Abstract

Monolithic integration of III-V laser sources on standard silicon-on-insulator (SOI) substrate has been recognized as an enabling technology for realizing Si-based photonic integration circuits (PICs). The Si-based ridge lasers employing III-V quantum dot (QD) materials are gaining significant momentum as it allows massive-scalable, streamlined fabrication of Si photonic integrated chips to be made cost effectively. Here, we present the successful fabrication of InAs/GaAs QD ridge lasers monolithically grown on {111}-faceted SOI hollow substrates. The as-cleaved Fabry-Perot (FP) narrow ridge laser is achieved with a relatively low threshold current of 50 mA at room temperature under pulse current operation. The maximum working temperature achieved is up to 80 oC. The promising lasing characteristics of such SOI-based InAs/GaAs QD ridge lasers with low threshold current and small footprint provide a viable route towards large-scale, low-cost integration of laser sources on SOI platform for silicon photonic integration purpose.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Epitaxial growth of III-V quantum dot (QD) light emitters on CMOS-compatible Si platforms provides a promising approach for the realization of Si-based photonic integration circuits (PICs) [1,2]. Integration of III-V materials on Si combines the superior optoelectronic properties of III-V materials and the compatibility with currently mature manufacturing processes offered by CMOS foundries. There are significant research interests in direct epitaxially growing III-V QD lasers on Si substrates that have been carried out over the past decade [312]. As most of existing silicon photonic components are based on the silicon-on-insulator (SOI) platform, the absence of lasers on SOI templates represents a key obstacle slowing down the progress of III-V/IV hybrid silicon photonic integration. In this work, we present a SOI based platform for potential integration of InAs/GaAs QD lasers with silicon passive waveguides. Here, the InAs/GaAs QD ridge lasers operating up to 80 °C have been demonstrated on SOI substrate via {111}-faceted Si intermediate structures, which enable the possibility of direct integration with pre-processed silicon waveguides on such platform. At current stage, it is only possible to epitaxially grow III-V QD lasers on the top Si layer of SOI substrate. In order to enable the direct butt coupling into SOI based Si waveguides, selective area growth of InAs/GaAs QD lasers inside SOI template with pre-patterned trenches will be conducted in our future work by implementing similar techniques introduced here. Besides that, the selective area grown InAs QD lasers within SOI trenches shall also enable significantly improved thermal dissipation into the substrates.

2. Experiments

2.1 Material growth

The material preparation was conducted by using an IV/III-V dual chamber molecular beam epitaxy (MBE) system. The standard 8-inch SOI substrates with a 3 µm oxide layer and a 340 nm top Si layer were patterned with U-shape grating structures along [110] direction by conventional CMOS fabrication line. After dicing into 3.2×3.2 cm2 pieces and deoxidization process in diluted HF solution, the SOI substrate was loaded into Group IV MBE chamber for silicon homoepitaxial growth. The substrate was first degassing at 700 °C and then cooled down to 600 °C to grow 420 nm thick silicon layer for constructing {111}-faceted-sawtooth hollow structures. The SOI substrate with {111}-faceted-sawtooth hollow structures was transferred into III-V chamber sequentially for the following GaAs buffer growth. Here, the GaAs buffer layers were deposited by using a standard two-step process [13,14], which consists of a low-temperature nucleation and high-temperature growth, in order to minimize the generated dislocations at the III-V/Si interface. First, a 40 nm nucleation layer including a 10 nm AlAs layer and a 30 nm GaAs layer was deposited at low temperature (380 °C); secondly, a 360 nm GaAs main layer was then deposited at a higher temperature (540 °C). Subsequently, the InGaAs/GaAs and InAlAs/GaAs strained layer superlattices (SLSs) as dislocation filters (DLFs) were grown to further reduce the threading dislocation densities (TDDs). After deposition of five-layer GaAs/AlGaAs superlattice structures, high-quality GaAs/SOI templates were obtained. The growth details can be found in our previous work [1416].

