziegler, J. B. Carlson, J. Perry, D. M. Archambault, D. A. DiGiovanni, A. J. Gatesman, R. H. Giles, W. Zhang, E. R. Brown, and B. R. Kimball, “Tunable millimeter and sub-millimeter spectral response of textile metamaterial via resonant states,” Opt. Express 22(3), 2853–2859 (2014).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Zhang, Y.

Zhao, J.

L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
[Crossref]

Zhu, Y.

L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
[Crossref]

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

Zhuang, S.

L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
[Crossref]

Ziegler, D. P.

Adv. Opt. Mater. (3)

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano resonances in terahertz metasurfaces: a figure of merit optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

L. Chen and N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, “Defect-Induced Fano Resonances in Corrugated Plasmonic Metamaterials,” Adv. Opt. Mater. 5(8), 1600960–7 (2017).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Adv. Opt. Photonics (1)

S. Atakaramians, S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photonics 5(2), 169–215 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A: Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Appl. Phys. Lett. (2)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

H. Yoshida, Y. Ogawa, and Y. Kawai, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[Crossref]

Front. Inform. Tech. El. (1)

L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, and S. Zhuang, “Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review,” Front. Inform. Tech. El. 20(5), 591–607 (2019).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

J. Appl. Phys. (3)

T. Hasebe, S. Kawabe, H. Matsui, and H. Tabata, “Metallic mesh-based terahertz biosensing of single-and double-stranded DNA,” J. Appl. Phys. 112(9), 094702 (2012).
[Crossref]

S. Pillaia, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

C. Sabaha, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110(6), 064902 (2011).
[Crossref]

Nat. Commun. (1)

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5(1), 3892 (2014).
[Crossref]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Nat. Photonicss (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonicss 4(2), 83–91 (2010).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonicss 11(9), 543–554 (2017).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonicss 3(7), 388–394 (2009).
[Crossref]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonicss 6(11), 709–713 (2012).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]

New J. Phys. (1)

G. Kumar, S. Pandey, A. Cui, and A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated films,” New J. Phys. 13(3), 033024 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (3)

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

M. Sarrazin, J. Vigneron, and J. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Phys. Rev. Lett. (3)

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref]

Rev. Mod. Phys. (2)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Science (1)

C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and T. Pfeifer, “Lorentz meets Fano in spectral line shapes: a universal phase and its laser control,” Science 340(6133), 716–720 (2013).
[Crossref]

Other (3)

D. Liu, B. You, J. Y. Lu, and T. Hattori, “Characterization of Terahertz Plasmonic Structures Based on Metallic Meshes, Progress in Electromagnetics Research Symposium (PIERS-Toyama),” IEEE588–591 (2018).

Y. S. Lee, Principles of terahertz science and technology (Springer Science & Business Media, 2009).

B. Ng, Terahertz sensing with spoof plasmon surfaces (Imperial College London, 2014).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Configuration of 3D metallic woven meshes (MWM) and the experiment sample photography.
Fig. 2.
Fig. 2. (a) Measured THz waveform and (b) transmission spectra of MWM and MHA, where the blue line is the simulation result of MHA. Electric field distribution in the Z–X cut plane at 0.695 THz (c) and 0.742 THz (d).
Fig. 3.
Fig. 3. (a), (b) Experimental and simulated transmission spectra of MWMs with various structural parameters. Samples B and C are made of copper.
Fig. 4.
Fig. 4. Simulated phase (a) and effective refractive index (b) for 3D MWMs (sample A).
Fig. 5.
Fig. 5. Electric field vector (a-c) and power vector distributions (d-f) for MWMs at 0.634 THz, 0.695 THz, and 0.742 THz, respectively.
Fig. 6.
Fig. 6. Transmission spectra of MWMs with various periods (a) and the relation between the wavelength of dips and the structural periods (b). Transmission spectra of MWMs with various wire diameters (c) and the relation among the wire diameter, resonant dip frequency, and Q factor of the resonant dips (d).
Fig. 7.
Fig. 7. Transmission spectra of the single-layer metallic wire and metallic bent wire (in-phase) arrays for the TM (a) and TE (b) modes. The inset shows the electric field distribution of the TE modes at 0.641 THz.
Fig. 8.
Fig. 8. (a) Transmission spectra of the single-layer metallic bent wire (in-phase) arrays for with different period Λy. (b) The summarized dip frequency and wavelength with the change of period in the Y-axis (Λy). (c) The simulated transmission spectra of metallic wire arrays with various Λx, where the diameter of wire is kept as 0.08 mm. (d) The simulated transmission spectra of metallic wire arrays with various Λx, where Λ=0.466 mm.
Fig. 9.
Fig. 9. Transmission spectra of the single-layer metallic wire and metallic bent wire (out-phase) arrays for the TM (a) and TE (b) modes. The inset exhibits the electric field distribution of TE modes at 0.560 THz.
Fig. 10.
Fig. 10. (a) Transmission spectra of the single-layer metallic bent wire (out-phase) with different bending parameters. (b) Contour map of the transmittance spectra for the single-layer bent wire arrays (out-phase) with various bending parameters. (c) Q factor of the resonance dips of bent wire arrays.

Metrics