Abstract

Third harmonic generation in a circular liquid core step-index fiber filled with a highly transparent inorganic solvent is demonstrated experimentally using ultrafast pump pulses of different durations in the telecom domain for the first time. Specifically we achieve intermodal phase matching to the HE13 higher order mode at the harmonic wavelength and found clear indications of a non-instantaneous molecular contribution to the total nonlinearity in the spectral broadening of the pump. Spectral power evolution and efficiency of the conversion process is studied for all pulse parameters, while we found the greatest photon yield for the longest pulses as well as an unexpected blue-shift of the third harmonic wavelength with increasing pump power. Our results provide the basis for future studies aiming at using this tunable fiber platform with a sophisticated nonlinear response in the context of harmonic generation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Corrections

Kay Schaarschmidt, Jens Kobelke, Stefan Nolte, Tobias Meyer, and Markus A. Schmidt, "Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4: erratum," Opt. Express 29, 1890-1891 (2021)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-29-2-1890

1. Introduction

Light conversion via third harmonic generation (THG) is a nonlinear process and can be observed in any χ(3) material. Such materials may be as diverse as applications of THG, such as laser microscopy in bone and tissue [1,2], enhancement via slow light in silicon photonics [3], and pulse generation in the ultraviolet using noble gases [4]. While crystalline materials were traditionally used in harmonic generation [5], waveguides and fibers allowed for very long interaction lengths for signal enhancement, providing a coherent buildup of the harmonic via phase matching (PM). To this end, a sufficient number of higher order modes (HOM) must be supported at the third harmonic (TH) wavelength to overcome the difference in phase velocity due to dispersion of the isotropic fiber material. Despite THG being first observed experimentally in a standard optical step-index fiber (SIF) in the 1980’s [6], it remained challenging to provide sufficient core-cladding refractive index contrast to enable guidance of modes of sufficiently high order.

With increasing control of fiber properties and the emergence of microstructured optical fibers (MOFs), THG in HOMs was demonstrated in early 2000 [7] utilizing cobweb fibers to transfer energy to the visible [8,9] and ultraviolet [10]. Ultrafast THG was demonstrated by Akimov et al. [11] in a silica taper [12] using sub 70 fs pulses with clear evidence of intermodal PM.

A recently emerging topic within the context of quantum technology is spontaneous parametric down conversion (SPDC) to reach entangled photon triplets [13,14]. Here, THG and SPDC share a common PM condition, which revived THG research [1517] and encouraged further experimental demonstrations of e.g. broadband THG in tapers [18], taper knot-resonators [19], SIFs with high GeO2 concentration [20,21] and band gap fibers [22]. Further, MOF with exposed cores [2325] were realized and proved to be polarization sensitive and tunable via coating of nano-films, whereas online tuning via gas pressure in a tapered fiber was recently demonstrated [26].

One key benchmark parameter is the conversion efficiency $\eta $ which in case ultrashort pulses are used is typically of the order of ${10^{ - 4}}$ in silica tapers [11,18] and in MOF [25]. Note that highly doped fibers achieved a conversion efficiency of only $3 \cdot {10^{ - 7}}$ thus far [20] due to the relatively low nonlinearity of silica.

In recent years liquid-core optical fibers (LCFs) increasingly attracted attention. Due to their high core nonlinearity, supercontinuum generation was investigated experimentally in liquid filled SIF [2734] and MOF [3538] in both the normal and anomalous dispersion domain. LCFs were utilized to demonstrate lasing [39,40] and switching [41,42]. Moreover, LCFs sustain high average powers [32] and allow for online dispersion tuning [31] due to the high thermo-optical coefficient of liquids [43]. Here, inorganic solvents such as carbon disulfide (CS2) and tetrachloroethylen (TCE, C2Cl4) exhibit a strong non-instantaneous (NI) response [30,4446] whose effects are largely unexplored in nonlinear frequency conversion and in particular in harmonic generation which was not reported in any previous LCF platform. The impact of the NI response on the interaction among different modes across widely spread spectral intervals is an open question.

