Abstract

We experimentally report the dynamics of multi-soliton patterns noise-like pulses (NLPs) in a passively mode-locked fiber laser, which the pulse duration can be linearly tuned from 8.21 ns to 128.23 ns by 2.936 ns / 10 mW. Benefiting from the drastically strengthened nonlinear effects in the cavity and the high gain amplification in the unidirectional ring (UR), the transformation from rectangular-shaped NLP to Gaussian-shaped NLP is experimentally achieved. Versatile multi-soliton patterns are observed in NLP regime for the first time, namely, single-scale soliton clusters, high-order harmonic mode-locking, and localized chaotic multiple pulses. In particular, the spectrum evolution with pump power and spectrum stability in 2 hours are also monitored. The obtained results demonstrate the rectangular-shaped NLP can fully transform into Gaussian-shaped NLP, and the multi-soliton patterns can exist in the NLP regime, which contributes to further understanding the nature and mechanism of the NLP in a passively mode-locked fiber laser.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Passively mode-locked fiber lasers have attracted a lot of attentions for over the past decades owing to their numerous applications, such as material micromachining [1], optical metrology [2], and multi-photo microscopy [3]. In addition to acting as an excellent ultrashort pulse source, it is a prevailing platform to explore the multifaceted nonlinear phenomena and versatile soliton dynamics in the laser cavity. Up to now, various operating regimes have been observed in mode-locked fiber laser by skillfully managing the cavity parameters, including the conventional solitons regime [4], the dispersion-managed solitons regime [5], the self-similar pulses regime [6], the dissipative solitons regime [7], and dark pulses regime [8]. According to the soliton quantization effect [9] in net anomalous dispersion regime, the laser pulses normally split into multiple solitons when the pump power exceeds a certain threshold which depends on the average dispersion and nonlinear parameter in the cavity. Then, interactions among solitons, continuous waves (CW) and dispersive waves in the cavity lead to versatile multi-soliton operations which present more physical features than those of the single soliton in the mode-locked fiber lasers.

A peculiar mode-locked regime named noise-like pulse (NLP) was firstly demonstrated in the early 1990s by Horowitz et al. [10]. Both experiments and theoretical simulations have demonstrated that the NLP is a compact wave packet which contains a bunch of ultrashort pulses with various intensity and pulse duration [1117]. In the time domain, the NLP always shows an overall stable train of pulse packets, and a smooth and broad spectrum in frequency domain. Actually, the internal structure of a pulse packet is complex and random, and its autocorrelation (AC) trace exhibits a double-scale structure with a narrow coherence peak riding on a broad pedestal. Compared with conventional solitons, the NLP has a higher energy which can reach the level of µJ [18], and a longer pulse duration which can reach several hundred ns [19]. Because of its broad spectrum and high energy, the NLP can be applied in low-coherence spectral reflectometry to detect the nonuniform regions inside the grating [20], and the temperature profiles of optical fiber components at a high-power operation [21]. Additionally, NLPs with longer pulse duration can be directly amplified to a higher-power laser source, and applied in micromachining of titanium surfaces [22]. The harmonic NLPs have been used for highly efficient SC generation, and its spectrum flatness is significantly improved [2325].

Up to date, various NLPs, such as Gaussian-shaped [1315], rectangular-shaped [2628], trapezoid-shaped and comb-like-shaped [29], and dark rectangular-shaped [30], have been experimentally observed. Among them, the Gaussian-shaped NLP and the rectangular-shaped NLP are more investigated. Generally, the NLP is generated as a Gaussian-shaped packet on the oscilloscope trace, which always possesses a smooth and broad spectrum. The reported broadest 3-dB spectral width of the Gaussian-shaped NLP is 203 nm which resembles the generated supercontinuum in highly nonlinear fiber (HNLF) [31]. The rectangular-shaped NLP is firstly found in a figure-eight mode-locked fiber laser, and the output pulse evolution is similar to the dissipative soliton resonance (DSR) regime [26]. Recently, some unique features of rectangular-shaped NLP have been experimentally demonstrated. In 2016, Y. Huang et al. [27] reported versatile patterns of multiple rectangular-shaped NLPs in a mode-locked fiber laser which a 65-m HNLF was inserted in the loop. In 2018, G. Zhao et al. [32] demonstrated the coexistence of the rectangular-shaped NLP and the Gaussian-shaped NLP in a similar cavity structure as [27]. In 2019, E. B. Huerta et al. [33] experimentally studied of a passive mode-locking single- and dual-wavelength Er/Yb double-clad fiber laser with rectangular, h-like and trapezoidal shapes in NLPs regime. Deeply considering the reported results in [2628,32,33], a question naturally arises as to if the cavity nonlinearity is further strengthened and a gain amplifier is added in UR, whether more abundant mode-locking patterns in NLPs regime can be observed.

In this paper, via incorporating a 585-m HNLF in NALM and a gain amplifier in UR, we report for the first time, to the best of our knowledge, the transformation process from rectangular-shaped NLP to Gaussian-shaped NLP, and the versatile multi-soliton patterns NLP in a passively mode-locked fiber laser. By adjusting the pump power and polarization controller orientation in the cavity, the dynamics of the rectangular-shaped NLP splitting up, and multi-soliton pattern NLPs formation are experimentally studied. The output characteristics of NLP and spectrum evolution with the increase of pump power are experimentally investigated.

2. Experimental setup

The experimental setup of erbium-doped mode-locked fiber laser is shown in Fig. 1. The laser oscillator cavity consists of a unidirectional ring (UR) and a nonlinear amplifier loop mirror (NALM). The UR and NALM are connected by a 49.5/50.5 fiber optical coupler (OC). In UR module, a polarization-independent isolator (PI-ISO) is employed to promise a unidirectional operation in the cavity, and a 1 m Erbium-dope fiber (EDF) (Nufern, EDFL-980-HP) with a dispersion coefficient of 23.6 ps2/km is used to provide a gain amplification. A 10/90 fiber OC is used as the output coupler, which 90% power is feedback, and 10% power is output. In NALM module, a 585 m HNLF with a −0.7024 ps2/km dispersion coefficient (YOFC, NL-1550-Zero) is inserted in the cavity to strengthen the asymmetric gain and provide sufficient nonlinear phase shifting in bi-directional paths of the loop mirror. Another 1 m EDF (The same type in UR) is added in loop mirror, which is beneficial to serve as an artificial saturable absorber. The EDFs in UR and NALM are pumped by two 980 nm laser diodes (LD) through the 980/1550 nm wavelength-division multiplexer (WDM), respectively. Two three- paddles polarization controllers (PCs) are utilized to adjust the light polarization in the cavity. The spectrum of output laser is measured by an optical spectrum analyzer (AQQ6370D, 600 −1700 nm) with a tunable resolution of 0.05 nm - 2 nm. The time-domain signal of output pulses is detected by a 3 GHz InGaAs photodiode detector (PD), and shown in a real-time oscilloscope (Keysight DSO-X 6004A, 2.5 GHz bandwidth). Besides, the repetition rate of laser pulses is monitored by a radio frequency (RF) signal analyzer (N9030B, Agilent) with a bandwidth from 3 Hz to 50 GHz. The fine structure of laser pulses is analyzed by a commercial autocorrelator (Femtochrome FR-103XL).