The InAs/GaAs QD laser structures were then grown on such GaAs/SOI substrate. Figure 1(a) shows schematic details of the entire epi-structure of InAs/GaAs QD laser grown on the GaAs/SOI substrate. After the growth of a 300-nm-thick n-type GaAs contact layer, a 1.4 µm n-type Al0.4Ga0.6As cladding layer and a 20-nm-thick n-type Al0.2Ga0.8As transition layer were deposited. Following that, a standard intrinsic seven-layer InAs/GaAs dot-in-well (DWELL) laser active region was grown at 430 °C, separated by 49 nm GaAs spacer layers. Above the active region, the upper 20-nm-thick p-type Al0.2Ga0.8As transition layer and 1.4 µm p-type Al0.4Ga0.6As cladding layer were grown. Finally, a 300-nm-thick p-type GaAs contact layer was deposited on the surface. The contact layers were grown at 540 °C and the cladding layers were deposited at an optimum temperature of 580 °C. Figure 1(b) shows the cross-sectional scanning electron microscopy (SEM) image of the entire QD laser structure on SOI substrate.

 figure: Fig. 1.

Fig. 1. The schematic diagram (a) and cross-sectional SEM image (b) of the entire InAs QD laser structure grown on SOI substrate, respectively.

Download Full Size | PPT Slide | PDF

2.2 Material characterizations

The epitaxial materials are characterized by transmission electron microscopy (TEM), surface atomic force microscopy (AFM), electron channeling contrast image (ECCI) and photoluminescent measurements. Figure 2(a) shows the cross-sectional TEM image of the interface between epi-GaAs and {111}-faceted Si hollow structures on SOI, indicating that most dislocations were confined at the GaAs/Si interface, while the self-annihilation of stacking faults (SFs) can be observed at the tip of “V” structures [1618]. After further deposition of the DFLs, no apparent defects can be observed in the III-V buffer layers. The surface morphology of GaAs/SOI substrate was characterized by the AFM measurement. Figure 2(b) shows a 10×10 µm2 AFM image of the as-grown GaAs/SOI surface, with root-mean-square (RMS) surface roughness of 0.68 nm. As shown in Fig. 2(c), the ECCI measurement was also performed to investigate the TDDs on GaAs/SOI surface. As marked by the red circles, the pinpoints stand for the threading dislocations on the surface. Here the TDD is calculated with a value of 9.6×106 cm−2.

 figure: Fig. 2.

Fig. 2. (a) Cross-sectional TEM image of the interface between GaAs and {111}-faceted Si structure on SOI. (b) 10×10 µm2 AFM image of the as-grown GaAs film layer on SOI substrate. (c) Plan-view ECCI to show the TDDs of GaAs/SOI template. (d) Room-temperature PL comparison of 7-layer InAs/GaAs QDs grown on GaAs (001) substrate (black curve) and GaAs/SOI substrate (red curve), respectively. Inset: 1×1 µm2 AFM image of uncapped InAs/GaAs QDs grown on GaAs/SOI substrate.

Download Full Size | PPT Slide | PDF

Furthermore, room-temperature photoluminescence (PL) was conducted to compare the optical properties of seven-layer InAs/GaAs QDs grown on GaAs/SOI substrate and standard GaAs (001) substrate. As shown in Fig. 2(d), the QDs on GaAs/SOI substrate presents almost the same PL peak intensity as these on GaAs substrate, with a peak wavelength of 1298 nm. Here, the difference of the PL peak wavelengths on SOI (1298 nm) and GaAs (1275) was caused by the substrate temperature variation. The inset in Fig. 2(d) shows the 1×1 µm2 AFM image of uncapped InAs/GaAs QDs grown on GaAs/SOI substrate, indicating a dot density of 2.28×1010/cm2.

