Abstract

We present a multi-species trace gas sensor based on a high-repetition-rate mid-infrared supercontinuum source, in combination with a 30 m multipass absorption cell, and a scanning grating spectrometer. The output of the spectrometer is demodulated by a digital lock-in amplifier, referenced to the repetition rate of the supercontinuum source. This improved the detection sensitivity of the system by a factor 5, as compared to direct baseband operation. The spectrometer provides a spectral coverage of 950 cm−1 (between 2.85-3.90 µm) with a resolution of 2.5 cm−1 in 100 ms. It can achieve noise equivalent detection limits in the order of 100 ppbv Hz−1/2 for various hydrocarbons, alcohols, and aldehydes.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Mid-infrared (MIR) laser absorption spectroscopy is an effective method for selective and non-invasive detection of gas-phase molecular species at trace levels. In comparison to the near-infrared (NIR) region, the MIR window (2–20 µm) is essentially advantageous in terms of detection sensitivity, as the fundamental rotational-vibrational bands in the MIR are typically orders of magnitude stronger in absorption than the NIR bands. Recent advancements in MIR laser technology, e.g. interband cascade and quantum cascade lasers, have improved the robustness, sensitivity, and spectral coverage of laser-based MIR spectrometers [14]. However, the majority of these approaches target single absorption lines of specific molecules, achieving superior selectivity and sensitivity in a limited spectral range [57].

For molecules, the number of normal vibrational modes goes proportional with the number of atoms (3N-6 for nonlinear molecules and 3N-5 for linear molecules, with N the number of atoms) [8,9]. In addition, the moment of inertia of the molecule increases, thereby reducing the rotational constants, and reducing the distance between the rotational absorption lines, substantially. Therefore, for large molecules in gas-phase observed close to atmospheric pressure, the rotational absorption lines within a vibrational transition band overlap and only a contour of the vibrational band can be detected. Even more challenging is the simultaneous detection of multiple large molecular species, especially when their broad absorption features overlap [10]. As the vibrational bands are mostly quite wide (tens of cm−1), the light source should cover a broad spectral range. In addition, for sensitive absorption detection, high spectral brightness and spatial coherence are highly desirable.

Traditionally, compact thermal sources (such as low-cost Globar) are used to provide a wide spectral range. However, their omnidirectional output with low brightness restrains the detection sensitivity of the spectroscopy, due to the limited achievable absorption path length. These sources are often used in combination with a Fourier Transform Spectrometer (FTS), the most widely used broadband spectroscopic method in the MIR region [11]. Although FTS systems based on thermal sources can provide a high spectral resolution, they need a long averaging time to achieve a spectrum with a high signal-to-noise ratio (SNR), especially in a high-resolution measurement.

An alternative approach is to utilize scanning tunable lasers such as optical parametric oscillator (OPO) [12], as well as external-cavity interband cascade lasers [13,14] and quantum cascade lasers [15] . Although they offer a high power, coherent beam, and can cover a few hundreds of cm−1, their slow wavelength tuning process restricts the detection speed over broad wavelength ranges [16]. New detection methods, based on MIR dual-comb spectroscopy, have demonstrated superior performance in broad spectral coverage, high spectral resolution, short measurement time, and high detection sensitivity. However, even with simplified implementations, their system setup is highly complex and costly [17,18].

For years, due to lack of transparent MIR materials, supercontinuum (SC) sources had been used for spectroscopy only in a limited spectral range up to the long-wavelength NIR [1924]. By the advent of efficient and tailored highly nonlinear MIR optical fibers, SC generation range has been extended to the longer wavelengths in MIR [2529]. Recently, compact MIR SC sources have emerged as new candidates in broadband MIR spectroscopy [3034]. The SC sources generally lack shot-to-shot (temporal) coherence. However, a precise control over the phase stability is not a prerequisite for direct absorption spectroscopy. The relief of this technical constraint makes the SC sources competitive in terms of low system complexity and costs. Recently, the superior brightness of MIR SC sources (exceeding the brightness of synchrotrons) [35], as well as an ultra-broadband spectral coverage (1.4-13.3 µm) [36] have been demonstrated. Robust MIR SC sources providing a high power spectral density (> 200 µW/nm) have even become commercially available. These favorable characteristics of MIR SC sources open up the possibility of multi-gas sensing of larger molecules at short time scales.

Conventionally, grating-based spectrometers are very popular due to the low price and ease of use. They can generally provide enough spectral resolution to be captured by a fixed linear camera or alternatively a single-point detector while scanning the grating [33]. In addition, higher spectral resolution can be obtained by combining a virtually imaged phase array (VIPA) with a grating and a 2D camera [37]; although this is quite a complex and costly setup, especially in the MIR range. We have recently demonstrated a scanning grating-based spectrometer using a MIR SC source [33]. Within this system, we reduced the relative intensity noise (RIN) of the SC source by balance detection scheme, thereby minimizing optical power fluctuations and drift of the spectrometer. However, this method required a rather complex optical setup and the noise reduction performance was, still, very sensitive to optical alignment. A well-known noise reduction technique in spectroscopy is to modulate the light (by intensity or wavelength modulation) and utilize a lock-in amplifier to demodulate the signal after detection. For single-frequency continuous-wave lasers, intensity modulation can be achieved using a mechanical chopper in the path of the beam. For pulsed sources, however, one can directly use the repetition rate of the source as the modulation frequency and demodulate the light after the detection system. This method works best for high repetition rate pulsed sources, for which the short integration time after demodulation will not limit the measurement speed. Here, we implement a lock-in detection scheme, referenced to the repetition rate of the supercontinuum source. The aim is to keep a simple optical setup with a broad spectral coverage and a short measurement time, while improving the detection sensitivity. We characterize the spectroscopic sensor in terms of detection precision, linearity and long-term stability, as well as spectral resolution, spectral coverage, and multi-species detection.