 figure: Fig. 1.

Fig. 1. Experimental setup of mode-locked fiber laser based on NALM.

Download Full Size | PPT Slide | PDF

3. Experimental results

3.1 Stable and pulse width tunable rectangular-shaped NLPs

Due to the asymmetric gain and high nonlinearity caused by several hundred meters HNLF in NALM, the mode-locked operation can be easily achieved by properly adjusting the paddles of PC in the cavity. The stable mode-locked pulses can be directly obtained for LD1 at 80 mW and LD2 at 130 mW, and the corresponding output characteristics are shown in Fig. 2. The mode-locked spectrum depicted in Fig. 2(a) is smooth and broad, which is a typical NLP spectrum, and the 3-dB spectral bandwidth is 12.83 nm centered at 1560.3 nm. Figure 2(b) shows the oscilloscope trace of output pulse trains produced by the fiber laser. It can be clearly defined that the interval of the neighboring pulses is about 3.139 µs, which is consistent with the cavity round-trip time. The single pulse is a rectangular profile with steep rising and falling edge, and pulse duration is estimated to be 74.8 ns. The screenshot of the single pulse is shown in the inset of Fig. 2(b). To investigate the fine structure of the rectangular pulse, the autocorrelation trace is measured in the experiment and shown in Fig. 2(c). As can be seen, a coherent peak upon a broad pedestal, indicates that the mode-locked fiber laser operates in NLP state. The inset of Fig. 2(c) is the zoom-in of the autocorrelation trace of the coherent peak, and the full width at half maximum of a pulse is about 1.085 ps. We also measure the corresponding radio-frequency (RF) spectral distribution with a resolution bandwidth (RBW) of 1Hz and a span of 5 kHz. It can be found the repetition rate is 318.55625 kHz, which is in accordance with the fundamental repetition rate of the cavity. The signal-to-noise ratio (SNR) is over 86 dB, which means that the mode-locked operation is stable. A wideband RF spectrum up to 100 MHz is presented in the inset of Fig. 2(d). An envelope modulation can be clearly distinguished in the spectrum, and the modulation period is around 13.35 MHz, which corresponds to an approximate 74.8 ns pulse duration in the time domain by the Fourier transformation.

 figure: Fig. 2.

Fig. 2. The output characteristics of a passively mode-locked fiber laser: (a) the output spectra, (b) the output pulses train, (c) the autocorrelation trace of output pulses, (d) the RF spectra.

Download Full Size | PPT Slide | PDF

To further understand the rectangular-shaped NLP characteristics, we investigate the evolution of the pulse duration along with the pump power. For the powers of LD1 at 80 mW and LD2 at 30 mW, the stable rectangular pulse with 8.21 ns duration is obtained by properly adjusting the paddles of PC2. When the pulse duration is less than 8.21 ns, the pulses are unstable, and difficult to be maintained. By fixing the PCs orientation and LD1 at 80 mW, the duration of the rectangular pulses can be manipulated by the pump power of LD2, while the pulse amplitude and profiles almost remain invariable. As can be seen in Fig. 3(a), the rectangular pulse duration is broadened from 8.21 ns to 128.23 ns when LD2 power increases from 30 mW to 400 mW. Figure 3(b) shows the relationship between the pulse duration and the pump power. It can be noted that the pulse duration can be linearly tuned by 2.936 ns / 10 mW. Additionally, when the LD2 power is gradually decreased from 400 mW to 30 mW, the pulse duration can be linearly shortened with similar slop efficiency. The pulse duration could also be widened by LD1 power, but it is not obvious. Adjusting the powers of LD1, LD2 simultaneously, the achieved maximum pulse duration is 260 ns at the powers of 320 mW LD1 and 300 mW LD2, which are shown in the inset of Fig. 3(b).

 figure: Fig. 3.

Fig. 3. (a) Pulses evolution of the rectangular-shaped NLP, (b) Pulse duration as a function of pump power.

Download Full Size | PPT Slide | PDF

The evolution of the output spectrum along with the pump power is also experimentally studied. The intensity distribution in the spectrum is defined by different colors, and the results are illustrated in Fig. 4(a). The operation conditions are the same as the ones in Fig. 3. It can be noted that the central wavelength of the mode-locked spectrum is red-shifted with the pump power increase. At a relative lower pump power of 30 mW, the 3-dB spectral bandwidth is 9.85 nm centered at 1555.6 nm. While at maximum pump power of 400 mW, the 3-dB spectral bandwidth is 15.12 nm centered at 1561.4 nm, as shown in the upper part of Fig. 4. Furthermore, to evaluate the stability of NLP operation, we also record the spectrum at 300 mW pump power for 120 minutes, and the output spectrum is repeatedly scanned with an interval of 4 minutes. As shown in Fig. 4(b), there is no shift of the central wavelength of the mode-locked spectrum, and the intensity distribution in spectra did not change during the monitor time. The obtained results illustrate the excellent mode-locking operation and long-term stability.

 figure: Fig. 4.

Fig. 4. (a) Spectrum evolution as a function of pump power, (b) Stability measurement of the NLP mode-locking operation during a 120 minutes test.