2.3 Device fabrication

Narrow ridge lasers with ridges running parallel and perpendicular to the v-grooves are both fabricated by using the materials prepared above. The ridge width here is 4 µm with a cavity length of 1 mm. The top mesas are dry etched down to approximately 100 nm above the active region. The top n-contact layer was wet etched towards the highly n-doped GaAs layer right below the n-type AlGaAs bottom cladding layer. The n- and p-contacts are formed by depositing NiGeAu/Au and Ti/Pt/Ti/Au on exposed n-doped GaAs contact layer and top p-contact layer, respectively. Subsequently, rapid post-annealing was performed at 385 °C (n-contact) and 425 °C (p-contact) for conforming ohmic contact between metal and semiconductors. After thinning the SOI substrate to 100 µm, the laser bars were then cleaved into the desired cavity lengths. Figure 3(a) shows the top-down optical micrograph of the finished devices. To note, no anti-reflection coatings were applied on the as-cleaved facets. Optimized mesa wet-etch was processed not only to ensure smooth sidewalls and contact surface, but also to minimize the contact loss and sidewall non-radiative recombination. Clean and mirror-like facets are achieved here as shown in the cross-sectional SEM image of the ridge laser in Fig. 3(b).

 figure: Fig. 3.

Fig. 3. (a) Top-down optical micrograph of the fabricated ridge waveguide lasers on SOI before dicing. (b) Cross-sectional SEM image of an InAs/GaAs QD ridge waveguide laser on SOI substrate after dicing, with the ridge width of 4 µm.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Figure 4 shows the light-current-voltage (LIV) characteristic measurements of SOI-based InAs/GaAs QD narrow ridge waveguide lasers with ridge width of 4 µm under both continuous-wave (CW) and pulsed current operation. The typical IV characteristic of a 4 µm×1 mm ridge under continuous-wave (CW) current injection is shown in Fig. 4. The black solid line represents IV curve of CW mode, while the black dashed line shows the IV curve under pulse current operation. It is indicated that good electrical contacts formation is obtained from the laser diode with turn-on voltage of 1.5 V and the series resistance of 8.6 ± 0.3 Ω. The resistance tested among series of devices are identical, indicating a good stability of the fabrication process. To effectively measure the output power, an integrating sphere with InGaAs detector was placed side by side near the laser diode for scattered output collection. The devices only manage to lase at 10 °C under CW mode due to thermal isolation from the SiO2 layer. At 0 °C, the devices are measured with a threshold current of 140 mA. With significant heat accumulation at 5 °C and 10 °C, the threshold current increase dramatically to 175 mA. In comparison, under pulse current injection, the heat dissipation problem is eliminated, we could observe consistent light-current (L-I) curves with threshold current of approximately 50 mA. The injected pulse current selected here has a pulse width of 100 ns with a duty cycle of 5%. Due to relatively higher absorption losses in the highly doped P+ AlGaAs cladding layer (heavily doped at 1×1019 cm−3), the InAs QD lasers on SOI substrate only manage to lase at excited state which was confirmed by optical spectrum characterization hereinafter. From the experiment, the internal loss is measured as approximately 30 cm−1, due to the overlapping of optical field with excessively doped P+ AlGaAs cladding. The output powers of the lasers are less than 5 mW per facet for excited-state lasing at CW mode.

 figure: Fig. 4.

Fig. 4. (a) LIV characteristics of InAs/GaAs QD narrow ridge laser grown on GaAs/SOI substrates with both pulse and CW operation. Dashed lines are pulse mode; solid lines are CW mode.

Download Full Size | PPT Slide | PDF

Temperature-dependent L-I characteristics of the device were also investigated here. Figure 5(a) presents the L-I characteristics of a SOI-based InAs/GaAs QD ridge waveguide laser with the dimension of 4 µm×1 mm under pulsed current injection at temperatures from 20 °C to 60 °C. The threshold current ranges from 50 mA to 90 mA within this temperature region. Under pulsed operation, a maximum single facet output power of 6.5 mW is obtained at an injection current of 240 mA at room temperature. The capability of high-temperature operation promises its potential applications in silicon photonics integrated circuit (PIC) chips. It should be noted that appropriate high-reflection coatings and facet passivation can further improve the output power and lower the threshold of the device.

 figure: Fig. 5.