2. Experimental setup and method

A schematic overview of the experimental setup is shown in Fig. 1. We used a broadband MIR SC source (NKT Photonics) with a pulse repetition rate of 2.5 MHz, a total power of ∼0.5 W, and a beam divergence of less than 2 mrad. The SC source has an averaged power spectral density of ∼200 µW/nm in the spectral range between 2 to 4 µm. For our experiment the MIR SC light is split into two beams, the first beam is directed into a multipass absorption cell (HC30L/M-M02, ∼0.85 L volume, Thorlabs) with a nominal optical path length of 31.2 m, containing the gas sample. The pressure and gas flow in the absorption cell are under control using pressure meter/controller (EL-PRESS, Bronkhorst) and flow meter/controller (EL-FLOW Prestige, Bronkhorst), respectively. A 50 cm plano-convex lens (LA5464-E, Thorlabs) is used to focus the beam at the center of the multipass cell. The output beam of the cell is sent to a diffraction grating (450 l/mm, GR1325-45031, Thorlabs) mounted on a galvo scanner (GVS011/M, Thorlabs). The galvo scanner is driven by a sinusoidal wave at 20 Hz generated by a LabVIEW-based program. To avoid the deterioration of the spectral resolution, which generally happens by focusing with spherical mirrors, the diffracted beam is only vertically focused on a horizontal line by a concave cylindrical mirror (CCM254-100-P01, Thorlabs). During every scan, the spectrum is recorded in the time domain by a MIR thermo-electrically cooled single-point photodetector (PVI-4TE, 5 MHz, VIGO System). The output signal of the detector is used as the modulated input signal for a fast dual-phase field-programmable gate array (FPGA)-based lock-in amplifier (Moku:Lab, Liquid Instruments).

 figure: Fig. 1.

Fig. 1. simplified schematic representation of the sensor setup (BS: beam splitter, L: lens, CM: cylindrical mirror).

Download Full Size | PPT Slide | PDF

The second beam is detected by another MIR single-point detector (PVI-4TE-5 MHz, VIGO System), providing the repetition rate of the SC source. Since the reference trigger signal was not accessible in this version of the SC source, the second detector output signal is employed as an external reference signal for the lock-in amplifier. This second detector is not necessary using a newer version of the SC source, in which a reference trigger signal output is directly provided by the manufacturer. The galvo-scanner position signal and the demodulated lock-in amplifier output signal are transferred to a computer via a data acquisition card (USB-6211, National Instruments). These signals are synchronized for every grating scan via a LabVIEW-based program to acquire reproducible absorbance spectra. To calibrate the frequency axis of the spectrometer, we separately measured the broadband spectra of different gas species covering the entire bandwidth of the spectrometer. We compared the measured spectra to corresponding simulated spectra calculated using HITRAN [38] or PNNL [39] database (depending on the availability of the species) and a Gaussian instrumental line-shape. Using a 9th order polynomial equation, we fit the linear point numbers of the measured spectra to the wavenumber of the simulated spectra. The retrieved coefficients of the fit were used for frequency calibration of the other measurements. The calibration stays the same, as long as the driving parameters of the galvo scanner is not changed.

Generally, choosing the time constant (i.e., filter bandwidth) of the lock-in amplifier is very crucial. A short time constant yields a low signal-to-noise ratio (SNR), while a long time constant limits the time resolution and the measurement speed. Since we obtain the spectra in the time domain, a long time constant limits the spectral resolution of the spectrometer to a lower spectral resolution than the resolving power of the diffraction grating. To prevent degradation of the spectral resolution at higher scan frequency of the grating, a shorter time constant of the lock-in amplifier should be considered. Therefore, finding an optimized lock-in time constant with a proper grating scan frequency is essential.

3. Evaluation of system characteristics

We investigated the effect of the time constant of the lock-in amplifier on the spectral resolution and signal-to-noise ratio (SNR). Figure 2 represents the measured absorbance for 47 ppmv methane in nitrogen (at 900 mbar and room temperature) obtained at different time constants in 1 s averaging time. Evidently, increasing the time constant enhances the SNR, but it limits the spectral resolution. The optimized time constant for 20 Hz scanning rate of the grating was found to be ∼4 µs. Any higher time constant value results in a reduced spectral resolution. For longer time constants (>4 µs), the cut-off frequency of the low-pass filter of the lock-in amplifier attenuates the higher frequency components of the narrow absorption lines, reducing the spectral resolution. Therefore, the time constant is the limiting factor for the spectral resolution. Note that the sampling rate of the spectrum does not need to match the time constant of the lock-in amplifier. Although we used a data acquisition card with a maximum sampling rate of 250 kS/s, we employed a sampling rate of 50 kS/s to record the spectrum. This value is sufficient to record 3-4 data points in the full-width at half-maximum of the narrowest absorption lines, which is needed for the fitting routine to operate properly. A higher sampling rate provides more data points in the measured spectrum; however, it also adds more noise to the measurement which finally reduces the effectiveness of the fitting process.

 figure: Fig. 2.

Fig. 2. Methane absorbance spectra (∼47 ppmv in nitrogen, 900 mbar, 1 s averaging) measured at different lock-in amplification time constants.

Download Full Size | PPT Slide | PDF

We also evaluated the effect of using the lock-in amplifier, which is synchronized with the repetition rate of the SC source (at 2.5 MHz) and compared it with the direct signal from the MIR detector. Figure 3(A) displays the absorbance spectrum of 100 ppmv ethane in nitrogen (from a calibrated bottle, Linde gas) measured with (in red) and without (in blue) lock-in amplifier (average time 1 s). As expected, employing the lock-in amplifier enhances the SNR. Figure 3(B) depicts the 1 s averaged ethane absorbance spectrum (in red) obtained with lock-in and with a 30 s averaging time (in blue) without lock-in. Without the lock-in amplifier, a 30 s averaged spectrum has an improved SNR by a factor of $\sqrt {30} \approx 5.5$, compared to a 1 s averaged spectrum. This 30 s averaged spectrum without lock-in amplifier also has roughly the same SNR as a 1 s averaged spectrum using the lock-in amplifier. Therefore, assuming that the measurements are white-noise-dominant, it implies that the lock-in amplifier enhances the SNR by a factor of $\sqrt {30} \approx 5.5$.

 figure: Fig. 3.

Fig. 3. Absorbance spectra of 100 ppmv ethane diluted in nitrogen measured at 900 mbar (A) with using the lock-in amplifier (in red) and without using the lock-in amplifier (in blue), both averaged for 1 s, (B) with using the lock-in amplifier (in red) averaged for 1 s, and without using the lock-in amplifier (in blue) averaged for 30 s.