Download Full Size | PPT Slide | PDF

3.2 Multiple-soliton patterns in NLPs regime

3.2.1 Transformation from rectangular-shaped NLP to Gaussian-shaped NLP

Based on the several hundred meters HNLF in the cavity, the nonlinear effects of the cavity can be easily changed by increasing the pump powers of LD1, LD2, and adjusting the intra-cavity PCs simultaneously. Experimentally, when the powers of LD1 and LD2 are individually increased to 130 mW and 90 mW, a stable mode-locking rectangular-shaped NLP could be achieved in the cavity, and the pulse duration is 109.8 ns. When the LD1 power is maintained, and the LD2 power is increased to 100 mW, the rectangular-shaped pulse begins to split in falling edge via carefully rotating the paddles of PCs in NALM. Shown as the blue curve in Fig. 5(a), several pulses with various shapes have been formed, including Gaussian-shaped, rectangular-shaped, and irregular-shaped. This state is unstable, and the splitting pulses are shaking all the time. Continually increasing the LD2 power to 105 mW, the original one rectangular-shaped pulse is split into four rectangular-shaped pulses, and the formed pulses are stable if no parameters are changed in the cavity. The obtained multiple rectangular shaped NLPs in the experiment are uniform spacing but irregular duration. By further increasing the LD2 power to 115 mW, the rectangular-shaped pulses began to break into multiple Gaussian-shaped pulses, which are shown as the pink curve in Fig. 5(a). Among the rectangular-shaped pulses, some of them split into Gaussian-shaped pulses. This state is the reported coexistence of the rectangular-shaped NLP and the Gaussian-shaped NLP [32]. The tendency of transformation from rectangular-shaped pulse to Gaussian-shaped pulse is greatly strengthened at 130 mW, and the rectangular-shaped pulse is completely transformed into a Gaussian-shaped pulses cluster at 140 mW. The zoom-in of the temporal pulse in 13.5 ns time span is shown in Fig. 5(b), where several nearly Gaussian-shaped pulses are bounded together. Note that the formed Gaussian-shaped pulses have similar spacing and intensity, except for the weak pulses in both sides. The transformation process is analogous to the feature of soliton energy quantization of conventional solitons in the mode-locked fiber lasers [9], and the characteristics of this kind NLPs are similar to those of multi-soliton state.

 figure: Fig. 5.

Fig. 5. The transformation from rectangular-shaped NLP to Gaussian-shaped NLP: (a) the output pulses as a function of pump power, (b) the zoom-in of the formed Gaussian-shaped NLP, (c) the corresponding output spectra.

Download Full Size | PPT Slide | PDF

The corresponding output spectra at different pump powers are present in Fig. 5(b). For the conventional rectangular-shaped NLP at 90 mW, the output spectrum is smooth and broad. While the rectangular pulse begins to split at 100 mW, a weak CW component occurs on the mode-locked spectrum, which implies the CW component plays an important role in the interactions among the internal pulses of NLP. With the increase of the pump power, the rectangular-shaped pulse is gradually broken into a Gaussian-shaped pulses cluster in the time domain, and the intensity of the CW component is improved, which is plotted as the purple curve in Fig. 5(b). This phenomenon is different from the results in [32], which the CW component does not occur in the spectrum when the rectangular pulse is changed into a hybrid pulse with one/ two rectangular shaped pulses and one/two Gaussian-shaped pulses. By increasing the pump power and adjusting the PCs orientation, the varying nonlinear effects in the cavity greatly influences the interactions among the random ultrashort pulses in wave packet of NLP. Therefore, a part of internal pulses escapes from the initial rectangular-shaped NLP, and reform other pulses. Because of the high nonlinearity and sufficient pulse energy in cavity, the rectangular-shaped NLPs are completely reshaped into a Gaussian-shaped pulses cluster NLP through intense pulse interactions. In [27,32], due to the small energy of the escaped internal pulses, only multiple rectangular pulses and coexistence of rectangular-shaped and Gaussian-shaped pulses are achieved.

3.2.2 Single-scale soliton clusters

To further investigate the dynamics of multi-soliton pattern NLP in the cavity, we fix the LD1 power at 130 mW, and we elaborately adjust the nonlinear effects in cavity by manipulating the LD2 power and intra-cavity PCs orientation. A single-scale solitons cluster can be experimentally observed at LD2 of 80 mW. As shown in Fig. 6(a), multiple solitons are assembled as a bunch with a 3.139 µs time separation, which is in accordance with the cavity round-trip time. The bunch comprises 6 solitons with the same time separation of 21.6 ns, and the solitons in bunch possess a nearly uniform intensities distribution. When the power of LD2 is increased to 100 mW, the number of solitons in a bunch is increased to 15, shown in Fig. 6(b), and the intervals of adjacent bunches and solitons separation are the same as those in Fig. 6(a). Similar phenomenon is observed in an all-normal-dispersion mode-locked fiber laser [33]. The generated multiple solitons are assembled together as a bunch with a 7 ns soliton separation, and the number of solitons in a bunch is influenced by the pump power and the PC states in cavity. Continually increasing the pump power to 150 mW, a broader single-scale solitons cluster is formed which contains 108 solitons in a 2.3328 µs time-scale bunch, but the palpable fluctuation of solitons intensities distribution can be found in Fig. 6(c). The intervals of adjacent bunches and solitons separation are kept the same as 3.139 µs and 21.6 ns. It is noteworthy that the 2nd harmonic cluster is achieved at LD2 power of 205 mW, and a bunch contains 63 solitons in a 1.3608 µs time scale, which is shown in the inset of Fig. 6(d). Experimentally, the solitons separation can be changed by slightly rotating the paddles of PCs. Here the aforementioned 21.6 ns separation is fixed because the PC state is maintained.

 figure: Fig. 6.

Fig. 6. The single-scale soliton clusters under different pump power: (a) at 80 mW, (b) at 100 mW, (c) at 150 mW, (d) 205 mW, (e) the corresponding output spectra.

Download Full Size | PPT Slide | PDF

Figure 6(e) illustrates the corresponding output spectra with different pump powers. It can be obviously distinguished that two CW components appear in spectra, and the peak wavelengths are 1539.12 nm and 1561.25 nm at 80 mW. The intensities of two CW components are strengthened when the pump power increases. At pump power of 205 mW, the wavelengths of CW components are changed to 1534.65 nm and 1560.86 nm. The obtained results further identify that the CW components can facilitate the interactions of the internal pulses in NLP wave packet, which leads to multi-soliton pattern NLP formation in the cavity.

