Abstract

The particulate observing scanning polarimeter (POSP) measurement spatial response function (SRF) relates to the weighted contribution of each location within the measurement footprint, which is determined by the percentage of the dwell time of each location on the Earth surface to the overall sampling integration time. The SRF resulting from a combination of the equally weighted instantaneous field of view (IFOV) during integration is required for an accurate modeling. Simply using a mean value SRF assuming an equivalent weight at each sampling position instead of the actual SRF will inevitably introduce errors. Considering the data fusion between POSP and high spatial resolution sensors, a discrete integration method that takes the effect of actual weights into account is proposed in this paper. The simulation results of the integral model and the mean value model show that the larger the intensity change in the sampling area covered by the IFOV of the POSP during a single sampling, the more significant the difference between the two results. Meanwhile, the integration SRF is validated by resampling the simultaneous imaging polarization camera (SIPC) data, which is compared with POSP data acquired at the same time in an aerial experiment. The results show that the integration SRF model is more accurate to characterize the details of POSP measurement than the mean value SRF model. The proposed SRF reduces the root mean square error (RMSE) of convolved results and measurements by 5∼30% with different radiance contrast scene.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Atmospheric aerosols are tiny particles suspended in gas carrier with a multiphase dispersion system. Aerosols are widely distributed in the atmosphere with a short life cycle, large spatiotemporal differences and complex physical properties, having significant impacts on the global climate and atmospheric environment. Aerosol fine particles with diameter less than 2.5 µm (PM2.5) are the main inducement for the formation of haze weather, which seriously affect human daily activities. Polarization detection can obtain vector information of atmospheric light waves and be sensitive to the microphysical properties of aerosols, which solves the problems of aerosol particle size distribution that cannot be retrieved by traditional remote sensing. The polarization information can independently retrieve aerosol parameters and jointly retrieve with radiation information, which can further improve the accuracy of products [1,2,3].

The particulate observing scanning polarimeter (POSP) [4,5] is a cross-track scanning polarimeter with highly accurate polarization measurements of bands from near-UV to SWIR (410-2250 nm), which is developed by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (AIOFM, CAS). Its main objective includes monitoring aerosols in the Earth’s atmosphere, providing polarization measurements information of the surface-atmosphere system and transferring the highly accurate polarimetric calibration parameters with on-board calibration units to other on-board sensors on the same satellite. POSP can also provide a wide range of aerosol monitoring data and fine particulate inversion basic input data, which can be used as data support for air quality monitoring and large-scale long-term climate change research [6].

POSP acquires data over a large scanning angle range by using a rotating scan mirror to collect the incoming radiation, which can provide wide-swath field of view (FOV) coverage. There is an integration process during sampling while the scan angle is changing with rotation of scan mirror, thus the ground scene is different during integration time. For different position in the region of a POSP sample ground projection, the spatial response weighted contribution is different because of the different dwell time of each ground target on the single pixel detector. In view of POSP is a low spatial resolution polarimeter, in order to obtain accurate measurement in spatial domain and conduct data fusion with high spatial resolution sensors [7,8,9], an accurate description of POSP spatial response distribution is needed.

In this paper, we derive an integration spatial response function (SRF) of POSP and demonstrate its utility by comparing it with mean value SRF under simulation and actual flight test conditions, respectively. Section 2 provides background information of POSP. Section 3 describes the discretely modeling process of integration SRF, and conducts simulate data convolution with different SRFs. As an application of the SRF, data of high spatial resolution camera in aerial experiment is convolved with different SRFs, and the comparison with POSP data is shown in Section 4. Compared with mean value SRF, the proposed SRF reduces the root mean square error (RMSE) of convolved results and measurements by 5∼30% with different radiance contrast scene. Section 5 concludes this paper.

2. Background

Combining the channel and amplitude polarization measurement method simultaneously, the design of the POSP closely follows that of the aerosol polarimetry sensor (APS) [10,11], the polarization measurement principle of which is shown in Fig. 1. For one single optical path, the telescopic system constrains the FOV and collimates the incidence light into the Wollaston prism, which decomposes light to two beams of linearly polarized light with orthogonal vibration directions (0° and 90°), then the lights are focused on two focal planes through focusing lens, enabling multi-amplitude measurement. For the other same optical path, the prism is rotated by 45°, and the linearly polarized lights with vibration directions of 45° and 135°are produced, enabling multi-channel measurement. Thus we can measure the Stokes parameters of same scene.

 

Fig. 1. Schematic diagram of POSP multi-channel optical path.