In this work intermodal THG in a TCE-filled SIF is successfully demonstrated [47] by PM to a HOM. The higher order mode is of type HE13 containing 22% of its total guided power within the central intensity peak. We investigate the influence of pulse duration in the sub-picosecond domain and thereby harness different amounts of NI response of TCE by measuring the power spectral evolution for both pump and harmonic. We find experimental evidence of the influence of the NI response on the pump itself in the highly non-instantaneous regime. Our LCF is normal dispersive for both pump and third harmonic which is not common for most silica based fibers and results in a positive group velocity mismatch (GVM). Experimentally we observe a blue shift of the TH wavelength with increasing input power although phase-matching considerations based on GVM suggest a red shift [48]. This indicates an impact of the NI response in THG. A conversion efficiency above ${10^{ - 5}}$ in terms of average power is achieved for all pulse durations.

2. Theory

THG is a phase sensitive nonlinear wave mixing process. In order to coherently build up a significant TH wave from the pump, the following PM condition must be fulfilled

$$0 = \Delta \beta = {\beta ^H}({3{\omega_P}} )- 3{\beta ^P}({{\omega_P}} )+ \Delta {\beta _{\textrm{NL}}} \cong {\beta ^H}({3{\omega_P}} )- 3{\beta ^P}({{\omega_P}} )+ GVM \cdot \Omega + \Delta {\beta _{\textrm{NL}}}.$$

Here $\mathrm{\Delta }\beta $ is the phase mismatch, $\omega $ is the angular frequency and $\beta $ represents the propagation constant for the respective wave (indicated by the superscript P for pump and H for harmonic). GVM relates to the group velocity mismatch and Ω is the relative frequency difference with respect to three times the pump frequency $3{\omega _P}$ [11]. The linear phase mismatch is defined by the difference $\mathrm{\Delta }{\beta _{\textrm{lin}}} = \beta ({3\omega} )- 3\beta (\omega )$ and intrinsically includes the full waveguide dispersion including GVM. The term $\mathrm{\Delta}{\beta _{\textrm{NL}}}$ includes nonlinear phase contributions from self-phase-modulation (SPM) and cross-phase-modulation (XPM), all of which lead to a shift of the harmonic frequency from $3{\omega _P}$. This quantity is defined here as

$$\Delta {\beta _{\textrm{NL}}} = \frac{{3{\omega _P}{n_2}}}{c} \cdot ({2{J_{\textrm{XPM}}} - {J_{\textrm{SPM}}}} ){P_P} \cong \frac{{3{\omega _P}{n_2}}}{{cA_{\textrm{eff}}^{\textrm{SPM}}}}{P_P} = 3\gamma {P_P},$$
with the nonlinear refractive index ${n_2}$, speed of light c, nonlinear fiber parameter γ and the pump peak power ${P_P}$ [48,49]. It is to note here, that ${n_2} = n_2^{\textrm{el}} + n_2^{\textrm{mol}}$, where the molecular nonlinearity depends on the pulse shape (see appendix). The molecular fraction ${f_m}$ specifies the relative contribution of $n_2^{\textrm{mol}}$ to the total nonlinearity ${n_2}$. This notation resembles the classical notation when a Raman response is included (e.g., ${f_m} = 18\%$ for silica) in the nonlinear Schrödinger equation [50]. In TCE ${f_m}$ can be as high as 88% [44].

The nonlinear coupling strength ${J_\sim}$ between different modes is described by overlap integrals for each nonlinear mechanism (SPM, XPM, THG, inverse THG) which represent the inverse of the effective areas $A_{\textrm{eff}}^\sim $ commonly encountered in nonlinear fiber optics. The indicated simplification is justified for our TCE-LCF as the respective effective areas for SPM and XPM deviate less than 4%. The overlap ${J_{\textrm{THG}}}$ is defined as:

$${J_{\textrm{THG}}} = \int_{{A_{NL}}}^{} {({{\mathbf F}_P} \cdot {\mathbf F}_H^\ast )({{\mathbf F}_P} \cdot {{\mathbf F}_P}){\rm{dS}}} ,$$
where the fields ${{\boldsymbol {F}}_\sim}$ of the pump and harmonic are scaled as detailed in [49].

In order to achieve non-vanishing modal overlap in a cylindrical SIF, the symmetry of pump and TH fields must match [51]. Assuming the fundamental mode as pump (HE11-mode) only hybrid modes of type HE1n, EH1n, HE3n, and EH3n yield non-vanishing overlaps in cylindrical SIF due to their angular field dependence. Here, HE-modes are favorable due to their modal shape including a central intensity maximum principally allowing for efficient external excitation, while EH modes form ring-shaped profiles with a node in the center and more complex field distribution. The transfer of energy from the pump mode to the HE13 mode at the third harmonic is shown schematically in Fig. 1(a) during propagation through the fiber. The central lobe contains 22% of the total power.

 figure: Fig. 1.