3.2.3 High order harmonic mode-locking

As discussed in Figs. 5 and 6, the characteristics of multi-solitons NLPs are similar to those in a conventional mode-locked fiber laser. According to soliton energy quantization, the number of the solitons in the cavity is directly proportional to the pump power level. Based on the pump power of single-scale soliton clusters, the power of LD2 is adjusted to 260 mW, and slightly rotating the paddles of PCs simultaneously, the solitons clusters are further broken up, and all solitons finally occupy the whole cavity. The recorded oscilloscope trace of laser pulses is shown in Fig. 7(a). It can be clearly noted that the intensities of solitons are not the uniform distribution in cavity, but the solitons separation is uniform, so this state belongs to the harmonic mode-locking state. For better clarity, the zoom-in of multiple solitons in 0.2 µs time-scale is shown in inset of Fig. 7(a), where the solitons separation is 21.6 ns, and the number of solitons in the whole cavity is estimated to be 145. Figure 7(b) presents the corresponding output spectrum with a 3-dB spectral bandwidth of 13.73 nm. Besides a weak CW component at 1559.36 nm, a higher intensity CW component can be conspicuously found in the spectrum. The zoom in of the higher intensity CW component is shown in Fig. 7(b), and two wavelength peaks of 1531.31 nm and 1533.46 nm are found. The obtained results indicate that three different CW components intensify the interaction of multiple solitons in the cavity, and lead to the formation of high order harmonic mode-locking the cavity. With a 1 Hz resolution bandwidth, the corresponding RF spectrum is shown in Fig. 7(c). The repetition rate of the output pulses is 46.2941 MHz, which is around 145th order harmonic of 318.55625 kHz fundamental repetition rate in a mode-locked fiber laser. The side-mode suppression ratio is estimated to be 36.7 dB, which demonstrates the harmonic mode-locking state operates in a stable regime. Figure 7(d) shows the autocorrelation trace of harmonic mode-locked fiber laser pulses. The result is characterized as a coherent peak located on a broad pedestal, representing that the harmonic mode-locked laser pulses belong to NLP regime.

 figure: Fig. 7.

Fig. 7. The state of multiple solitons occupying the whole cavity: (a) output pulses train, (b) output spectrum, (c) the RF spectra of output pulses, (d) the autocorrelation trace.

Download Full Size | PPT Slide | PDF

3.2.4 Localized chaotic bunched pulses

In the experiment, an interesting solitons state NLP can be achieved at the pump powers of 130 mW LD1 and 100 mW LD2 by finely adjusting the PCs orientation in the cavity. Multiple chaotic pulses are bunched together, and the envelope of the bunched pulses is similar to the output pulse of Q-switched mode-locked laser. Figure 8(a) shows the recorded oscilloscope trace of pulses train, and the zoomed-in of a bunch pulse is inserted in Fig. 8(a). Here it can be clearly observed that all chaotic pulses are bounded at a time range of nearly 1µs, the intensity and separation of pulses in the bunch are chaotic, and changing constantly. However, the interval of adjacent punch pulses is well consistent with the cavity round-trip time. The reason for localized bunched pulses performance can be attributed to the strong soliton interactions which can prevent the neighboring solitons from locating too far to each other [34]. Figure 8(b) presents the output spectrum of localized chaotic bunched pulses, and the output spectrum is generally smooth. However, three different CW components can be seen clearly in the spectrum, and the interactions among the internal solitons and CW components may cause the formation of localized chaotic bunched pulses. Compared with mode-locked spectra in the states of single-scale soliton clusters and high order harmonic mode-locking, the 3-dB spectral bandwidth is narrowed, and the corresponding value is 7.84 nm centered at 1556.1 nm.

 figure: Fig. 8.

Fig. 8. The state of localized chaotic bunched pulses: (a) output pulses train, (b) output spectrum.

Download Full Size | PPT Slide | PDF

4. Discussion

Thus far, several groups reported the multiple waveforms of rectangular-shaped NLPs in a passively mode-locked fiber laser. In order to obtain versatile patterns NLP by adjusting the nonlinear effects in cavity, a 65 m HNLF [27,32], a 120 m twisted fiber [35], or a 40 m SMF adding an 8 m dispersion compensation fiber [36] are inserted in the cavity, and one rectangular-shaped NLPs can be broken up into several rectangular-shaped NLPs or coexistence of rectangular-shaped and Gaussian-shaped NLPs. However, due to the nonlinearity and pulse energy in cavity are not sufficient, the rectangular-shaped NLPs cannot split into versatile multi-solitons patterns.

Considering the typical nonlinear coefficients γ of 1.3 /W/km for SMF [37], 3.6 /W/km for EDF [38] and 9.4 /W/km for HNLF [39] in cavity, the calculated average nonlinear parameters in [27,32,35,36] are 6.04 /W/km, 6.15 /W/km, 1.36 /W/km, and 1.99 /W/km, respectively. In our experiment, the total cavity length is around 642.8 m, including 585 m HLNF, 1 m EDF, and 56.8 m SMF, and the average nonlinear parameter is 8.68 /W/km, which are larger than the published results. Because of the high nonlinearity provided by HNLF and sufficient pulse energy in the cavity, rectangular-shaped NLPs is completely broken up into Gaussian-shaped NLPs, and three types of multi-solitons NLPs are achieved. Although the oscilloscope trace of rectangular-shaped NLP wave packet is stable, it actually contains lots of ultrashort pulses with chaotic amplitudes and durations. The chaotic tiny pulses are bunched together as a wave packet through the nonlinear interactions among internal pulses, hence the nonlinear effects in cavity plays an important role in the dynamics and evolution of versatile patterns NLP formation. Experimentally, the cavity nonlinear effects can be effectively manipulated by adjusting the pump powers of LD1 and LD2, and rotating the intra-cavity PCs orientation simultaneously, interactions among internal pulses of NLP wave packet can vary considerably. This process will lead to a part of internal pulses gradually escape from the original pulses, and the rectangular-shaped pulses are completely changed to Gaussian-shaped pulses, as shown in Fig. 5(a). Additionally, the CW components also play an important role in the interactions among the internal pulses. As can be seen in Figs. 5(b), 6(e), 7(b), and 8(b), the CW components can facilitate the interactions of the internal pulses in NLP wave packet, which is a benefit for the formation of the multi-soliton patterns. The observed versatile multi-soliton patterns NLPs will be useful for further understanding the nature and physical mechanism of the NLPs in a passively mode-locked fiber laser.