Fig. 5. (a) (a) Temperature-dependent L-I characteristics of a single-mode InAs/GaAs QD laser on SOI with ridge width of 4 µm and cavity length of 1 mm under pulse current operation (100 ns pulse width, 5% duty cycle). (b) Plot of threshold current and slope efficiency versus temperature (0 °C to 60 °C) for InAs/GaAs QD narrow ridge laser on SOI.

Download Full Size | PPT Slide | PDF

By fitting the data, the characteristic temperature (T0) of two linear regions are extracted with value of 184.2 K at the temperature range between 0 °C and 20 °C, which is higher than the reported values for the 1.3 µm and 1.5 µm QD FP lasers grown on Si substrates [10,19]. At higher temperature from 30 °C and 60 °C, T0 exhibits relatively lower value of 58.1 K due to strong heat accumulation induced from SiO2 layer. The characteristic temperature can be further improved by p-type modulation doping in the active region [2022].

The relationship of the threshold current and the slope efficiency as a function of temperature is also calculated as shown in Fig. 5(b). It presents that the slope efficiency is degrading accordingly with the temperature increment. The relatively poor slope efficiency of approximately 0.034 W/A at room temperature confirmed the assumption of high-doping induced internal loss. It is suggested that the low slope efficiency and external differential quantum efficiency are related to high internal loss, resulting from high doping level in the AlGaAs cladding layers, which are expected to be improved in the future works.

Figure 6 shows the spectral evolution of numerous Fabry-Perot (FP) longitudinal modes as the injection current increases from 40 mA to 180 mA. Electroluminescent (EL) spectra were collected from below and above threshold currents. The linewidth of EL spectral at injection current slightly above threshold was measured approximately 0.1 meV as shown in the red spectrum of Fig. 6. The transition from spontaneous emission to lasing behavior is evident from the sudden narrowing of the emission envelope. Above the threshold current of 50 mA, the InAs/GaAs QD laser immediately operates at 2nd excited state rather than the ground state at the wavelength of 1210 nm. With further increment of injection current to 130 mA, 1st excited lasing at 1240 nm was observed from the device.

 figure: Fig. 6.

Fig. 6. Injection current-dependent lasing spectra from a 4 µm×1.2 mm SOI-based ridge laser at room temperature, showing the onset of the Fabry-Perot lasing modes at around 1211 nm.

Download Full Size | PPT Slide | PDF

The InAs/GaAs QD lasers epitaxially grown on SOI substrates shows degradation of several characteristics such as output power and thermal characteristics as compared with the QD lasers grown on GaAs substrates. The degradation is mainly due to the highly doped P+ AlGaAs cladding layer, the doping density of which is up to 1×1019/cm2, and the poor heat dissipation from buried oxide (BOX) layer of SOI platform [23].

Furthermore, we have also characterized the single-mode narrow ridge laser on SOI with temperature dependent L-I measurements under small duty cycle pulsed current operation. Here, in order to eliminate dramatic heat accumulation on SOI substrate, the duty cycle is reduced to 0.2% from previous 5%. To note, the pulse width is increased to 2 µs from previous 100 ns. As shown in Fig. 7, the 4 µm narrow ridge laser exhibits a threshold current of 130 mA at room temperature, which is relatively higher than those injected with 100 ns pulse current. With significant reduction in the thermal effect, the narrow ridge lasers manage to operate over 80 °C (Fig. 7). The maximum output power is measured as 75 mW at room temperature. As shown in Fig. 7(b), the calculated T0 of ∼75.9 K was between 0 °C and 40 °C. At higher temperatures 40-80 °C, the T0 was degraded to 41.7 K.

 figure: Fig. 7.

Fig. 7. (a) Temperature-dependent L-I characteristics of a single-mode InAs/GaAs QD laser on SOI with ridge width of 4 µm and cavity length of 1 mm under pulse current operation (2 µs pulse width, 0.2% duty cycle). (b) Plot of threshold current and slope efficiency versus temperature (0 °C to 80 °C) for InAs/GaAs QD narrow ridge laser on SOI.