Fig. 1. (a) Sketch of the liquid core step-index fiber with pump in fundamental mode and third harmonic in higher order mode (not to scale). (b) Phase-matching design plot showing the core diameter vs. TH wavelength (star: experimental observation).

Download Full Size | PPT Slide | PDF

Equation (1) is solved numerically using the linear part of the phase-matching equation $\mathrm{\Delta }{\beta _{\textrm{lin}}}$ taking into account waveguide and material dispersion (Sellmeier: TCE [30], silica [52]). Sellmeier coefficients from [30] were adapted within the confidence bounds of the original fit to match the experimental observation. As shown in the appendix, the nonlinear contribution to the phase mismatch was estimated to be 2.5 mm-1 leading to a very small shift of the phase-matching wavelength of 2 nm, which is neglected throughout this work. The solution for each desired wavelength yields the required core diameter that allows for the conversion from HE11 to HE13 [Fig. 1(b)].

Here we target a wavelength of 532 nm since it is a prominent laser wavelength for future SPDC studies. The TCE-LCF yields a coupling coefficient of 0.0046 µm-2 (1/Aeff) at 532 nm, which is 30% higher than in [22] (0.003 µm-2) using a single lobed, Gaussian like TH mode, and about four times higher than in [20] using the same HOM.

3. Experimental configuration

Our LCF is formed by a silica capillary filled with TCE via capillary forces in a home-built optofluidic mount [30,32]. The bulk loss of TCE is measured to be 0.6 dB/m at 532 nm. Figure 2 shows the setup and a photograph of the assembled fiber. The fiber length is about 15 cm, while principally longer fibers could have been employed. Pulses are delivered from Er:doped fiber lasers with central wavelength of 1560 nm and are free space coupled into the LCF using an aspheric lens (Thorlabs, 7.5 mm focal length). To investigate the effect of the retarded nonlinearity, three lasers with different pulse durations are used (30 fs (Toptica, repetition rate ${f_{\textrm{rep}}}$ = 80 MHz), 90 fs (Toptica, ${f_{\textrm{rep}}}$ = 80 MHz), 850 fs (Raydiance, ${f_{\textrm{rep}}}$ = 400 kHz)). Examples of typical autocorrelation traces (APE, pulseCheck 15) for the shortest and longest pulse durations are shown in Fig. 2. The molecular fraction (${f_m}$) [30,44,45] for our experiments, namely the relative weight of retarded to total nonlinearity, amounts to 2.5% for 30 fs, 16.6% for 90 fs, and 70% for 850 fs at the fiber input. This renders the nonlinearity in our experiments as being instantaneous (30 fs), weakly non-instantaneous (90 fs), and highly non-instantaneous (850 fs). Note that in the continuous wave (cw) regime the molecular fraction for the latest TCE response model [44] can be as high as 88%.

 figure: Fig. 2.

Fig. 2. (a) Experimental setup: Three different Er:doped fiber lasers are used as pump sources (30 fs, 90 fs, and 850 fs FWHM pulse duration). Typical autocorrelation traces are shown for 30 fs and 850 fs. The diagnostics used include an optical spectrum analyzer (OSA) and beam profilers for visible (CMOS sensor) and near infrared (InGaAs sensor) radiation (HWP: half-wave-plate, POL: polarizer, OFM: optofluidic mount, LCF: liquid filled fiber, SP: short pass filter, PM: power meter). (b) photograph of the mounted fiber. (c) SEM image of capillary.

Download Full Size | PPT Slide | PDF

To achieve PM between HE11 (fundamental) and HE13 (TH) modes [Fig. 1(a)] a silica capillary (outer diameter 200 µm) with a core diameter of 3.4 µm was filled with TCE. At the pump (TH) wavelength the fiber supports 4 (19) modes and is normal dispersive with a group velocity dispersion (GVD) of 32 ps2/km (263 ps2/km). The GVM is ${\approx} $300 fs/mm such that pulse walk-off is expected even for 850 fs pulses after the relatively short distance of 2.8 mm.