Download Full Size | PPT Slide | PDF

To evaluate the effect of using the lock-in amplifier on the long-term stability and minimum detectable concentration, we obtained the background spectra every 100 ms for 6000 s, while the cell was evacuated (pressure below 1 mbar). We normalized each consecutive spectrum to the first spectrum taken, and acquired the Noise Equivalent Absorbance (NEA). Following this, we fitted a methane reference spectrum (taken experimentally), as well as a 4th order polynomial (to fit the baseline) to the obtained absorbance spectra. The retrieved noise equivalent methane concentrations for both of the cases (with and without lock-in amplifier) are shown in Fig. 4(A). Due to a high white noise level at low frequencies in baseband detection, the calculated concentration is more scattered, as compared to when the lock-in is applied with a reference frequency of 2.5 MHz. Figure 4(B) shows the corresponding Allan-Werle plots fitted by time dependency lines of τ−1/2, representative of the white noise contribution. They demonstrate a methane detection sensitivity of 500 ppbv Hz−1/2 and 100 ppbv Hz−1/2 without and with lock-in amplification, i.e. a factor 5 improvement. For both cases, averaging over a longer time helps to reduce the detection limit in the white-noise-dominant region, over 3 orders of magnitude in time. With lock-in, the methane detection limit is 4 ppbv for ∼8.5 minutes averaging time, while without lock-in, it is 40 ppbv after ∼3.5 minutes of averaging.

 figure: Fig. 4.

Fig. 4. (A) Noise equivalent methane concentrations (obtained every 100 ms for 6000 s) for the measurements with (red dots) and without (blue dots) the lock-in amplifier. (b) The corresponding Allan-Werle plots of the retrieved methane concentrations when the lock-in amplifier was used (red curve) and was not used (blue curve). The fitted time dependency of ${\tau ^{ - 1/2}}$ (green dash lines) represents the white noise contribution.

Download Full Size | PPT Slide | PDF

Next, we assessed the system linearity response to various ethane concentrations in a dynamic range of 1 to 100 ppmv by dilution of 100 ppmv ethane from a calibrated gas bottle in nitrogen. We used the 100 ppmv ethane concentration as a reference spectrum for a linear fitting routine. Figure 5 shows the retrieved ethane concentrations from the fit versus the applied concentrations. A linear fit to this dataset has a Pearson correlation coefficient (Pearson’s r) close to one, demonstrating a high agreement between the applied and the calculated concentration values.

 figure: Fig. 5.

Fig. 5. System linearity response to different applied ethane concentrations. The uncertainty is based on ±σ values calculated from 1 min measurement of each gas concentration.

Download Full Size | PPT Slide | PDF

To evaluate the effective SNR and sensor precision in a wide spectral range, we obtained the averaged absorbance spectrum of 100 ppmv ethane in nitrogen every 1 s for 1 min. Figure 6(A) shows the overlay of the first and the second measured absorbance spectra. Following that, the second absorbance spectrum (absorbance values at each measurement point) was plotted against the first one as shown in Fig. 6(B) with green dots. Then, we applied a linear fit to the data points (red line). The linear fit slope is close to one, implying an excellent reproducibility. We repeated the same procedure for all of the obtained absorbance spectra (with respect to the first one). An effective SNR of ∼615 was calculated from the average of the slopes, µ, and their standard deviation, σ, using $\textrm{SNR} = \mathrm{\mu}/\mathrm{\sigma }$. Therefore, the system precision in detecting 100 ppmv ethane in nitrogen was evaluated to be ∼160 ppbv ($100\;\textrm{ppmv}/\textrm{SNR}$) corresponding to ∼0.16% precision at 1 s averaging time.

 figure: Fig. 6.

Fig. 6. (A) Overlay of two consecutive ethane absorbance spectra measured within 1 s averaging at 900 mbar. (B) A linear fit (red line) to the data points obtained from the first-second measured absorbance scatter plot (green dots).

Download Full Size | PPT Slide | PDF

We also evaluated the sensor ability to quantify the concentration of gases in a complex gas mixture. In general, the quantification of the trace gas concentrations in a multi-species gas mixture with overlapping absorbance features is more challenging than the detection of single-species. The absorbance spectrum measured in a complex gas mixture is the summation of all of the absorbance of the contributing gases. To obtain the individual absorbance feature and quantify the concentration for each gas, a non-negative least square (NNLS) curve fitting technique was applied. This method has been explained in our previous publications [10,33]. For this experiment, we made a diluted mixture containing ethyl acetate and ethylene both with a concentration of 48.3 ± 2.5 ppmv in nitrogen (both mixtures originated from calibrated gas bottles). These gas species have overlapped spectral features in a wide spectral range. The measured absorbance of the mixture and each individual gas are shown in Fig. 7(A). By performing the NNLS global fitting technique using the measured individual spectra as the references for the fit, the concentration of each gas in the mixture was calculated as shown in Fig. 7(B). The uncertainty with the 1.5 interquartile range was obtained from 60 independent measurements in 1 min. The results demonstrate that the retrieved concentrations are close to the applied concentrations within the dilution error (∼ ±5%).

 figure: Fig. 7.

Fig. 7. (A) The measured absorbance profiles for 48.3 ppmv ethyl acetate (in red) and 48.3 ppmv ethylene (in blue) both diluted in nitrogen, as well as their mixture (in green). (B) The retrieved concentrations for each gas in the gas mixture calculated from NNLS fitting approach.