Download Full Size | PPT Slide | PDF

For the characteristics of simultaneous polarization measurement of POSP, the premise of system design is not to introduce of false polarization information, including time synchronization, overlapping FOV and consistent spectrum. Time synchronization is the simultaneous measurement of modulated light in four polarized directions with four detectors, the integration time of POSP is 710µs and the actual synchronization time error in all channels is less than 0.5µs in the acquisition circuits. Error caused by the 0.3% difference in the edge of FOV can be omitted since the weighted contribution is low in the proposed integration SRF. Four polarization measurement channels of POSP belong to two independent optical paths, while two detectors in the same optical path have the same central wavelength and spectral bandwidth. All optical devices are the same between the paired two optical paths with only a 45° rotation in space, the spectral consistency of the two optical paths can be controlled very well after optical device select. The overlapping FOV involves consistent IFOV and parallel of optical axis, with an overlapped portion greater than 95% so that the error of incidence light signal between different optical paths is small and within the range of accuracy requirements.

3. POSP spatial response function

3.1 Modeling

The sampling rate and aperture size are important factors affecting the signal-to-noise ratio (SNR) of POSP, each sample’s SNR decreases while the scan rate is increasing, and SNR rapidly increases while the aperture size increases, but this in turn increases the overall mass and volume of the instrument [10]. In order to increase the SNR as much as possible and ensure the ground sample distance (GSD) is acceptable, the sampling integration time were optimized by setting as half of the sampling interval time, that is 9.1 mrad sampling interval with a 4.55 mrad integration drag, and the IFOV of POSP is circular with 10.5 mrad diameter (Fig. 2). The integration during sampling is not only a low-pass filter in electronics, but also a special spatial low-pass filter in optical. It averages scene changes according to the weight of the small edge and center of the ground sampling point, and it can be accurately calculated in subsequent quantitative analysis, which is important when performing data collaborative processing with other different spatial resolution on-board sensors, such as the geometric registration.

 

Fig. 2. POSP scanning and timing parameters.

Download Full Size | PPT Slide | PDF

The integration circuit adopted by POSP makes it feasible to accurately evaluate the weight contribution of each position on the ground under the condition that the scanning mirror speed is stable. The weights of different ground locations projected in the IFOV of POSP are the same at each moment. As every location swept by the IFOV moves in and out of the IFOV, the weights of different locations change and accumulate linearly as the integration proceeds. (Fig. 3). In a two-dimensional pixel grid, assuming integration distance is $\Delta d$ pixels along the scanning direction, thus all pixels in each IFOV footprint have a weight of $\omega = 1/\Delta d$, and the radius of IFOV footprint is ${d_{IFOV}}$ pixels, then the POSP spatial response function can be defined by Eq. (1):

$${D_{i,j}} = \mathop \sum \nolimits_{n = 0}^{\Delta d} \omega ,\; {({i - x} )^2} + {({j - y - n} )^2} \le {({{d_{IFOV}}} )^2}$$
where (x,y) is the IFOV footprint center coordinate at the beginning of integration, and (i,j) is the coordinate of pixel to be calculated. As shown in Fig. 4, we set the integration distance as 40 pixels and IFOV radius as 40 pixels. The response coefficient is small at both ends for the reason that the scene dwell time is small during integration, and the central part pixels have a maximum response factor of 1.

 

Fig. 3. POSP integration modeling process.

Download Full Size | PPT Slide | PDF

 

Fig. 4. Modeled spatial response of POSP measurements with 80 pixels IFOV and 40 pixels integration distance. (a) Integration SRF. (b) Mean value SRF.

Download Full Size | PPT Slide | PDF

3.2 Integration SRF analysis

A mean value spatial response function can be simply derived for comparative analysis, by assuming that the response coefficient of each pixel in the range of a sample is equal. To obtain a comparable weighted result, we multiply the measured radiance value and response coefficient for each pixel within the range of a measurement footprint and sum the product of, this completed convolution process. Then the sum is divided by sum of response coefficient for normalizing.

For ideal uniformly distributed ground scene, there is no difference between the types of spatial response function we use, and the result shows that each sample point has uniform radiance. However, for real ground scene, the radiance distribution is not uniform, and there are obvious spatial differences between each distinguishable scene boundary, especially for different sides of the mountain ridge and the coastline. Three checkboard pattern stripes are used for simulation, and the convolution kernels of two spatial response functions are set with the same size. The only difference is the space between black and white blocks of stripes (100, 120 and 80 pixels) between the size of kernels (120 pixels) along scan direction. By sliding the kernels on different stripes along scan direction, the differences of weighted results between kernels are different [Figs. 5(a)–5(c)], and the differences become larger when the radiation in the sliding window changes faster. In addition, an image stripe is used for analysis, as shown in Fig. 5(d), for pixels in observing range with high frequency change trend, the weighted results have obvious differences. Figure 6 compares the integration and mean value spatial response in a checkboard pattern distribution image and a real ground image with the same convolution kernels sliding in both along and across the scan direction. Error between convolution results is calculated, and the distribution is related to the change trend of original image.