Download Full Size | PPT Slide | PDF

Further optimizations upon the laser structures should be conducted to realize ground-state CW lasing from the InAs/GaAs QD laser on SOI. Even though, it is convincing from the results described above that with the introduction of proper heat management design the device performance could be significantly improved. The growth method and successful achievements of electrically pumped InAs/GaAs QD laser on SOI provide an inspiring advance for the purpose of SOI single-chip photonic integration.

4. Conclusion

In summary, we have successfully demonstrated the first electrically pumped InAs/GaAs QD narrow ridge lasers on SOI substrates. A homo-epitaxially grown {111}-faceted SOI hollow structure was employed for the III-V buffer and subsequent InAs/GaAs QD laser structure growth. The SOI-based InAs QD laser exhibits a low lasing threshold current of ∼50 mA for a 4 µm×1 mm ridge waveguide laser under pulsed current operation. We have also presented the capability of these QD lasers on SOI operating at elevating temperatures up to 60 °C with 5% duty cycle of pulse current injection. In addition, by reducing duty cycle down to 0.2%, narrow ridge lasers manage to lase at high temperature over 80 °C. Future efforts should be focused on optimizing the thermal dissipation issue of SOI-based laser devices, in order to increase the thermal stability of such structures. By implementing thick metal contacts with externally bonded heat sink such as thermal shunt design, it would significantly help reducing the heat accumulation inside the laser chips, which could strongly contribute to better device performance. Ultimately, by selectively growing III-V lasers on the bottom silicon of SOI substrate, the generated heat from laser devices could be effectively dissipated into the substrate, rather than isolated by the BOX layer. Overall, the realization of electrically pumped III-V FP lasers on SOI will enable the great potential integration opportunity for on-chip silicon photonic telecom transmitters.

Funding

Science and Technology Planning Project of Guangdong Province (2019B121204003); Beijing Municipal Science and Technology Commission (Z191100004819010); National Natural Science Foundation of China (11804382, 61635011, 61804177, 61975230); Chinese Academy of Sciences Key Project (QYZDB-SSW-JSC009); Youth Innovation Promotion Association (2018011).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

1. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010). [CrossRef]  

2. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015). [CrossRef]  

3. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011). [CrossRef]  

4. S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014). [CrossRef]  

5. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017). [CrossRef]  

6. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016). [CrossRef]  

7. Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016). [CrossRef]  

8. J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017). [CrossRef]  

9. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 µm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017). [CrossRef]  

10. J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018). [CrossRef]  

11. B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019). [CrossRef]  

12. W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019). [CrossRef]  

13. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011). [CrossRef]  

14. W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018). [CrossRef]  

15. B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019). [CrossRef]  

16. W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

17. W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014). [CrossRef]  

18. Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015). [CrossRef]  

19. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018). [CrossRef]  

20. O. B. Shchekin and D. G. Deppe, “1.3 µm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002). [CrossRef]  

21. H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006). [CrossRef]  

22. R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007). [CrossRef]  

23. W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  2. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
    [Crossref]
  3. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [Crossref]
  4. S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
    [Crossref]
  5. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
    [Crossref]
  6. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  7. Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016).
    [Crossref]
  8. J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
    [Crossref]
  9. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  µm quantum-dot lasers epitaxially grown on on-axis (001)  GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
    [Crossref]
  10. J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
    [Crossref]
  11. B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
    [Crossref]
  12. W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019).
    [Crossref]
  13. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  14. W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
    [Crossref]
  15. B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
    [Crossref]
  16. W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).
  17. W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
    [Crossref]
  18. Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
    [Crossref]
  19. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
    [Crossref]
  20. O. B. Shchekin and D. G. Deppe, “1.3 µm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
    [Crossref]
  21. H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
    [Crossref]
  22. R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
    [Crossref]
  23. W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
    [Crossref]

2020 (2)

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]

2019 (3)

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019).
[Crossref]

2018 (3)

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

2017 (3)

2016 (2)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016).
[Crossref]

2015 (2)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

2014 (2)

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

2011 (2)

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

2007 (1)

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

2006 (1)

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

2002 (1)

O. B. Shchekin and D. G. Deppe, “1.3 µm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[Crossref]

Absil, P.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref]

Agarwal, H.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Alexander, R. R.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Arakawa, Y.