Download Full Size | PPT Slide | PDF

Spectral resolution and spectral range are important spectroscopic characteristics for multi-species detection. To determine the sensor spectral resolution, we experimentally measured the absorbance of 98 ppmv ethylene (diluted in nitrogen) at 900 mbar and compared it with a simulated absorbance model based on HITRAN database convoluted with a Gaussian profile with a variable full width at half maximum (FWHM). The Gaussian profile was used to model the resolving power of our spectrometer. We fitted the measurement and the model with the line width of the Gaussian profile as the fitting parameter. The retrieved linewidth from the fit can be used for convoluting the model spectra of the other species for future measurements, since the spectral resolution of the spectrometer is fixed and does not vary over time unless the alignment of the beam is changed. Figure 8(A) indicates that the measured absorbance (in red) matches nicely with the simulation (in blue) when the FWHM of the Gaussian profile is 2.5 cm−1. Therefore, we estimate the spectral resolution of the spectrometer to be ∼2.5 cm−1. In order to check the maximum spectral coverage, we increased the scan range of the grating by ∼2 times, by increasing the amplitude of the galvo scanner; meanwhile, the scan frequency was reduced to 10 Hz to avoid any possible damage to the galvo scanner. We applied a mixture of 50 ppmv ethylene and 50 ppmv nitrous oxide (N2O), both diluted in nitrogen. The measured absorbance spectrum and the corresponding simulations are shown in Fig. 8(B) demonstrating that the sensor can support a broad spectral range more than 950 cm−1 (from 2.85 to 3.90 µm or ∼2560-3510 cm−1).

 figure: Fig. 8.

Fig. 8. (A) The measured absorbance spectrum of 98 ppmv ethylene diluted in nitrogen (in red) averaged for 1 min at 900 mbar pressure along with the simulated absorbance spectrum using HITRAN database with 2.5 cm−1 resolution (in blue, inverted). (B) The measured absorbance spectrum for a mixture of 50 ppmv ethylene and 50 ppmv nitrous oxide both diluted in nitrogen (in red) along with the corresponding simulated spectra of nitrous oxide (in blue, inverted) and ethylene (in green, inverted) using HITRAN database.

Download Full Size | PPT Slide | PDF

Since the digital lock-in amplifier also provides an internal programmable reference frequency based on the FPGA clock, we compared the system operation with the external reference (from the reference MIR detector) with the internal reference of the lock-in (2,500,000.000 Hz); the latter is equal to the nominal repetition rate of the SC source. Figure 9(A) demonstrates the obtained absorbance spectra of 47.5 ppmv methane diluted in nitrogen averaged for 60 s in both cases. Interestingly, the absorbance spectrum obtained by external reference (in red) agrees very well with the spectrum recorded using the internal lock-in reference (in blue, inverted). In other words, the mutual drifts and fluctuations of the two independent oscillators are negligible for an averaging time of 60 s. To evaluate this, we plot (point-by-point) the absorbance values of the spectrum measured with the internal reference (on the y-axis) in terms of the absorbance values of the spectrum measured with the external reference (on the x-axis) as shown by the green square markers in Fig. 9(B). The linear fit to the points (red line) has both Pearson’s r and slope close to 1, demonstrating an excellent agreement of the two spectra. Therefore, we can use the internal reference of the lock-in amplifier instead of the external reference from the SC source, without any degradation of the measured spectrum up to 60 s measurement time, which further simplifies the experimental setup. Note that a more detailed study on the long term stability of the system is needed, to thoroughly compare the long-term performance of the two schemes.

 figure: Fig. 9.

Fig. 9. (A) Measured absorption spectra of 47.5 ppmv methane diluted in nitrogen obtained when the digital lock-in amplifier was referenced externally to the SC source (in red) and internally to its FPGA clock (in blue, inverted). (B) Methane absorbance values of the spectrum measured with the internal reference in terms of the absorbance values of the spectrum measured with the external reference (green square markers) along with a linear fit to the data points (red line).

Download Full Size | PPT Slide | PDF

4. Conclusion

We have developed a multi-species trace gas sensor based on a high repetition rate mid-infrared supercontinuum source and a scanning grating spectrometer in combination with a digital lock-in amplifier. We demonstrated that by employing the lock-in approach the detection sensitivity can be improved by ∼5 times compared to the direct baseband operation, yielding a detection limit in the order of 100 ppbv Hz−1/2 for various hydrocarbons, alcohols, and aldehydes. At the optimized lock-in amplifier time constant, the spectrometer features more than 950 cm−1 (between 2.85 and 3.90 µm) spectral coverage with 2.5 cm−1 spectral resolution in a 100 ms measurement time. For retrieving the concentration of gases in complex mixtures, we utilized a non-negative least square global fitting routine, which is able to retrieve the concentration of each species, despite their partial spectral overlap. The performance of the sensor in terms of precision, linearity, and long term stability was studied, as well. The results clearly demonstrate the potential of the developed sensor for various applications requiring multi-species trace gas detection with a simple and cost-effective system at seconds timescale; such as environmental monitoring, quality control, and biomedical research.

Funding

Interreg (363); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (14709); H2020 Industrial Leadership (732968).

Acknowledgments

The authors acknowledge Interreg North-West Europe program (project number 363), the Netherlands Organisation for Scientific Research (NWO, project number 14709), and the H2020 Industrial Leadership programme (project number 732968). The authors would also like to thank NKT Photonics for providing the mid-infrared supercontinuum light source.

Disclosures

The authors declare no conflicts of interest.

References

1. Y. Ma, A. Vicet, and K. Krzempek, State-of-the-art Laser Gas Sensing Technologies (MDPI AG, 2020).

2. Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019). [CrossRef]  

3. F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017). [CrossRef]  

4. B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett. 31(6), 823–825 (2006). [CrossRef]  

5. A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018). [CrossRef]  

6. O. Kara, F. Sweeney, M. Rutkauskas, C. Farrell, C. G. Leburn, and D. T. Reid, “Open-path multi-species remote sensing with a broadband optical parametric oscillator,” Opt. Express 27(15), 21358–21366 (2019). [CrossRef]  

7. O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25(26), 32713–32721 (2017). [CrossRef]  

8. J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007), p. 344.

9. M. C. Gupta, Atomic And Molecular Spectroscopy (New Age International (P), 2007).

10. K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27(17), 24469–24480 (2019). [CrossRef]  

11. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010). [CrossRef]  

12. D. D. Arslanov, S. M. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35(19), 3300–3302 (2010). [CrossRef]  

13. T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

14. D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010). [CrossRef]  

15. F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, “Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser,” Sensors 18(7), 2050 (2018). [CrossRef]  

16. M. M. J. W. van Herpen, S. Li, and S. E. Bisson, “S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2-3), 329–333 (2002). [CrossRef]  

17. M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9(1), 17247 (2019). [CrossRef]  

18. M. A. Abbas, A. Khodabakhsh, Q. Pan, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference,” Opt. Express 27(14), 19282–19291 (2019). [CrossRef]  

19. R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer New York, 2016).

20. C. A. Michaels, T. Masiello, and P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63(5), 538–543 (2009). [CrossRef]  

21. T. Ringsted, S. Dupont, J. Ramsay, B. M. Jespersen, K. M. Sørensen, S. R. Keiding, and S. B. Engelsen, “Near-infrared spectroscopy using a supercontinuum laser: application to long wavelength transmission spectra of barley endosperm and oil,” Appl. Spectrosc. 70(7), 1176–1185 (2016). [CrossRef]  

22. T. Ringsted, “Near infrared spectroscopy of food systems using a supercontinuum laser,” (Department of Food Science, Faculty of Science, University of Copenhagen, 2017).