 

Fig. 5. Simulation results of two different types of SRF by using checkboard pattern stripes and image stripes. (a) Checkboard pattern stripe with 120 pixels black and white block interval. (b) Checkboard pattern stripe with 100 pixels black and white block interval. (c) Checkboard pattern stripe with 80 pixels black and white block interval. (d) Stripe cut from a mountain image.

Download Full Size | PPT Slide | PDF

 

Fig. 6. Simulation results of two different types of SRF by using checkboard pattern image and real ground image.

Download Full Size | PPT Slide | PDF

4. Applications to experiment datasets

4.1 Aerial flight experiment

The “Polarization CrossFire Suite” (PCF) [6] is a joint observation suite on-board a Chinese atmospheric environment satellite consisting of the POSP and directional polarimetric camera (DPC) [12,13,14]. The key technologies of the PCF include the data fusion application and calibration parameters transferring between two polarization sensors on the same platform. In order to verify the performance of satellite multi-load comprehensive detection and provide real datasets for ground application systems, we have carried out an aerial experiment of multi-load joint observation. Compared with the satellite platform, the attitude change of the aviation platform is complicated. However, the method of DPC image registration has a very high requirement for platform stability, thus we use the simultaneous imaging polarization camera (SIPC) as an alternative sensor on the aviation platform to obtain the atmospheric polarization radiation imaging data of multiple spectral bands. During the calibration transfer and data fusion process of the two sensors, the matched relative spectral response helps to minimize the error. This is also the primary consideration and guarantee in this aviation experiment [15].

POSP and SIPC were hosted on the Yun-8 aircraft in spring 2019 for experiment in Shanhaiguan area after ground tests. The time and location information of each POSP and SIPC measurement are obtained through the electronic control system during the aerial experiment. Different from the on-board state, POSP scans in the along-track direction over a full FOV of 76° with 147 spatial samples, and the IFOV is 0.602°. SIPC is a push broom camera over a 10°×7.4° FOV, 1392×1040 pixels resolution along and across the track.

4.2 Results

According to the GSD of POSP and SIPC, we can get the spatial scaling relation between SIPC pixels and POSP samples, which is about 1:84 for nadir samples. And the scan mirror rotated 0.26° during integration, corresponding to 36 pixels on the footprint. Oblique projection distortion near nadir can be omitted, thus we can set a spatial response convolution kernel to associate the nadir sample and the pixels within it. The ground projection pixel corresponds to the center of nadir sample can be calculated based on measured positional relationships and coordinate equations during installation on the aircraft and geolocation process. We compared POSP nadir sample radiation with SIPC pixels radiation calculated by convolution results of mean value SRF kernel and the integration SRF kernel in different ground scene.

There are 500 discrete POSP measurements located along the red line which are overlaid on Fig. 7, the SIPC radiation values convolved with different spatial response kernels are shown in Fig. 8. The difference in linearity and the error fluctuations with POSP nadir sample radiation values in these scatter points indicate that the convolved results are generally consistent, but the accuracy of results are influenced by different convolution kernels. The coefficient of determination (R2) and root-mean-square deviation (RMSE) are compared between different kernels, and the integration SRF kernel improves the R2 and decreases the RMSE. Furthermore, to measure the change trend of ground scene, the measurement standard deviation (STD) was calculated by pixels within the region of interest (ROI) as shown in Fig. 8(a), and samples with different STD levels were selected for comparison. As is shown in Fig. 9, the larger the STD of the pixels value is, the larger the difference between the different kernels is, and the integration SRF kernel is more accurate to POSP measurements. Another dataset with 650 discrete POSP measurements are also analyzed in Fig. 8 and Fig. 9. All the results indicate that in order to obtain accurate measurement results of POSP, we need to consider the influence of integration process during sampling and model the spatial response with it.

 

Fig. 7. This image shows SIPC data acquired on 11 March 2019 during 14:29–14:32 UTC+8 over Shanhaiguan near Qinhuangdao. The red line shows the location of the center of nadir POSP measurements.