5. Conclusion

In conclusion, we have experimentally demonstrated the versatile multi-soliton patterns NLP in a passively mode-locked fiber laser. By properly adjusting pump powers and finely rotating PCs orientation in cavity, the conventional rectangular-shaped NLP is completely broken up Gaussian-shaped pulses, and three types of solitons patterns NLP, namely, such as, single-scale soliton clusters, high order harmonic mode-locking, and localized chaotic bunched pulses, are achieved. The pulse duration can be linearly tuned from 8.21 ns to 128.23 ns by increasing the pump power from 30 mW to 400 mW with 2.936 ns / 10 mW. The monitoring of spectrum evolutions with pump power and spectrum stability in 2 hours indicates the fiber laser has an excellent mode-locking operation and long-term stability in NLP regime. The obtained results further enhance the understanding of fundamental physics of the NLPs in mode-locked fiber laser.

Funding

National Natural Science Foundation of China (61675008, 61805281); Shenzhen Technology and Innovation Council (KQJSCX20170727163424873); Tsinghua-Berkeley Shenzhen Institute (TBSI) Faculty Start-up Fund; Natural Science Foundation of Guangdong Province (2019A1515010732).

Disclosures

The authors declare no conflicts of interest.

References

1. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016). [CrossRef]  

2. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008). [CrossRef]  

3. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14(21), 9825–9831 (2006). [CrossRef]  

4. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997). [CrossRef]  

5. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993). [CrossRef]  

6. B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010). [CrossRef]  

7. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012). [CrossRef]  

8. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009). [CrossRef]  

9. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992). [CrossRef]  

10. M. Horowitz and Y. Silberberg, “Control of noiselike pulse generation in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 10(10), 1389–1391 (1998). [CrossRef]  

11. D. Y. Tang, L. M. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005). [CrossRef]  

12. L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B 83(4), 553–557 (2006). [CrossRef]  

13. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007). [CrossRef]  

14. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an Erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008). [CrossRef]  

15. O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, “Adjustable noise-like pulses from a figure-eight fiber laser,” Appl. Opt. 50(25), E24–E31 (2011). [CrossRef]  

16. L. A. V. Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012). [CrossRef]  

17. Y. Jeong, L. A. V. Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014). [CrossRef]  

18. X. Zhou, Z. Cheng, Y. Shi, H. Guo, and P. Wang, “High-energy noiselike pulses in an all-PM double-clad Er/Yb-codoped fiber laser,” IEEE Photonics Technol. Lett. 30(11), 985–988 (2018). [CrossRef]  

19. J. Liu, Y. Chen, P. Tang, C. Xu, C. Zhao, H. Zhang, and S. Wen, “Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser,” Opt. Express 23(5), 6418–6427 (2015). [CrossRef]  

20. S. Keren and M. Horowitz, “Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses,” Opt. Lett. 26(6), 328–330 (2001). [CrossRef]  

21. V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, “Measuring temperature profiles in high-power optical fiber components,” Appl. Opt. 42(13), 2284–2288 (2003). [CrossRef]  

22. K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011). [CrossRef]  

23. A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013). [CrossRef]  

24. J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016). [CrossRef]  

25. E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017). [CrossRef]  

26. X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014). [CrossRef]  

27. Y. Q. Huang, Y. L. Qi, Z. C. Luo, A. P. Luo, and W. C. Xu, “Versatile patterns of multiple rectangular noise-like pulses in a fiber laser,” Opt. Express 24(7), 7356–7363 (2016). [CrossRef]  

28. K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019). [CrossRef]  

29. H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015). [CrossRef]  

30. R. L. Zhou, D. Yu, X. Y. Liu, Q. Li, and H. Y. Fu, “Dark rectangular noise-like pulses in a figure-nine fiber laser based on a nonlinear amplifying loop mirror,” Opt. Lett. 44(15), 3717–3720 (2019). [CrossRef]  

31. X. Wang, A. Komarov, M. Klimczak, L. Su, D. Y. Tang, D. Y. Shen, L. Li, and L. M. Zhao, “Generation of noise-like pulses with 203 nm 3-dB bandwidth,” Opt. Express 27(17), 24147–24153 (2019). [CrossRef]  

32. G. K. Zhao, H. J. Chen, H. Z. Liu, W. C. Chen, A. P. Luo, X. B. Xing, H. Cui, Z. C. Luo, and W. C. Xu, “Coexistence of rectangular and Gaussian-shape noise-like pulses in a figure-eight fiber laser,” Opt. Express 26(14), 17804–17813 (2018). [CrossRef]  

33. L. Li, H. Huang, L. Su, D. Y. Shen, D. Y. Tang, M. Klimczak, and L. M. Zhao, “Various soliton molecules in fiber systems,” Appl. Opt. 58(10), 2745–2753 (2019). [CrossRef]  

34. A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser,” Photon. Res. 3(2), A69–A78 (2015). [CrossRef]  

35. E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019). [CrossRef]  

36. Q. Su, T. Wang, J. Zhang, W. Ma, P. Liu, Y. Su, and Q. Jia, “Dual square-wave pulse passively mode-locked fiber laser,” Appl. Opt. 56(17), 4934–4939 (2017). [CrossRef]  

37. J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019). [CrossRef]  

38. M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, and K. Porsezian, “Pulse breaking through spectral filtering in dispersion-managed fiber lasers,” J. Opt. Soc. Am. B 35(2), 276–283 (2018). [CrossRef]  