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
[Crossref]

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Badcock, T.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Badcock, T. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Bao, X.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Barla, K.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Benamara, M.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Bowers, J. E.

Callahan, P. G.

Campenhout, J. V.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref]

Caymax, M.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Chen, S. M.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Childs, D. T. D.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Choi, T. L.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Chow, W. W.

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016).
[Crossref]

Collaert, N.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Cong, H.

Date, L.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Deppe, D. G.

O. B. Shchekin and D. G. Deppe, “1.3 µm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[Crossref]

Dorogan, V. G.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Echlin, M. P.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Eyben, P.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Feng, Q.

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Gossard, A. C.

Groom, K. M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Guo, J. J.

Guo, W.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Hasbullah, F.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Hogg, R. A.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Hopkinson, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Hu, E. L.

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016).
[Crossref]

Huang, X.

Ishida, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Jang, B.

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Jin, C. Y.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Jung, D.

Kageyama, T.

Kennedy, M. J.

Kwoen, J.

Lau, K. M.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

Lee, A.

Lee, J.

Lee, M. L.

Li, Q.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Liew, S. L.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Liu, A. Y.

Liu, H.

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Liu, H. Y.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Liu, L.

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

Mazur, Y. I.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Merckling, C.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Mowbray, D. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Ng, K. W.

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

Norman, J.

Pantouvaki, M.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref]

Pena, V.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Peters, J.

Pollock, T. M.

Pozzi, F.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Ray, S. K.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Ross, I. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Royce, R. J.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Salamo, G. J.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Sanchez, E.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Seeds, A.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Selvidge, J.

Shchekin, O. B.

O. B. Shchekin and D. G. Deppe, “1.3 µm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[Crossref]

Shi, B.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Skolnick, M. S.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Stevens, B.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Sugawara, M.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Tang, M. C.

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Thean, A.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Thourhout, D. V.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref]

Tian, B.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Vancoille, E.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Vandervorst, W.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Waldron, N.

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Wan, Y.

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016).
[Crossref]

Wang, H. L.

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Wang, J. H.

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Wang, T.

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref]

Wang, Z.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref]

Wang, Z. H.

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]

W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019).
[Crossref]

Watanabe, K.

Wei, W. Q.

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Xu, H. X.

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Yamamoto, T.

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Zhang, B.

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Zhang, J. J.

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Zhang, J. Y.

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

W. Q. Wei, J. Y. Zhang, J. H. Wang, H. Cong, J. J. Guo, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “Phosphorus-free 1.5 µm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform,” Opt. Lett. 45(7), 2042–2045 (2020).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27(14), 19348–19358 (2019).
[Crossref]

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

Zhao, Z.

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Zhu, S.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

AIP Adv. (1)

B. Zhang, W. Q. Wei, J. H. Wang, H. L. Wang, Z. Zhao, L. Liu, H. Cong, Q. Feng, H. Liu, T. Wang, and J. J. Zhang, “O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy,” AIP Adv. 9(1), 015331 (2019).
[Crossref]

Appl. Phys. Lett. (7)

W. Q. Wei, J. H. Wang, B. Zhang, J. Y. Zhang, H. L. Wang, Q. Feng, H. X. Xu, T. Wang, and J. J. Zhang, “InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm,” Appl. Phys. Lett. 113(5), 053107 (2018).
[Crossref]

W. Guo, L. Date, V. Pena, X. Bao, C. Merckling, N. Waldron, N. Collaert, M. Caymax, E. Sanchez, E. Vancoille, K. Barla, A. Thean, P. Eyben, and W. Vandervorst, “Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001),” Appl. Phys. Lett. 105(6), 062101 (2014).
[Crossref]

Q. Li, K. W. Ng, and K. M. Lau, “Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon,” Appl. Phys. Lett. 106(7), 072105 (2015).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113(22), 221103 (2018).
[Crossref]