23. W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011). [CrossRef]  

24. A. I. Adamu, M. K. Dasa, O. Bang, and C. Markos, “Multi-species continuous gas detection with supercontinuum laser at telecommunication wavelength,” IEEE Sensors Journal, 1 (2020).

25. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). [CrossRef]  

26. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016). [CrossRef]  

27. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012). [CrossRef]  

28. K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019). [CrossRef]  

29. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016). [CrossRef]  

30. C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017). [CrossRef]  

31. T. Mikkonen, C. Amiot, A. Aalto, K. Patokoski, G. Genty, and J. Toivonen, “Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum,” Opt. Lett. 43(20), 5094–5097 (2018). [CrossRef]  

32. I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc. 74(4), 485–493 (2020). [CrossRef]  

33. K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019). [CrossRef]  

34. D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019). [CrossRef]  

35. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018). [CrossRef]  

36. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014). [CrossRef]  

37. J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

38. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013). [CrossRef]  

39. S. W. Sharpe, R. L. Sams, and T. J. Johnson, “The PNNL quantitative IR database for infrared remote sensing and hyperspectral imaging,” in Applied Imagery Pattern Recognition Workshop, 2002. Proceedings, (2002), 45–48.

References

  • View by:
  • |
  • |
  • |

  1. Y. Ma, A. Vicet, and K. Krzempek, State-of-the-art Laser Gas Sensing Technologies (MDPI AG, 2020).
  2. Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019).
    [Crossref]
  3. F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
    [Crossref]
  4. B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett. 31(6), 823–825 (2006).
    [Crossref]
  5. A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
    [Crossref]
  6. O. Kara, F. Sweeney, M. Rutkauskas, C. Farrell, C. G. Leburn, and D. T. Reid, “Open-path multi-species remote sensing with a broadband optical parametric oscillator,” Opt. Express 27(15), 21358–21366 (2019).
    [Crossref]
  7. O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25(26), 32713–32721 (2017).
    [Crossref]
  8. J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007), p. 344.
  9. M. C. Gupta, Atomic And Molecular Spectroscopy (New Age International (P), 2007).
  10. K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27(17), 24469–24480 (2019).
    [Crossref]
  11. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
    [Crossref]
  12. D. D. Arslanov, S. M. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35(19), 3300–3302 (2010).
    [Crossref]
  13. T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.
  14. D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
    [Crossref]
  15. F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, “Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser,” Sensors 18(7), 2050 (2018).
    [Crossref]
  16. M. M. J. W. van Herpen, S. Li, and S. E. Bisson, “S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2-3), 329–333 (2002).
    [Crossref]
  17. M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9(1), 17247 (2019).
    [Crossref]
  18. M. A. Abbas, A. Khodabakhsh, Q. Pan, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference,” Opt. Express 27(14), 19282–19291 (2019).
    [Crossref]
  19. R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer New York, 2016).
  20. C. A. Michaels, T. Masiello, and P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63(5), 538–543 (2009).
    [Crossref]
  21. T. Ringsted, S. Dupont, J. Ramsay, B. M. Jespersen, K. M. Sørensen, S. R. Keiding, and S. B. Engelsen, “Near-infrared spectroscopy using a supercontinuum laser: application to long wavelength transmission spectra of barley endosperm and oil,” Appl. Spectrosc. 70(7), 1176–1185 (2016).
    [Crossref]
  22. T. Ringsted, “Near infrared spectroscopy of food systems using a supercontinuum laser,” (Department of Food Science, Faculty of Science, University of Copenhagen, 2017).
  23. W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
    [Crossref]
  24. A. I. Adamu, M. K. Dasa, O. Bang, and C. Markos, “Multi-species continuous gas detection with supercontinuum laser at telecommunication wavelength,” IEEE Sensors Journal, 1 (2020).
  25. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
    [Crossref]
  26. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref]
  27. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
    [Crossref]
  28. K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
    [Crossref]
  29. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  30. C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
    [Crossref]
  31. T. Mikkonen, C. Amiot, A. Aalto, K. Patokoski, G. Genty, and J. Toivonen, “Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum,” Opt. Lett. 43(20), 5094–5097 (2018).
    [Crossref]
  32. I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc. 74(4), 485–493 (2020).
    [Crossref]
  33. K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
    [Crossref]
  34. D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
    [Crossref]
  35. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  36. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  37. J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.
  38. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
    [Crossref]
  39. S. W. Sharpe, R. L. Sams, and T. J. Johnson, “The PNNL quantitative IR database for infrared remote sensing and hyperspectral imaging,” in Applied Imagery Pattern Recognition Workshop, 2002. Proceedings, (2002), 45–48.

2020 (1)

2019 (8)

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019).
[Crossref]

O. Kara, F. Sweeney, M. Rutkauskas, C. Farrell, C. G. Leburn, and D. T. Reid, “Open-path multi-species remote sensing with a broadband optical parametric oscillator,” Opt. Express 27(15), 21358–21366 (2019).
[Crossref]

K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27(17), 24469–24480 (2019).
[Crossref]

M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9(1), 17247 (2019).
[Crossref]

M. A. Abbas, A. Khodabakhsh, Q. Pan, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference,” Opt. Express 27(14), 19282–19291 (2019).
[Crossref]

2018 (4)

F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, “Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser,” Sensors 18(7), 2050 (2018).
[Crossref]

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

T. Mikkonen, C. Amiot, A. Aalto, K. Patokoski, G. Genty, and J. Toivonen, “Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum,” Opt. Lett. 43(20), 5094–5097 (2018).
[Crossref]

2017 (3)

2016 (3)

2014 (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

2012 (1)

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

2011 (1)

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

2010 (3)

2009 (1)

2006 (2)

2002 (1)

M. M. J. W. van Herpen, S. Li, and S. E. Bisson, “S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2-3), 329–333 (2002).
[Crossref]

Aalto, A.