Download Full Size | PPT Slide | PDF

 

Fig. 8. STD of SIPC pixel within POSP nadir sample footprint is shown in panel (a) and (c), corresponding to two different datasets with 500 and 650 discrete POSP measurements. All the POSP radiation results and SIPC convolved results are shown in panel (b) and (d) for two datasets, The R2 of integration SRF are larger than mean SRF in two datasets, and the RMSE are smaller. In panel (b) and (d), the slope and intercept of the integrated SRF method fitted line is closer to the POSP results that is shown by the red line.

Download Full Size | PPT Slide | PDF

 

Fig. 9. For two datasets mentioned above, we divided results of POSP and SIPC by different levels of STD value for research. The STD value between 0 to 100 is shown in panel (a) and (d) for 500 and 650 POSP samples dataset, respectively. The R2 and RMSE differences are not very large between integration SRF and mean SRF, also for STD value between 100 to 200, as shown in panel (b) and (e). But for STD value larger than 200 in panel (c) and (d), the differences are several times larger than the two levels mentioned above.

Download Full Size | PPT Slide | PDF

5. Conclusion

The POSP integration SRF quantitatively characterizes the spatial extent and weighting of each POSP measurement. We have modeled the integration SRF using the viewing geometry and details of the POSP onboard sampling. We have also presented a simulated convolution process to visually present the difference between integration SRF and traditional mean value SRF. We have validated the modeled integration SRF by comparing it with mean value SRF by using the convolved SIPC data and POSP data in aerial experiment. The differences existing in the two types of SRFs are non-negligible when the STD of measurement values is large.

For future work, an additional SRF validation approach can more objectively describe the accuracy of the integration SRF: the integration SRF will be used in the cross calibration and data fusion of “PCF” as mentioned previously. The spectral consistency of DPC and POSP is much better than the sensors in the aerial experiment, and the stability of satellite is much better than the plane thus we can get accurate viewing geometry. Another future improvement is to build sub-pixel SRF convolution kernel to resample the DPC pixels. The spatial scaling relation between DPC pixels and POSP samples is about 1:25 for nadir samples, thus we need to calculate the percentage of square DPC pixel parts within the POSP circle samples.

Funding

K.C.Wong Education Foundation “International team of Advanced polarization remote Sensing Technology and Application” (GJTD-2018-15).

Acknowledgments

We thank the POSP team for their contributions to the project and the manuscript. We also thank the large team involved in the successful conduct of the in-flight experiment. This research is performed at Anhui Institute of Optics and Fine Mechanics, CAS, Hefei, China.

Disclosures

The authors declare no conflicts of interest.

References

1. J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models,” J. Atmos. Sci. 40(1), 116–138 (1983). [CrossRef]  

2. F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007). [CrossRef]  

3. F. Waquet, J. F. Leon, B. Cairns, P. Goloub, J. L. Deuze, and F. Auriol, “Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land,” Appl. Opt. 48(6), 1228–1236 (2009). [CrossRef]  

4. M. X. Song, B. Sun, X. B. Sun, and J. Hong, “Polarization calibration of airborne muti-angle polarimetric radiometer,” Guangxue Jingmi Gongcheng 20(6), 1153–1158 (2012). [CrossRef]  

5. H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018). [CrossRef]  

6. O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019). [CrossRef]  

7. J. Mccorkel, B. Cairns, and A. P. Wasilewski, “Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors,” Atmos. Meas. Tech. 9(3), 955–962 (2016). [CrossRef]  

8. K. Knobelspiesse, Q. Tan, C. J. Bruegge, B. Cairns, J. Chowdhary, B. Van Diedenhoven, D. J. Diner, R. A. Ferrare, G. Van Harten, and V. M. Jovanovic, “Intercomparison of airborne multi-angle polarimeter observations from the Polarimeter Definition Experiment,” Appl. Opt. 58(3), 650–669 (2019). [CrossRef]  

9. M. De Graaf, H. Sihler, L. G. Tilstra, and P. Stammes, “How big is an OMI pixel,” Atmos. Meas. Tech. 9(8), 3607–3618 (2016). [CrossRef]  

10. R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007). [CrossRef]  

11. B. Cairns and I. Geogdzhayev, “Glory Project: Aerosol Polarimetry Sensor Algorithm Theoretic Basis Document,” Goddard Institute for Space Studies, NASA. https://glory.giss.nasa.gov/aps/docs/APS_ATBD_CALIBRATE_CCB.pdf (2010).