39. R. L. Zhou, R. L. Huang, Q. Li, and H. Y. Fu, “Raman soliton at 2 µm in picosecond pumped supercontinuum by a weak CW trigger,” Opt. Express 27(9), 12976–12986 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
    [Crossref]
  2. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
    [Crossref]
  3. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14(21), 9825–9831 (2006).
    [Crossref]
  4. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  5. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [Crossref]
  6. B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
    [Crossref]
  7. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  8. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
    [Crossref]
  9. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
    [Crossref]
  10. M. Horowitz and Y. Silberberg, “Control of noiselike pulse generation in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 10(10), 1389–1391 (1998).
    [Crossref]
  11. D. Y. Tang, L. M. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
    [Crossref]
  12. L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B 83(4), 553–557 (2006).
    [Crossref]
  13. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007).
    [Crossref]
  14. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an Erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
    [Crossref]
  15. O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, “Adjustable noise-like pulses from a figure-eight fiber laser,” Appl. Opt. 50(25), E24–E31 (2011).
    [Crossref]
  16. L. A. V. Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
    [Crossref]
  17. Y. Jeong, L. A. V. Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
    [Crossref]
  18. X. Zhou, Z. Cheng, Y. Shi, H. Guo, and P. Wang, “High-energy noiselike pulses in an all-PM double-clad Er/Yb-codoped fiber laser,” IEEE Photonics Technol. Lett. 30(11), 985–988 (2018).
    [Crossref]
  19. J. Liu, Y. Chen, P. Tang, C. Xu, C. Zhao, H. Zhang, and S. Wen, “Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser,” Opt. Express 23(5), 6418–6427 (2015).
    [Crossref]
  20. S. Keren and M. Horowitz, “Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses,” Opt. Lett. 26(6), 328–330 (2001).
    [Crossref]
  21. V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, “Measuring temperature profiles in high-power optical fiber components,” Appl. Opt. 42(13), 2284–2288 (2003).
    [Crossref]
  22. K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
    [Crossref]
  23. A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
    [Crossref]
  24. J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
    [Crossref]
  25. E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
    [Crossref]
  26. X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
    [Crossref]
  27. Y. Q. Huang, Y. L. Qi, Z. C. Luo, A. P. Luo, and W. C. Xu, “Versatile patterns of multiple rectangular noise-like pulses in a fiber laser,” Opt. Express 24(7), 7356–7363 (2016).
    [Crossref]
  28. K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
    [Crossref]
  29. H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
    [Crossref]
  30. R. L. Zhou, D. Yu, X. Y. Liu, Q. Li, and H. Y. Fu, “Dark rectangular noise-like pulses in a figure-nine fiber laser based on a nonlinear amplifying loop mirror,” Opt. Lett. 44(15), 3717–3720 (2019).
    [Crossref]
  31. X. Wang, A. Komarov, M. Klimczak, L. Su, D. Y. Tang, D. Y. Shen, L. Li, and L. M. Zhao, “Generation of noise-like pulses with 203 nm 3-dB bandwidth,” Opt. Express 27(17), 24147–24153 (2019).
    [Crossref]
  32. G. K. Zhao, H. J. Chen, H. Z. Liu, W. C. Chen, A. P. Luo, X. B. Xing, H. Cui, Z. C. Luo, and W. C. Xu, “Coexistence of rectangular and Gaussian-shape noise-like pulses in a figure-eight fiber laser,” Opt. Express 26(14), 17804–17813 (2018).
    [Crossref]
  33. L. Li, H. Huang, L. Su, D. Y. Shen, D. Y. Tang, M. Klimczak, and L. M. Zhao, “Various soliton molecules in fiber systems,” Appl. Opt. 58(10), 2745–2753 (2019).
    [Crossref]
  34. A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser,” Photon. Res. 3(2), A69–A78 (2015).
    [Crossref]
  35. E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
    [Crossref]
  36. Q. Su, T. Wang, J. Zhang, W. Ma, P. Liu, Y. Su, and Q. Jia, “Dual square-wave pulse passively mode-locked fiber laser,” Appl. Opt. 56(17), 4934–4939 (2017).
    [Crossref]
  37. J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
    [Crossref]
  38. M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, and K. Porsezian, “Pulse breaking through spectral filtering in dispersion-managed fiber lasers,” J. Opt. Soc. Am. B 35(2), 276–283 (2018).
    [Crossref]
  39. R. L. Zhou, R. L. Huang, Q. Li, and H. Y. Fu, “Raman soliton at 2 µm in picosecond pumped supercontinuum by a weak CW trigger,” Opt. Express 27(9), 12976–12986 (2019).
    [Crossref]

2019 (7)

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

R. L. Zhou, D. Yu, X. Y. Liu, Q. Li, and H. Y. Fu, “Dark rectangular noise-like pulses in a figure-nine fiber laser based on a nonlinear amplifying loop mirror,” Opt. Lett. 44(15), 3717–3720 (2019).
[Crossref]

X. Wang, A. Komarov, M. Klimczak, L. Su, D. Y. Tang, D. Y. Shen, L. Li, and L. M. Zhao, “Generation of noise-like pulses with 203 nm 3-dB bandwidth,” Opt. Express 27(17), 24147–24153 (2019).
[Crossref]

L. Li, H. Huang, L. Su, D. Y. Shen, D. Y. Tang, M. Klimczak, and L. M. Zhao, “Various soliton molecules in fiber systems,” Appl. Opt. 58(10), 2745–2753 (2019).
[Crossref]

E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
[Crossref]

J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
[Crossref]

R. L. Zhou, R. L. Huang, Q. Li, and H. Y. Fu, “Raman soliton at 2 µm in picosecond pumped supercontinuum by a weak CW trigger,” Opt. Express 27(9), 12976–12986 (2019).
[Crossref]

2018 (3)

2017 (2)

Q. Su, T. Wang, J. Zhang, W. Ma, P. Liu, Y. Su, and Q. Jia, “Dual square-wave pulse passively mode-locked fiber laser,” Appl. Opt. 56(17), 4934–4939 (2017).
[Crossref]

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

2016 (3)

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

Y. Q. Huang, Y. L. Qi, Z. C. Luo, A. P. Luo, and W. C. Xu, “Versatile patterns of multiple rectangular noise-like pulses in a fiber laser,” Opt. Express 24(7), 7356–7363 (2016).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

2015 (3)

2014 (2)

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

Y. Jeong, L. A. V. Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

2013 (1)

2012 (2)

L. A. V. Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

2011 (2)

2010 (1)

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

2009 (1)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

2008 (2)

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an Erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

2007 (1)

2006 (2)

L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B 83(4), 553–557 (2006).
[Crossref]

J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14(21), 9825–9831 (2006).
[Crossref]

2005 (1)

2003 (1)

2001 (1)

1998 (1)

M. Horowitz and Y. Silberberg, “Control of noiselike pulse generation in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 10(10), 1389–1391 (1998).
[Crossref]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

1993 (1)

1992 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Akçaalan, Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Alsaleh, M.

Álvarez-Tamayo, R. I.

Andrés, M. V.

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Bello-Jimenez, M.

E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
[Crossref]

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

Benedick, A. J.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Bravo-Huerta, E.

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Chen, H. J.

Chen, W. C.

Chen, Y.

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an Erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

Cheng, Z.