T. Mikkonen, C. Amiot, A. Aalto, K. Patokoski, G. Genty, and J. Toivonen, “Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum,” Opt. Lett. 43(20), 5094–5097 (2018).
[Crossref]

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Abbas, M. A.

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abell, J.

Adamu, A. I.

A. I. Adamu, M. K. Dasa, O. Bang, and C. Markos, “Multi-species continuous gas detection with supercontinuum laser at telecommunication wavelength,” IEEE Sensors Journal, 1 (2020).

Adler, F.

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer New York, 2016).

Amiot, C.

T. Mikkonen, C. Amiot, A. Aalto, K. Patokoski, G. Genty, and J. Toivonen, “Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum,” Opt. Lett. 43(20), 5094–5097 (2018).
[Crossref]

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Arslanov, D. D.

Assman, P.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Balet, L.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Bang, O.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. I. Adamu, M. K. Dasa, O. Bang, and C. Markos, “Multi-species continuous gas detection with supercontinuum laser at telecommunication wavelength,” IEEE Sensors Journal, 1 (2020).

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Bewley, W. W.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
[Crossref]

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Birk, M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Bisson, S. E.

M. M. J. W. van Herpen, S. Li, and S. E. Bisson, “S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2-3), 329–333 (2002).
[Crossref]

Bizzocchi, L.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Boudon, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Brambilla, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Brandstetter, M.

Brès, C.-S.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

Briles, T. C.

Brown, L. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Buchs, G.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Caffey, D.

Campargue, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Canedy, C. L.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
[Crossref]

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Chance, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Chen, P.

Cheng, T.

Chin, S.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Chris Benner, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Chu, P. M.

Cohen, E. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Cossel, K. C.

Coudert, L. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Cristescu, M. S.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Cristescu, S. M.

Dai, S.

Dasa, M. K.

A. I. Adamu, M. K. Dasa, O. Bang, and C. Markos, “Multi-species continuous gas detection with supercontinuum laser at telecommunication wavelength,” IEEE Sensors Journal, 1 (2020).

Dasen, S.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Day, T.

Denzer, W.

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

Devi, V. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Drouin, B. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Du, Z.

Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019).
[Crossref]

Dupont, S.

T. Ringsted, S. Dupont, J. Ramsay, B. M. Jespersen, K. M. Sørensen, S. R. Keiding, and S. B. Engelsen, “Near-infrared spectroscopy using a supercontinuum laser: application to long wavelength transmission spectra of barley endosperm and oil,” Appl. Spectrosc. 70(7), 1176–1185 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Duswald, K.

Engelsen, S. B.

Eslami Jahromi, K.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Farrell, C.

Fayt, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Feng, X.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Flaud, J. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Foltynowicz, A.

Freeman, M. J.

Friis, S. M. M.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Gao, N.

Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019).
[Crossref]

Gardiner, T.

Genty, G.

T. Mikkonen, C. Amiot, A. Aalto, K. Patokoski, G. Genty, and J. Toivonen, “Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum,” Opt. Lett. 43(20), 5094–5097 (2018).
[Crossref]

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Gouman, J.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Grassani, D.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

Guo, H.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

Gupta, M. C.

M. C. Gupta, Atomic And Molecular Spectroscopy (New Age International (P), 2007).

Hancock, G.

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

Harren, F. J. M.

M. A. Abbas, A. Khodabakhsh, Q. Pan, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference,” Opt. Express 27(14), 19282–19291 (2019).
[Crossref]

M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9(1), 17247 (2019).
[Crossref]

K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27(17), 24469–24480 (2019).
[Crossref]

F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, “Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser,” Sensors 18(7), 2050 (2018).
[Crossref]

D. D. Arslanov, S. M. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35(19), 3300–3302 (2010).
[Crossref]

B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett. 31(6), 823–825 (2006).
[Crossref]

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Harren, J. M. F.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Harrison, J. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hartl, I.

Hartmann, J. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Heaps, C. W.

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Heidt, A. M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Heise, B.

Herkommer, C.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

Herr, T.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Hill, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hodges, J. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Høgstedt, L.

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Horak, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Ibsen, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Islam, M.

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

Islam, M. N.

Jacquemart, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Jahromi, K. E.

Janssens, M.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Jespersen, B. M.

Jiao, K.

Johnson, T. J.

S. W. Sharpe, R. L. Sams, and T. J. Johnson, “The PNNL quantitative IR database for infrared remote sensing and hyperspectral imaging,” in Applied Imagery Pattern Recognition Workshop, 2002. Proceedings, (2002), 45–48.

Jolly, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Kara, O.

Keiding, S. R.

Khodabakhsh, A.

M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9(1), 17247 (2019).
[Crossref]

M. A. Abbas, A. Khodabakhsh, Q. Pan, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference,” Opt. Express 27(14), 19282–19291 (2019).
[Crossref]

K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27(17), 24469–24480 (2019).
[Crossref]

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, “Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser,” Sensors 18(7), 2050 (2018).
[Crossref]

Kilgus, J.

Kim, C. S.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
[Crossref]

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Kim, M.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
[Crossref]

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Kippenberg, T. J.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

Krzempek, K.

Y. Ma, A. Vicet, and K. Krzempek, State-of-the-art Laser Gas Sensing Technologies (MDPI AG, 2020).

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Lamouroux, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Langley, C. E.

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

Le Roy, R. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Leburn, C. G.

Lecomte, S.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Lendl, B.

Li, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Li, J.

Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019).
[Crossref]

Li, S.

M. M. J. W. van Herpen, S. Li, and S. E. Bisson, “S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2-3), 329–333 (2002).
[Crossref]

Lindle, J. R.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
[Crossref]

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Loh, W. H.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Long, D. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Loparo, Z. E.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

Luther-Davies, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Lütolf, F.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Lyulin, O. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Ma, Y.