12. W. F. Yang, J. Hong, and Y. L. Qiao, “Optical Design of Spaceborne Directional Polarization Camera,” Acta Opt. Sin. 35(8), 0822005 (2015). [CrossRef]  

13. Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018). [CrossRef]  

14. X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010). [CrossRef]  

15. S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models,” J. Atmos. Sci. 40(1), 116–138 (1983).
    [Crossref]
  2. F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
    [Crossref]
  3. F. Waquet, J. F. Leon, B. Cairns, P. Goloub, J. L. Deuze, and F. Auriol, “Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land,” Appl. Opt. 48(6), 1228–1236 (2009).
    [Crossref]
  4. M. X. Song, B. Sun, X. B. Sun, and J. Hong, “Polarization calibration of airborne muti-angle polarimetric radiometer,” Guangxue Jingmi Gongcheng 20(6), 1153–1158 (2012).
    [Crossref]
  5. H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
    [Crossref]
  6. O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
    [Crossref]
  7. J. Mccorkel, B. Cairns, and A. P. Wasilewski, “Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors,” Atmos. Meas. Tech. 9(3), 955–962 (2016).
    [Crossref]
  8. K. Knobelspiesse, Q. Tan, C. J. Bruegge, B. Cairns, J. Chowdhary, B. Van Diedenhoven, D. J. Diner, R. A. Ferrare, G. Van Harten, and V. M. Jovanovic, “Intercomparison of airborne multi-angle polarimeter observations from the Polarimeter Definition Experiment,” Appl. Opt. 58(3), 650–669 (2019).
    [Crossref]
  9. M. De Graaf, H. Sihler, L. G. Tilstra, and P. Stammes, “How big is an OMI pixel,” Atmos. Meas. Tech. 9(8), 3607–3618 (2016).
    [Crossref]
  10. R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
    [Crossref]
  11. B. Cairns and I. Geogdzhayev, “Glory Project: Aerosol Polarimetry Sensor Algorithm Theoretic Basis Document,” Goddard Institute for Space Studies, NASA. https://glory.giss.nasa.gov/aps/docs/APS_ATBD_CALIBRATE_CCB.pdf (2010).
  12. W. F. Yang, J. Hong, and Y. L. Qiao, “Optical Design of Spaceborne Directional Polarization Camera,” Acta Opt. Sin. 35(8), 0822005 (2015).
    [Crossref]
  13. Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
    [Crossref]
  14. X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010).
    [Crossref]
  15. S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
    [Crossref]

2019 (3)

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

K. Knobelspiesse, Q. Tan, C. J. Bruegge, B. Cairns, J. Chowdhary, B. Van Diedenhoven, D. J. Diner, R. A. Ferrare, G. Van Harten, and V. M. Jovanovic, “Intercomparison of airborne multi-angle polarimeter observations from the Polarimeter Definition Experiment,” Appl. Opt. 58(3), 650–669 (2019).
[Crossref]

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

2018 (2)

H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
[Crossref]

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

2016 (2)

M. De Graaf, H. Sihler, L. G. Tilstra, and P. Stammes, “How big is an OMI pixel,” Atmos. Meas. Tech. 9(8), 3607–3618 (2016).
[Crossref]

J. Mccorkel, B. Cairns, and A. P. Wasilewski, “Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors,” Atmos. Meas. Tech. 9(3), 955–962 (2016).
[Crossref]

2015 (1)

W. F. Yang, J. Hong, and Y. L. Qiao, “Optical Design of Spaceborne Directional Polarization Camera,” Acta Opt. Sin. 35(8), 0822005 (2015).
[Crossref]

2012 (1)

M. X. Song, B. Sun, X. B. Sun, and J. Hong, “Polarization calibration of airborne muti-angle polarimetric radiometer,” Guangxue Jingmi Gongcheng 20(6), 1153–1158 (2012).
[Crossref]

2010 (1)

X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010).
[Crossref]

2009 (1)

2007 (2)

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

1983 (1)

J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models,” J. Atmos. Sci. 40(1), 116–138 (1983).
[Crossref]

Auriol, F.

F. Waquet, J. F. Leon, B. Cairns, P. Goloub, J. L. Deuze, and F. Auriol, “Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land,” Appl. Opt. 48(6), 1228–1236 (2009).
[Crossref]

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

Balois, J. Y.

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

Bojkov, B.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Bruegge, C. J.

Cairns, B.