The input power is controlled via a combination of half-wave plate and polarizer and the output power of the LCF is measured with a thermal (diode) power meter for the pump (TH). Coupling into the fundamental mode is assured using a near infrared camera (ABS Jena), while the coupling to the TH mode was confirmed via a CMOS camera (Thorlabs). Sample transmission of 50% of the coupled power was achieved routinely without noticeable saturation. The damage threshold of the LCF was reached with the 850 fs laser at around 6 nJ after which fiber transmission reduces irreversibly and an unstable beam profile is observed even for reduced power levels. The origin of this damage is a target of current investigations and may be associated with lensing effects, heat accumulation or photo-induced reactions that create byproducts. Laser systems with shorter pulse durations did not deliver sufficient power to consistently damage the samples. We emphasize that long-term use of the LCFs is possible since evaporation and bubble formation are circumvented by the use of sealed and well-designed optofluidic mounts allowing for operation over several months without any signs of leakage. One challenge for LCFs is their limited lengths imposed by the capillary-action mediated filling process. Here current experiments suggest that LCF lengths as long as several meters can be achieved for sub 5 µm core sizes, which within the context of ultrafast nonlinear frequency conversion is sufficient for many experiments.

Spectra are recorded using fiber coupled grating spectrum analyzers (Ando AQ6315A – TH / AQ6317B – pump) for increasing pulse energies of the pump, yielding the spectral evolution of the output power of the TH and the pump (shown in Fig. 3). Coupling to the collecting fiber (core diameter 200 µm) was optimized to yield maximal power for the TH. The imaged HOMs of the TH for each experiment are shown as insets in Figs. 3(a),3(b), and 3(c) matching the theoretical profile of the HE13 mode [Fig. 1(a)] and thus confirming inter-modal PM-based THG. The polarization of the TH mode was in all situations aligned with the pump as expected.

 figure: Fig. 3.

Fig. 3. Measured spectral evolution of third harmonic (a, b, c) and pump (d, e, f) for different input pulse durations (left: 30 fs, center: 90 fs, right: 850 fs). Insets in top row: observed HE13 mode. For all plots: left axes – near-infrared pulse energy; right axes – near-infrared peak power. Molecular fraction is stated in bottom row. Color scale in f applies to bottom row. Marker in f denotes onset of harmonic generation.

Download Full Size | PPT Slide | PDF

4. Results

The measured evolutions of the spectra with pulse energy are shown in Fig. 3 (top row: THG, bottom row: pump). In each panel the spectra are plotted in dB-scale normalized to the respective maximum values of each panel. The left and right axes are pump pulse energy and peak power, respectively, which are equal for top and bottom plots in each column. Note that the signal-to-noise contrast for the THG (top row) differs due to the different repetition rates of the laser systems and resolution used during data acquisition, while it is 40 dB in the bottom row. The numbers in the bottom row correspond to the molecular contribution to the total nonlinearity (using the model of [44]).

For the 90 fs pulses [Fig. 3(b)] we observe a narrow TH peak in the spectrum followed by the growth of spectral pedestals around the TH peak which we attribute to XPM between the harmonic signal and the spectral components of the pump which are generated by SPM, distorting the nonlinear phase during propagation. Although pronounced in the log-scale plot, the level of the pedestal is 25 dB – 30 dB below the TH peak. Insufficient contrast in the remaining experiments [Figs. 3(a), 3(c)] is likely to have prevented the observation of such pedestal. The wavelength at which the highest TH signal is observed shifts by 2 nm – 3 nm from experiment to experiment. This may be caused by small variations of the core diameter, resulting from fabrication inaccuracies. Note that the spatial resolution of our SEM imaging is limited to approximately 50 nm – 60 nm. The spectra of the harmonic develop a spectral full width at half maximum (FWHM) of 0.6 nm for 30 fs and 1.4 nm for 90 fs pump pulses.

Our experiments reveal a common peak power threshold slightly below 3 kW, although it requires more pulse energy for longer pulses to generate measurable TH signal. For 850 fs pulses the bandwidth of the pump does not initially cover the wavelength defined by the PM condition (Eq. (1)), which is in contrast to both other cases. As soon as the pump bandwidth reaches that point, TH is generated [see marker in Fig. 3(f)]. This suggests high conversion efficiency in case of a better match of the initial spectral density with the PM wavelength.