Y. Ma, A. Vicet, and K. Krzempek, State-of-the-art Laser Gas Sensing Technologies (MDPI AG, 2020).

Mackie, C. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Maidment, L.

Maiorov, M.

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Mandon, J.

M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9(1), 17247 (2019).
[Crossref]

M. A. Abbas, A. Khodabakhsh, Q. Pan, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference,” Opt. Express 27(14), 19282–19291 (2019).
[Crossref]

F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, “Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser,” Sensors 18(7), 2050 (2018).
[Crossref]

Markos, C.

A. I. Adamu, M. K. Dasa, O. Bang, and C. Markos, “Multi-species continuous gas detection with supercontinuum laser at telecommunication wavelength,” IEEE Sensors Journal, 1 (2020).

Martin, H.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Masiello, T.

Maslowski, P.

Massie, S. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Matsumoto, M.

Mazé, G.

Meyer, J. R.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
[Crossref]

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Michaels, C. A.

Mikhailenko, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Mikkonen, T.

Moeskops, B. W. M.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moselund, M. P.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Moselund, P. M.

K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27(17), 24469–24480 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Müller, H. S. P.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Muraviev, A. V.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

Nadeem, F.

F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, “Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser,” Sensors 18(7), 2050 (2018).
[Crossref]

Nagasaka, K.

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Nie, Q.

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Ohishi, Y.

Orphal, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Pan, Q.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9(1), 17247 (2019).
[Crossref]

M. A. Abbas, A. Khodabakhsh, Q. Pan, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference,” Opt. Express 27(14), 19282–19291 (2019).
[Crossref]

K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27(17), 24469–24480 (2019).
[Crossref]

Patokoski, K.

Perevalov, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Perrin, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Petersen, C. R.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petropoulos, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Petrovich, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Peverall, R.

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

Poletti, F.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Polovtseva, E. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Ponzo, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Poulain, M.

Price, J. H. V.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Ramsay, J.

T. Ringsted, S. Dupont, J. Ramsay, B. M. Jespersen, K. M. Sørensen, S. R. Keiding, and S. B. Engelsen, “Near-infrared spectroscopy using a supercontinuum laser: application to long wavelength transmission spectra of barley endosperm and oil,” Appl. Spectrosc. 70(7), 1176–1185 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Reid, D. T.

Renevey, P.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Richard, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Richardson, D. J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Ringsted, T.

Ritchie, G. A. D.

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Rutkauskas, M.

Rutt, H. N.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Ryczkowski, P.

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Sams, R. L.

S. W. Sharpe, R. L. Sams, and T. J. Johnson, “The PNNL quantitative IR database for infrared remote sensing and hyperspectral imaging,” in Applied Imagery Pattern Recognition Workshop, 2002. Proceedings, (2002), 45–48.

Schunemann, P. G.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sharpe, S. W.

S. W. Sharpe, R. L. Sams, and T. J. Johnson, “The PNNL quantitative IR database for infrared remote sensing and hyperspectral imaging,” in Applied Imagery Pattern Recognition Workshop, 2002. Proceedings, (2002), 45–48.

Shi, J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Si, N.

Sikkens, C.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Smolski, V. O.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

Song, F.

Sørensen, K. M.

Starikova, E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sung, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Suzuki, T.

Sweeney, F.

Tagkoudi, E.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tashkun, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Taylor, D.

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

Tennyson, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Terry, J. F. L.

Tezuka, H.

Tian, Y.

Tittel, F. K.

Toivonen, J.

T. Mikkonen, C. Amiot, A. Aalto, K. Patokoski, G. Genty, and J. Toivonen, “Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum,” Opt. Lett. 43(20), 5094–5097 (2018).
[Crossref]

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Tong, K.

Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019).
[Crossref]

Toon, G. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Trofimov, I.

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Tsai, T. R.

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Tuan, T. H.

Tyuterev, V. G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

van Herpen, M. M. J. W.

M. M. J. W. van Herpen, S. Li, and S. E. Bisson, “S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2-3), 329–333 (2002).
[Crossref]

Vergara, G.

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Verlinden, E. B.

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Vicet, A.

Y. Ma, A. Vicet, and K. Krzempek, State-of-the-art Laser Gas Sensing Technologies (MDPI AG, 2020).

Vodopyanov, K. L.

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

Vurgaftman, I.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
[Crossref]

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Wagner, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Wang, R.

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Wang, X.

Wang, Y.

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Weyer, L.

J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007), p. 344.

Workman, J.

J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007), p. 344.

Wysocki, G.

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Xia, C.

Xue, X.

Xue, Z.

Yan, W.

Yang, A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yang, F.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

Yang, Z.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yao, J.

Ye, J.

Ye, W.

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zeidel, V.

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, B.

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, P.

Zhang, S.

Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019).
[Crossref]

Zhao, Z.

Zheng, C.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zorin, I.

Analyst (1)

W. Denzer, G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, “Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes,” Analyst 136(4), 801–806 (2011).
[Crossref]

Appl. Phys. B (1)

M. M. J. W. van Herpen, S. Li, and S. E. Bisson, “S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2-3), 329–333 (2002).
[Crossref]

Appl. Phys. Lett. (1)

C. Amiot, A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, “Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source,” Appl. Phys. Lett. 111(6), 061103 (2017).
[Crossref]

Appl. Sci. (1)

Z. Du, S. Zhang, J. Li, N. Gao, and K. Tong, “Mid-infrared tunable laser-based broadband fingerprint absorption spectroscopy for trace gas sensing: a review,” Appl. Sci. 9(2), 338 (2019).
[Crossref]

Appl. Spectrosc. (3)

Infrared Phys. Technol. (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Nat. Commun. (1)

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10(1), 1553 (2019).
[Crossref]

Nat. Photonics (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. V. Muraviev, V. O. Smolski, Z. E. Loparo, and K. L. Vodopyanov, “Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs,” Nat. Photonics 12(4), 209–214 (2018).
[Crossref]

Opt. Express (8)