K. Knobelspiesse, Q. Tan, C. J. Bruegge, B. Cairns, J. Chowdhary, B. Van Diedenhoven, D. J. Diner, R. A. Ferrare, G. Van Harten, and V. M. Jovanovic, “Intercomparison of airborne multi-angle polarimeter observations from the Polarimeter Definition Experiment,” Appl. Opt. 58(3), 650–669 (2019).
[Crossref]

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

J. Mccorkel, B. Cairns, and A. P. Wasilewski, “Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors,” Atmos. Meas. Tech. 9(3), 955–962 (2016).
[Crossref]

F. Waquet, J. F. Leon, B. Cairns, P. Goloub, J. L. Deuze, and F. Auriol, “Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land,” Appl. Opt. 48(6), 1228–1236 (2009).
[Crossref]

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

B. Cairns and I. Geogdzhayev, “Glory Project: Aerosol Polarimetry Sensor Algorithm Theoretic Basis Document,” Goddard Institute for Space Studies, NASA. https://glory.giss.nasa.gov/aps/docs/APS_ATBD_CALIBRATE_CCB.pdf (2010).

Cess, R. D.

J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models,” J. Atmos. Sci. 40(1), 116–138 (1983).
[Crossref]

Cheng, T.

X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010).
[Crossref]

Chowdhary, J.

Coakley, J. A.

J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models,” J. Atmos. Sci. 40(1), 116–138 (1983).
[Crossref]

De Graaf, M.

M. De Graaf, H. Sihler, L. G. Tilstra, and P. Stammes, “How big is an OMI pixel,” Atmos. Meas. Tech. 9(8), 3607–3618 (2016).
[Crossref]

Deuze, J. L.

F. Waquet, J. F. Leon, B. Cairns, P. Goloub, J. L. Deuze, and F. Auriol, “Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land,” Appl. Opt. 48(6), 1228–1236 (2009).
[Crossref]

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

Diner, D. J.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

K. Knobelspiesse, Q. Tan, C. J. Bruegge, B. Cairns, J. Chowdhary, B. Van Diedenhoven, D. J. Diner, R. A. Ferrare, G. Van Harten, and V. M. Jovanovic, “Intercomparison of airborne multi-angle polarimeter observations from the Polarimeter Definition Experiment,” Appl. Opt. 58(3), 650–669 (2019).
[Crossref]

Dubovik, O.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Espinosa, W. R.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Fafaul, B. A.

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

Ferrare, R. A.

Francois, P.

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

Geogdzhayev, I.

B. Cairns and I. Geogdzhayev, “Glory Project: Aerosol Polarimetry Sensor Algorithm Theoretic Basis Document,” Goddard Institute for Space Studies, NASA. https://glory.giss.nasa.gov/aps/docs/APS_ATBD_CALIBRATE_CCB.pdf (2010).

Goloub, P.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

F. Waquet, J. F. Leon, B. Cairns, P. Goloub, J. L. Deuze, and F. Auriol, “Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land,” Appl. Opt. 48(6), 1228–1236 (2009).
[Crossref]

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

Gu, X.

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010).
[Crossref]

Gu, X. F.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Hasekamp, O.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Hong, J.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
[Crossref]

W. F. Yang, J. Hong, and Y. L. Qiao, “Optical Design of Spaceborne Directional Polarization Camera,” Acta Opt. Sin. 35(8), 0822005 (2015).
[Crossref]

M. X. Song, B. Sun, X. B. Sun, and J. Hong, “Polarization calibration of airborne muti-angle polarimetric radiometer,” Guangxue Jingmi Gongcheng 20(6), 1153–1158 (2012).
[Crossref]

Hooker, R. J.

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

Hou, W.

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

Hou, W. Z.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Jovanovic, V. M.

Karol, Y.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Knobelspiesse, K.

Knobelspiesse, K. D.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Landgraf, J.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Lei, X. F.

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

Leon, J. F.

F. Waquet, J. F. Leon, B. Cairns, P. Goloub, J. L. Deuze, and F. Auriol, “Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land,” Appl. Opt. 48(6), 1228–1236 (2009).
[Crossref]

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

Li, L.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Li, Z.

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

Li, Z. Q.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Li, Z. Y.

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

Litvinov, P.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Liu, Y.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Liu, Z. H.

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

Lopatin, A.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Luo, D.

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

Marbach, T.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Maring, H.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Martins, V.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Mccorkel, J.

J. Mccorkel, B. Cairns, and A. P. Wasilewski, “Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors,” Atmos. Meas. Tech. 9(3), 955–962 (2016).
[Crossref]

Meijer, Y.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Milinevsky, G.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Mishchenko, M. I.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

Mukai, S.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Nardell, C.

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

Parol, F.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Peralta, R. J.

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

Qiao, Y.

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

Qiao, Y. L.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

W. F. Yang, J. Hong, and Y. L. Qiao, “Optical Design of Spaceborne Directional Polarization Camera,” Acta Opt. Sin. 35(8), 0822005 (2015).
[Crossref]

Remer, L.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Rietjens, J.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Russell, E. E.