X. Zhou, Z. Cheng, Y. Shi, H. Guo, and P. Wang, “High-energy noiselike pulses in an all-PM double-clad Er/Yb-codoped fiber laser,” IEEE Photonics Technol. Lett. 30(11), 985–988 (2018).
[Crossref]

Chung, C. C.

Cui, H.

Dinda, P. T.

J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
[Crossref]

M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, and K. Porsezian, “Pulse breaking through spectral filtering in dispersion-managed fiber lasers,” J. Opt. Soc. Am. B 35(2), 276–283 (2018).
[Crossref]

Ding, Y. H.

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

Duran-Sanchez, M.

E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
[Crossref]

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

Eken, K.

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Estudillo-Ayala, J. M.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

Felenou, E. T.

Fendel, P.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Feng, X. H.

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

Filoteo-Razo, J. D.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

Fu, H. Y.

Fu, X. Q.

Glenday, A. G.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Goloborodko, V.

Grajales-Coutiño, R.

Grelu, P.

J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
[Crossref]

M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, and K. Porsezian, “Pulse breaking through spectral filtering in dispersion-managed fiber lasers,” J. Opt. Soc. Am. B 35(2), 276–283 (2018).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Gui, L. L.

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

Guo, H.

X. Zhou, Z. Cheng, Y. Shi, H. Guo, and P. Wang, “High-energy noiselike pulses in an all-PM double-clad Er/Yb-codoped fiber laser,” IEEE Photonics Technol. Lett. 30(11), 985–988 (2018).
[Crossref]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref]

Hernandez-Escobar, E.

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

Hernandez-Garcia, J. C.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

Hernández-García, J. C.

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Horowitz, M.

Huang, H.

Huang, R. L.

Huang, Y. Q.

Hui, R.

Ibarra-Escamilla, B.

E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
[Crossref]

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, “Adjustable noise-like pulses from a figure-eight fiber laser,” Appl. Opt. 50(25), E24–E31 (2011).
[Crossref]

Ibarra-Villalon, H. E.

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

Igbonacho, J.

J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
[Crossref]

Ilday, F. O.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Ilday, F. Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref]

Jeong, Y.

Y. Jeong, L. A. V. Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

L. A. V. Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
[Crossref]

Jia, Q.

Johnson, C. K.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Kärtner, F. X.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Keren, S.

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Klimczak, M.

Komarov, A.

Krupa, K.

J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
[Crossref]

Kuzin, E. A.

E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
[Crossref]

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, “Adjustable noise-like pulses from a figure-eight fiber laser,” Appl. Opt. 50(25), E24–E31 (2011).
[Crossref]

Kwon, Y.

Y. Jeong, L. A. V. Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Lauterio-Cruz, J. P.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

Lee, S.

Y. Jeong, L. A. V. Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Levit, B.

Li, C. H.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Li, L.

Li, Q.

Lin, C. H.

Liu, H.

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

Liu, H. Z.

Liu, J.

Liu, M.

A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser,” Photon. Res. 3(2), A69–A78 (2015).
[Crossref]

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

Liu, P.

Liu, X. Y.

Lopez-Estopier, R.

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an Erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

Luo, A. P.

Luo, Z. C.

Ma, W.

Molla, R. G.

Moubissi, A. B.

J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
[Crossref]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref]

Ning, Q. Y.

A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser,” Photon. Res. 3(2), A69–A78 (2015).
[Crossref]

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

Nithyanandan, K.

J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
[Crossref]

Oktem, B.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref]

Özgören, K.

Paez-Aguirre, R.

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

Pan, C. L.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Phillips, D. F.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Porsezian, K.

Posada-Ramirez, B.

Pottiez, O.

E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
[Crossref]

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, “Adjustable noise-like pulses from a figure-eight fiber laser,” Appl. Opt. 50(25), E24–E31 (2011).
[Crossref]

Price, E. S.

Qi, Y. L.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

Rojas-Laguna, R.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

Rosenthal, A.

Santiago-Hernandez, H.

E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
[Crossref]

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

Sasselov, D.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Shen, D. Y.

Shi, Y.

X. Zhou, Z. Cheng, Y. Shi, H. Guo, and P. Wang, “High-energy noiselike pulses in an all-PM double-clad Er/Yb-codoped fiber laser,” IEEE Photonics Technol. Lett. 30(11), 985–988 (2018).
[Crossref]

Sierra-Hernandez, J. M.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

Silberberg, Y.

M. Horowitz and Y. Silberberg, “Control of noiselike pulse generation in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 10(10), 1389–1391 (1998).
[Crossref]

Stehno-Bittel, L.

Su, L.

Su, Q.

Su, Y.

Szentgyorgyi, A.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Tam, H. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an Erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref]

Tang, D. Y.

Tang, P.

Tenorio-Torres, A.

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

Ulgudur, C.

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Unruh, J. R.

Uthayakumar, T.

Walsworth, R. L.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Wang, C. L.

Wang, P.

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

X. Zhou, Z. Cheng, Y. Shi, H. Guo, and P. Wang, “High-energy noiselike pulses in an all-PM double-clad Er/Yb-codoped fiber laser,” IEEE Photonics Technol. Lett. 30(11), 985–988 (2018).
[Crossref]

Wang, T.

Wang, X.

Wang, X. D.

Wen, S.

Wen, S. C.

Wu, J.

Wu, X.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

Xiao, X. S.

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

Xing, X. B.

G. K. Zhao, H. J. Chen, H. Z. Liu, W. C. Chen, A. P. Luo, X. B. Xing, H. Cui, Z. C. Luo, and W. C. Xu, “Coexistence of rectangular and Gaussian-shape noise-like pulses in a figure-eight fiber laser,” Opt. Express 26(14), 17804–17813 (2018).
[Crossref]

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

Xu, C.

Xu, W. C.

Yang, C. X.

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

Yao, S. Y.

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

Yilmaz, S.

You, Y. J.

Yu, D.

Zaytsev, A.

Zhang, H.

Zhang, J.

Zhao, B.

Zhao, C.

Zhao, G. K.

Zhao, K. J.

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

Zhao, L. M.

Zhao, N.

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

Zheng, X. W.

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

Zhou, R. L.

Zhou, X.