Figures 3(a) and 3(b) reveal a slight blue-shift of the TH signal at a rate of $R_P^{30} ={-} 14\textrm{pm}/\textrm{kW}$ for 30 fs, and $R_P^{90} ={-} 58\textrm{pm}/\textrm{kW}$ for 90 fs, or $R_E^{30} ={-} 456\textrm{pm}/\textrm{nJ}$ for 30 fs, and $R_E^{90} ={-} 645\textrm{pm}/\textrm{nJ}$, where the subscript denotes peak power (P) or pulse energy (E), respectively. This is in contrast to theoretical predictions based on Eq. (1). Here the detuning due to peak power, $\partial \mathrm{\Omega }/\partial P ={-} 3\gamma /GVM$, is expected to lead to a red shift for the given dispersion situation ($GVM > 0$) [48]. The more common situation in literature is $GVM < 0$ in MOFs [10,23,48] where blue-shifts of the THG with increasing power are observed when the fiber is pumped close to the maximum group index in the anomalous dispersion regime. Note that a red-shift in silica based fibers may originate from both positive $GVM$ and soliton self-frequency-shift due to the Raman response.

The observed wavelength shift for 90 fs pulses is larger than for 30 fs pulses. One potential reason for this larger shift is the larger nonlinear parameters for 90 fs pulses compared to 30 fs pulses, resulting from the larger contribution of the NI response in case of longer pulses. The physical origin of this shift remains unclear at the moment and is addressed in a future study while we believe to have found an indication that the NI response is involved in the process.

In Figs. 3(d), 3(e), and 3(f) the spectral evolution of the pumps are shown. Here we observed SPM driven broadening which is particularly clean, but highly asymmetric with an enhancement of the red spectral edge at the expense of its blue counterpart in case of the 850 fs pulses [Fig. 3(f)]. This effect was qualitatively confirmed in nonlinear pulse propagation simulations when numerically solving the generalized nonlinear Schrödinger equation [53]. Specifically we found that the NI response imposed an asymmetric distribution of the energy between the blue and red spectral intervals relatively to the central pump pulse wavelength, which would be significantly more symmetric in absence of the NI contribution. This effect is largely independent of third order dispersion in case the NI response is included and therefore this unbalanced SPM-related conversion is solely a result of the impact of the NI response substantially impacting pulse propagation in the normal dispersion regime. Earlier work also reported a similar effect [54] which was exploited to retrieve the nonlinearity and molecular fraction for selected liquids.

A natural attempt to retrieve a numerical value for the nonlinear fiber parameter γ analyzes the long-wavelength spectral edge of the SPM broadened light leading in the present case to γ = 42${\pm} $5 (m kW)-1 assuming a pure electronic response matching prediction taking into account the latest response model of TCE [44]. Note that the SPM bandwidth is matched even better with the model of [30] yielding a γ value approximately two times higher.

To evaluate the efficiency of the THG process in our TCE-LCF, we further measured the direct average output power of the harmonic for various average pump powers. The average power is converted to energy using the corresponding repetition rates and is shown in Figs. 4(a) and 4(b) versus peak power and pump pulse energy, respectively. The scaling 10−6 on the $y$-axis allows direct determination of the conversion efficiency by reading off the respective value from the axis [Fig. 4(b)]. We confirmed the expected cubic power relation in a logarithmic fit (not shown) and included cubic polynomial fits ($s \cdot {X^3}$) as solid lines for each pulse duration in Figs. 4(a) and 4(b). Here, s is the slope efficiency and X is either the pump pulse peak power or the pump pulse energy. All parameters are summarized in Table 1, including the experimentally obtained maximum conversion efficiency $\eta _{max}^{exp} = {P_H}/{P_P}$ considering the highest average powers of pump and harmonic. It is important to note that the experimental efficiency is obtained from the slope efficiency ${s_E}$ by rescaling by $f_{\textrm{rep}}^{ - 2}$ (${f_{\textrm{rep}}}$: repetition rate of the respective laser system).

 figure: Fig. 4.

Fig. 4. Experimentally measured harmonic signals for increasing pump peak power (a) and pump pulse energy (b). The legend refers to the different pulse lengths and applies to both panels. The upper limits of the y-axes in (a) and (b) are identical.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Summary of benchmark figures / conversion efficiencies for THG in TCE-LCF.