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

Sano, I.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Sihler, H.

M. De Graaf, H. Sihler, L. G. Tilstra, and P. Stammes, “How big is an OMI pixel,” Atmos. Meas. Tech. 9(8), 3607–3618 (2016).
[Crossref]

Song, M. X.

H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
[Crossref]

M. X. Song, B. Sun, X. B. Sun, and J. Hong, “Polarization calibration of airborne muti-angle polarimetric radiometer,” Guangxue Jingmi Gongcheng 20(6), 1153–1158 (2012).
[Crossref]

Stammes, P.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

M. De Graaf, H. Sihler, L. G. Tilstra, and P. Stammes, “How big is an OMI pixel,” Atmos. Meas. Tech. 9(8), 3607–3618 (2016).
[Crossref]

Stamnes, S.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Sun, B.

M. X. Song, B. Sun, X. B. Sun, and J. Hong, “Polarization calibration of airborne muti-angle polarimetric radiometer,” Guangxue Jingmi Gongcheng 20(6), 1153–1158 (2012).
[Crossref]

Sun, X. B.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
[Crossref]

M. X. Song, B. Sun, X. B. Sun, and J. Hong, “Polarization calibration of airborne muti-angle polarimetric radiometer,” Guangxue Jingmi Gongcheng 20(6), 1153–1158 (2012).
[Crossref]

Tabary, P.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Tan, Q.

Tanré, D.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Tilstra, L. G.

M. De Graaf, H. Sihler, L. G. Tilstra, and P. Stammes, “How big is an OMI pixel,” Atmos. Meas. Tech. 9(8), 3607–3618 (2016).
[Crossref]

Travis, L. D.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

Van Diedenhoven, B.

Van Harten, G.

Verwaerde, C.

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

Wang, J.

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010).
[Crossref]

Waquet, F.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

F. Waquet, J. F. Leon, B. Cairns, P. Goloub, J. L. Deuze, and F. Auriol, “Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land,” Appl. Opt. 48(6), 1228–1236 (2009).
[Crossref]

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

Wasilewski, A. P.

J. Mccorkel, B. Cairns, and A. P. Wasilewski, “Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors,” Atmos. Meas. Tech. 9(3), 955–962 (2016).
[Crossref]

Xu, F.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Yan, C.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Yang, B. Y.

H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
[Crossref]

Yang, H. C.

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
[Crossref]

Yang, W. F.

W. F. Yang, J. Hong, and Y. L. Qiao, “Optical Design of Spaceborne Directional Polarization Camera,” Acta Opt. Sin. 35(8), 0822005 (2015).
[Crossref]

Yanli, Q.

X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010).
[Crossref]

Yin, D.

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Yu, T.

X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010).
[Crossref]

Yurevich, F. B.

J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models,” J. Atmos. Sci. 40(1), 116–138 (1983).
[Crossref]

Zheng, F.

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

Zhu, S. S.

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

Zou, P.

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
[Crossref]

Acta Opt. Sin. (2)

W. F. Yang, J. Hong, and Y. L. Qiao, “Optical Design of Spaceborne Directional Polarization Camera,” Acta Opt. Sin. 35(8), 0822005 (2015).
[Crossref]

S. S. Zhu, H. C. Yang, Z. Y. Li, X. F. Lei, P. Zou, Z. H. Liu, and J. Hong, “Polarization Detection Test and Result Analysis of Scanning Polarimeter,” Acta Opt. Sin. 39(11), 1112002 (2019).
[Crossref]

Appl. Opt. (2)

Atmos. Meas. Tech. (2)

M. De Graaf, H. Sihler, L. G. Tilstra, and P. Stammes, “How big is an OMI pixel,” Atmos. Meas. Tech. 9(8), 3607–3618 (2016).
[Crossref]

J. Mccorkel, B. Cairns, and A. P. Wasilewski, “Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors,” Atmos. Meas. Tech. 9(3), 955–962 (2016).
[Crossref]

Guangxue Jingmi Gongcheng (1)

M. X. Song, B. Sun, X. B. Sun, and J. Hong, “Polarization calibration of airborne muti-angle polarimetric radiometer,” Guangxue Jingmi Gongcheng 20(6), 1153–1158 (2012).
[Crossref]

J. Atmos. Sci. (1)

J. A. Coakley, R. D. Cess, and F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models,” J. Atmos. Sci. 40(1), 116–138 (1983).
[Crossref]