O. B. Shchekin and D. G. Deppe, “1.3 µm InAs quantum dot laser with T0=161 K from 0 to 80 °C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[Crossref]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, and R. A. Hogg, “p-doped 1.3 µm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89(7), 073113 (2006).
[Crossref]

Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates,” Appl. Phys. Lett. 108(22), 221101 (2016).
[Crossref]

Chin. Phys. Lett. (1)

W. Q. Wei, J. H. Wang, J. Y. Zhang, Q. Feng, Z. H. Wang, H. X. Xu, T. Wang, and J. J. Zhang, “A CMOS compatible Si template with (111) facets for direct epitaxial growth of III–V materials,” Chin. Phys. Lett. 37(2), 024203 (2020).

Electron. Lett. (1)

S. M. Chen, M. C. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. J. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. R. Alexander, D. T. D. Childs, H. Agarwal, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, and D. J. Mowbray, “Systematic study of the effects of modulation p-doping on 1.3 µm quantum-dot lasers,” IEEE J. Quantum Electron. 43(12), 1129–1139 (2007).
[Crossref]

J. Semicond. (1)

W. Q. Wei, Q. Feng, Z. H. Wang, T. Wang, and J. J. Zhang, “Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates,” J. Semicond. 40(10), 101303 (2019).
[Crossref]

Light: Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light: Sci. Appl. 4(11), e358 (2015).
[Crossref]

Nano Lett. (1)

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. V. Campenhout, C. Merckling, and D. V. Thourhout, “Room temperature O-band DFB laser array directly grown on (001) Silicon,” Nano Lett. 17(1), 559–564 (2017).
[Crossref]

Nat. Photonics (3)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. M. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The schematic diagram (a) and cross-sectional SEM image (b) of the entire InAs QD laser structure grown on SOI substrate, respectively.
Fig. 2.
Fig. 2. (a) Cross-sectional TEM image of the interface between GaAs and {111}-faceted Si structure on SOI. (b) 10×10 µm2 AFM image of the as-grown GaAs film layer on SOI substrate. (c) Plan-view ECCI to show the TDDs of GaAs/SOI template. (d) Room-temperature PL comparison of 7-layer InAs/GaAs QDs grown on GaAs (001) substrate (black curve) and GaAs/SOI substrate (red curve), respectively. Inset: 1×1 µm2 AFM image of uncapped InAs/GaAs QDs grown on GaAs/SOI substrate.
Fig. 3.
Fig. 3. (a) Top-down optical micrograph of the fabricated ridge waveguide lasers on SOI before dicing. (b) Cross-sectional SEM image of an InAs/GaAs QD ridge waveguide laser on SOI substrate after dicing, with the ridge width of 4 µm.
Fig. 4.
Fig. 4. (a) LIV characteristics of InAs/GaAs QD narrow ridge laser grown on GaAs/SOI substrates with both pulse and CW operation. Dashed lines are pulse mode; solid lines are CW mode.
Fig. 5.
Fig. 5. (a) (a) Temperature-dependent L-I characteristics of a single-mode InAs/GaAs QD laser on SOI with ridge width of 4 µm and cavity length of 1 mm under pulse current operation (100 ns pulse width, 5% duty cycle). (b) Plot of threshold current and slope efficiency versus temperature (0 °C to 60 °C) for InAs/GaAs QD narrow ridge laser on SOI.
Fig. 6.
Fig. 6. Injection current-dependent lasing spectra from a 4 µm×1.2 mm SOI-based ridge laser at room temperature, showing the onset of the Fabry-Perot lasing modes at around 1211 nm.
Fig. 7.
Fig. 7. (a) Temperature-dependent L-I characteristics of a single-mode InAs/GaAs QD laser on SOI with ridge width of 4 µm and cavity length of 1 mm under pulse current operation (2 µs pulse width, 0.2% duty cycle). (b) Plot of threshold current and slope efficiency versus temperature (0 °C to 80 °C) for InAs/GaAs QD narrow ridge laser on SOI.

Metrics