O. Kara, F. Sweeney, M. Rutkauskas, C. Farrell, C. G. Leburn, and D. T. Reid, “Open-path multi-species remote sensing with a broadband optical parametric oscillator,” Opt. Express 27(15), 21358–21366 (2019).
[Crossref]

O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25(26), 32713–32721 (2017).
[Crossref]

K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, and F. J. M. Harren, “Mid-infrared supercontinuum-based upconversion detection for trace gas sensing,” Opt. Express 27(17), 24469–24480 (2019).
[Crossref]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express 18(21), 21861–21872 (2010).
[Crossref]

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous-wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18(15), 15691–15696 (2010).
[Crossref]

M. A. Abbas, A. Khodabakhsh, Q. Pan, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference,” Opt. Express 27(14), 19282–19291 (2019).
[Crossref]

K. Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express 27(3), 2036–2043 (2019).
[Crossref]

Opt. Fiber Technol. (1)

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18(5), 327–344 (2012).
[Crossref]

Opt. Lett. (5)

Sci. Rep. (1)

M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, and A. Khodabakhsh, “Time-resolved mid-infrared dual-comb spectroscopy,” Sci. Rep. 9(1), 17247 (2019).
[Crossref]

Sensors (2)

F. Nadeem, J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, “Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser,” Sensors 18(7), 2050 (2018).
[Crossref]

K. Eslami Jahromi, Q. Pan, A. Khodabakhsh, C. Sikkens, P. Assman, M. S. Cristescu, M. P. Moselund, M. Janssens, E. B. Verlinden, and J. M. F. Harren, “A broadband mid-infrared trace gas sensor using supercontinuum light source: applications for real-time quality control for fruit storage,” Sensors 19(10), 2334 (2019).
[Crossref]

Other (9)

J. Gouman, F. Lütolf, P. Renevey, S. Dasen, S. Chin, T. Herr, G. Buchs, S. Lecomte, G. Vergara, H. Martin, P. M. Moselund, F. J. M. Harren, and L. Balet, “Compact UAV compatible broadband 2D Spectrometer for multi-species atmospheric gas analysis,” in Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), LTu5B.4.

Y. Ma, A. Vicet, and K. Krzempek, State-of-the-art Laser Gas Sensing Technologies (MDPI AG, 2020).

T. Ringsted, “Near infrared spectroscopy of food systems using a supercontinuum laser,” (Department of Food Science, Faculty of Science, University of Copenhagen, 2017).

A. I. Adamu, M. K. Dasa, O. Bang, and C. Markos, “Multi-species continuous gas detection with supercontinuum laser at telecommunication wavelength,” IEEE Sensors Journal, 1 (2020).

R. R. Alfano, The Supercontinuum Laser Source: The Ultimate White Light (Springer New York, 2016).

T. R. Tsai, I. Trofimov, C. W. Heaps, M. Maiorov, V. Zeidel, C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, I. Vurgaftman, J. R. Meyer, and G. Wysocki, “Widely Tunable External Cavity Interband Cascade Laser for Spectroscopic Applications,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), CThM4.

J. Workman and L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, 2007), p. 344.

M. C. Gupta, Atomic And Molecular Spectroscopy (New Age International (P), 2007).

S. W. Sharpe, R. L. Sams, and T. J. Johnson, “The PNNL quantitative IR database for infrared remote sensing and hyperspectral imaging,” in Applied Imagery Pattern Recognition Workshop, 2002. Proceedings, (2002), 45–48.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. simplified schematic representation of the sensor setup (BS: beam splitter, L: lens, CM: cylindrical mirror).
Fig. 2.
Fig. 2. Methane absorbance spectra (∼47 ppmv in nitrogen, 900 mbar, 1 s averaging) measured at different lock-in amplification time constants.
Fig. 3.
Fig. 3. Absorbance spectra of 100 ppmv ethane diluted in nitrogen measured at 900 mbar (A) with using the lock-in amplifier (in red) and without using the lock-in amplifier (in blue), both averaged for 1 s, (B) with using the lock-in amplifier (in red) averaged for 1 s, and without using the lock-in amplifier (in blue) averaged for 30 s.
Fig. 4.
Fig. 4. (A) Noise equivalent methane concentrations (obtained every 100 ms for 6000 s) for the measurements with (red dots) and without (blue dots) the lock-in amplifier. (b) The corresponding Allan-Werle plots of the retrieved methane concentrations when the lock-in amplifier was used (red curve) and was not used (blue curve). The fitted time dependency of ${\tau ^{ - 1/2}}$ (green dash lines) represents the white noise contribution.
Fig. 5.
Fig. 5. System linearity response to different applied ethane concentrations. The uncertainty is based on ±σ values calculated from 1 min measurement of each gas concentration.
Fig. 6.
Fig. 6. (A) Overlay of two consecutive ethane absorbance spectra measured within 1 s averaging at 900 mbar. (B) A linear fit (red line) to the data points obtained from the first-second measured absorbance scatter plot (green dots).
Fig. 7.
Fig. 7. (A) The measured absorbance profiles for 48.3 ppmv ethyl acetate (in red) and 48.3 ppmv ethylene (in blue) both diluted in nitrogen, as well as their mixture (in green). (B) The retrieved concentrations for each gas in the gas mixture calculated from NNLS fitting approach.
Fig. 8.
Fig. 8. (A) The measured absorbance spectrum of 98 ppmv ethylene diluted in nitrogen (in red) averaged for 1 min at 900 mbar pressure along with the simulated absorbance spectrum using HITRAN database with 2.5 cm−1 resolution (in blue, inverted). (B) The measured absorbance spectrum for a mixture of 50 ppmv ethylene and 50 ppmv nitrous oxide both diluted in nitrogen (in red) along with the corresponding simulated spectra of nitrous oxide (in blue, inverted) and ethylene (in green, inverted) using HITRAN database.
Fig. 9.
Fig. 9. (A) Measured absorption spectra of 47.5 ppmv methane diluted in nitrogen obtained when the digital lock-in amplifier was referenced externally to the SC source (in red) and internally to its FPGA clock (in blue, inverted). (B) Methane absorbance values of the spectrum measured with the internal reference in terms of the absorbance values of the spectrum measured with the external reference (green square markers) along with a linear fit to the data points (red line).

Metrics