J. Geophys. Res. (1)

F. Waquet, P. Goloub, J. L. Deuze, J. F. Leon, F. Auriol, C. Verwaerde, J. Y. Balois, and P. Francois, “Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method,” J. Geophys. Res. 112(D11), D11214 (2007).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

O. Dubovik, Z. Q. Li, M. I. Mishchenko, D. Tanré, Y. Karol, B. Bojkov, B. Cairns, D. J. Diner, W. R. Espinosa, P. Goloub, X. F. Gu, O. Hasekamp, J. Hong, W. Z. Hou, K. D. Knobelspiesse, J. Landgraf, L. Li, P. Litvinov, Y. Liu, A. Lopatin, T. Marbach, H. Maring, V. Martins, Y. Meijer, G. Milinevsky, S. Mukai, F. Parol, Y. L. Qiao, L. Remer, J. Rietjens, I. Sano, P. Stammes, S. Stamnes, X. B. Sun, P. Tabary, L. D. Travis, F. Waquet, F. Xu, C. Yan, and D. Yin, “Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives,” J. Quant. Spectrosc. Radiat. Transfer 224, 474–511 (2019).
[Crossref]

Z. Li, W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, “Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,” J. Quant. Spectrosc. Radiat. Transfer 218, 21–37 (2018).
[Crossref]

Proc. SPIE (2)

X. Gu, Q. Yanli, J. Wang, T. Yu, and T. Cheng, “High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties,” Proc. SPIE 7807, 78070W (2010).
[Crossref]

R. J. Peralta, C. Nardell, B. Cairns, E. E. Russell, L. D. Travis, M. I. Mishchenko, B. A. Fafaul, and R. J. Hooker, “Aerosol polarimetry sensor for the Glory Mission,” Proc. SPIE 6786, 67865L (2007).
[Crossref]

Zhongguo Jiguang (1)

H. C. Yang, B. Y. Yang, M. X. Song, P. Zou, X. B. Sun, and J. Hong, “Onboard Polarimetric Calibration Methods of Spaceborne Scanning Polarimeter,” Zhongguo Jiguang 45(11), 1110002 (2018).
[Crossref]

Other (1)

B. Cairns and I. Geogdzhayev, “Glory Project: Aerosol Polarimetry Sensor Algorithm Theoretic Basis Document,” Goddard Institute for Space Studies, NASA. https://glory.giss.nasa.gov/aps/docs/APS_ATBD_CALIBRATE_CCB.pdf (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of POSP multi-channel optical path.
Fig. 2.
Fig. 2. POSP scanning and timing parameters.
Fig. 3.
Fig. 3. POSP integration modeling process.
Fig. 4.
Fig. 4. Modeled spatial response of POSP measurements with 80 pixels IFOV and 40 pixels integration distance. (a) Integration SRF. (b) Mean value SRF.
Fig. 5.
Fig. 5. Simulation results of two different types of SRF by using checkboard pattern stripes and image stripes. (a) Checkboard pattern stripe with 120 pixels black and white block interval. (b) Checkboard pattern stripe with 100 pixels black and white block interval. (c) Checkboard pattern stripe with 80 pixels black and white block interval. (d) Stripe cut from a mountain image.
Fig. 6.
Fig. 6. Simulation results of two different types of SRF by using checkboard pattern image and real ground image.
Fig. 7.
Fig. 7. This image shows SIPC data acquired on 11 March 2019 during 14:29–14:32 UTC+8 over Shanhaiguan near Qinhuangdao. The red line shows the location of the center of nadir POSP measurements.
Fig. 8.
Fig. 8. STD of SIPC pixel within POSP nadir sample footprint is shown in panel (a) and (c), corresponding to two different datasets with 500 and 650 discrete POSP measurements. All the POSP radiation results and SIPC convolved results are shown in panel (b) and (d) for two datasets, The R2 of integration SRF are larger than mean SRF in two datasets, and the RMSE are smaller. In panel (b) and (d), the slope and intercept of the integrated SRF method fitted line is closer to the POSP results that is shown by the red line.
Fig. 9.
Fig. 9. For two datasets mentioned above, we divided results of POSP and SIPC by different levels of STD value for research. The STD value between 0 to 100 is shown in panel (a) and (d) for 500 and 650 POSP samples dataset, respectively. The R2 and RMSE differences are not very large between integration SRF and mean SRF, also for STD value between 100 to 200, as shown in panel (b) and (e). But for STD value larger than 200 in panel (c) and (d), the differences are several times larger than the two levels mentioned above.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D i , j = n = 0 Δ d ω , ( i x ) 2 + ( j y n ) 2 ( d I F O V ) 2

Metrics