X. Zhou, Z. Cheng, Y. Shi, H. Guo, and P. Wang, “High-energy noiselike pulses in an all-PM double-clad Er/Yb-codoped fiber laser,” IEEE Photonics Technol. Lett. 30(11), 985–988 (2018).
[Crossref]

Zuniga, L. A. V.

Y. Jeong, L. A. V. Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

L. A. V. Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (2)

L. M. Zhao and D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B 83(4), 553–557 (2006).
[Crossref]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Appl. Phys. Express (2)

X. W. Zheng, Z. C. Luo, H. Liu, N. Zhao, Q. Y. Ning, M. Liu, X. H. Feng, X. B. Xing, A. P. Luo, and W. C. Xu, “High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser,” Appl. Phys. Express 7(4), 042701 (2014).
[Crossref]

K. J. Zhao, P. Wang, Y. H. Ding, S. Y. Yao, L. L. Gui, X. S. Xiao, and C. X. Yang, “High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser,” Appl. Phys. Express 12(1), 012002 (2019).
[Crossref]

Electron. Lett. (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Horowitz and Y. Silberberg, “Control of noiselike pulse generation in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 10(10), 1389–1391 (1998).
[Crossref]

L. A. V. Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
[Crossref]

X. Zhou, Z. Cheng, Y. Shi, H. Guo, and P. Wang, “High-energy noiselike pulses in an all-PM double-clad Er/Yb-codoped fiber laser,” IEEE Photonics Technol. Lett. 30(11), 985–988 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

H. Santiago-Hernandez, O. Pottiez, R. Paez-Aguirre, H. E. Ibarra-Villalon, A. Tenorio-Torres, M. Duran-Sanchez, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, “Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser,” Laser Phys. 25(4), 045106 (2015).
[Crossref]

Laser Phys. Lett. (2)

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, J. D. Filoteo-Razo, J. P. Lauterio-Cruz, J. M. Sierra-Hernandez, and R. Rojas-Laguna, “Flat supercontinuum generation by a F8L in high-energy harmonic noise-like pulsing regime,” Laser Phys. Lett. 13(12), 125104 (2016).
[Crossref]

E. Hernandez-Escobar, M. Bello-Jimenez, O. Pottiez, B. Ibarra-Escamilla, R. Lopez-Estopier, M. Duran-Sanchez, E. A. Kuzin, and M. V. Andrés, “Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser,” Laser Phys. Lett. 14(10), 105104 (2017).
[Crossref]

Nat. Photonics (2)

B. Oktem, C. Ulgudur, and F. O. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Nature (2)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablationcooled material removal with ultrafast bursts of pulses,” Nature 537(7618), 84–88 (2016).
[Crossref]

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[Crossref]

Opt. Commun. (1)

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an Erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

Opt. Express (11)

E. Bravo-Huerta, M. Duran-Sanchez, R. I. Álvarez-Tamayo, H. Santiago-Hernandez, M. Bello-Jimenez, B. Posada-Ramirez, B. Ibarra-Escamilla, O. Pottiez, and E. A. Kuzin, “Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser,” Opt. Express 27(9), 12349–12359 (2019).
[Crossref]

R. L. Zhou, R. L. Huang, Q. Li, and H. Y. Fu, “Raman soliton at 2 µm in picosecond pumped supercontinuum by a weak CW trigger,” Opt. Express 27(9), 12976–12986 (2019).
[Crossref]

Y. Q. Huang, Y. L. Qi, Z. C. Luo, A. P. Luo, and W. C. Xu, “Versatile patterns of multiple rectangular noise-like pulses in a fiber laser,” Opt. Express 24(7), 7356–7363 (2016).
[Crossref]

X. Wang, A. Komarov, M. Klimczak, L. Su, D. Y. Tang, D. Y. Shen, L. Li, and L. M. Zhao, “Generation of noise-like pulses with 203 nm 3-dB bandwidth,” Opt. Express 27(17), 24147–24153 (2019).
[Crossref]

G. K. Zhao, H. J. Chen, H. Z. Liu, W. C. Chen, A. P. Luo, X. B. Xing, H. Cui, Z. C. Luo, and W. C. Xu, “Coexistence of rectangular and Gaussian-shape noise-like pulses in a figure-eight fiber laser,” Opt. Express 26(14), 17804–17813 (2018).
[Crossref]

J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14(21), 9825–9831 (2006).
[Crossref]

D. Y. Tang, L. M. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
[Crossref]

J. Liu, Y. Chen, P. Tang, C. Xu, C. Zhao, H. Zhang, and S. Wen, “Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser,” Opt. Express 23(5), 6418–6427 (2015).
[Crossref]

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref]

A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
[Crossref]

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007).
[Crossref]

Opt. Fiber Technol. (1)

Y. Jeong, L. A. V. Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Opt. Lett. (3)

Photon. Res. (1)

Phys. Rev. A (2)

J. Igbonacho, K. Nithyanandan, K. Krupa, P. T. Dinda, P. Grelu, and A. B. Moubissi, “Dynamics of distorted and undistorted soliton molecules in a mode-locked fiber laser,” Phys. Rev. A 99(6), 063824 (2019).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Experimental setup of mode-locked fiber laser based on NALM.
Fig. 2.
Fig. 2. The output characteristics of a passively mode-locked fiber laser: (a) the output spectra, (b) the output pulses train, (c) the autocorrelation trace of output pulses, (d) the RF spectra.
Fig. 3.
Fig. 3. (a) Pulses evolution of the rectangular-shaped NLP, (b) Pulse duration as a function of pump power.
Fig. 4.
Fig. 4. (a) Spectrum evolution as a function of pump power, (b) Stability measurement of the NLP mode-locking operation during a 120 minutes test.
Fig. 5.
Fig. 5. The transformation from rectangular-shaped NLP to Gaussian-shaped NLP: (a) the output pulses as a function of pump power, (b) the zoom-in of the formed Gaussian-shaped NLP, (c) the corresponding output spectra.
Fig. 6.
Fig. 6. The single-scale soliton clusters under different pump power: (a) at 80 mW, (b) at 100 mW, (c) at 150 mW, (d) 205 mW, (e) the corresponding output spectra.
Fig. 7.
Fig. 7. The state of multiple solitons occupying the whole cavity: (a) output pulses train, (b) output spectrum, (c) the RF spectra of output pulses, (d) the autocorrelation trace.
Fig. 8.
Fig. 8. The state of localized chaotic bunched pulses: (a) output pulses train, (b) output spectrum.

Metrics