The superior performance in terms of output energy of the longest pulses is apparent from the three orders of magnitude higher slope efficiency (Table 1), which is inferred from the steeper curve in Fig. 4(a). Note that the initial offset is due to insufficient initial bandwidth to seed the harmonic [Fig. 3(f)]. To enhance the visibility for the 30 fs and 90 fs data the $y$-axis in (b) is presented in logarithmic scale, with both upper limits in Figs. 4(a) and 4(b) being identical.

When considering the pump pulse energy instead of peak power as x-axis [Fig. 4(b)], the situation is reversed: The slope efficiency for both 30 fs and 90 fs pulses exceeds the one for 850 fs pulses by one order of magnitude, which is a direct consequence of the required pulse energy (${\approx} $2.2 nJ) to broaden the pump spectrum until the pump is able to seed at the PM wavelength. From this point onwards the interaction length between seed and TH is increasing, whereas in case of the shorter pulses almost the complete fiber length serves as interaction length. Note here that the offset of measureable TH signal (above 3 nJ) is due to the much lower repetition rate of the 850 fs laser system and the photo diode used in that experiment. The longest pulses (850 fs) deliver an almost 4-fold greater photon yield per pulse than the 90 fs pulses, and almost 10-fold yield compared to the shortest pulses (30 fs) both at highest peak power. At this stage of investigation it remains unclear if this enhancement is due to dispersive effects or mediated by the non-instantaneous response. In general the NI response is beneficial if the PM wavelength is at a lower frequency than the pump (as in our case) because the NI response enhances SPM broadening towards lower frequencies. Detailed investigations of the physical foundation via simulations will be performed in the future.

Interestingly, the slope efficiencies with respect to pump pulse energy for both sub-100 fs pulses differ by less than 10%, evident by the match of the data points in Fig. 4(b). The experimental efficiencies at similar pulse energies also match within 10% while, however, the 90 fs system provides higher output power.

The highest conversion efficiency reached in this study is 2.7${\times} $10−5 (corresponding to 3.2 µW at a repetition rate of 80 MHz, 90 fs), which is comparable to most previous studies [11,18,2325]. Note if the phase matched bandwidth of the pump is considered (3${\times} $FWHMTHG), it contains only 2.5% (5%) of the total energy within the corresponding bandwidth of the pump spectrum for 30 fs (90 fs). In contrast, 75% of the total energy is contained within the FWHM of the peak of the harmonic, suggesting a possible enhancement of the slope efficiency by approximately two orders of magnitude if transform limited pulses of 2 ps duration, centered at the PM point (1596 nm), are used.

5. Summary and outlook

Here, we presented the design and experimental demonstration of THG in liquid core fibers filled with TCE via intermodal PM for the first time. Using three laser systems at 1.56 µm with different pulse durations we studied the spectral evolution of both harmonic and the normal dispersive pump and the efficiency of the process, exploiting different amounts of the non-instantaneous molecular nonlinearity. An unexpected blue-shift of the harmonic with increasing power was discovered, which is in contrast to theoretical predictions and might be related to the presence of the non-instantaneous (NI) response. The impact of the NI response on the dynamics of the pump was clearly revealed for pulses with duration of 850 fs, showing asymmetric SPM-related spectral broadening. The maximum TH-conversion efficiency was 2.7${\times} $10−5, which is similar to other silica fiber systems, while clear pathways for further performance improvement have been indicated.

The liquid core fiber platform includes unique opportunities for dispersion and phase matching tuning via for instance using composite liquids [33,34]. This will allow adapting phase matching for future potential applications in quantum optics, and transferring the concept to different spectral domains to for instance study the interplay of solitons, or hybrid solitary waves [29] with harmonic generation. Interfacing liquid core fibers with fiber circuitry remains challenging, with previous demonstrations [27,28] mainly using free space coupling [2938]. Future integration will rely on robust and reliable splicing approaches [55] which will make LCF more attractive to a wider community. Note that capillary-type liquid core fibers combine unique advantages such as circular low order modes at the harmonic, mechanical stability, cores which are inherently stress free, high index contrast, high nonlinearity and strongly suppressed Raman response, making this platform particularly attractive for applications in SPDC.

Appendix

Influences to the phase matching condition

The slope of the phase matched THG wavelength in Fig. 1(b) is calculated to be 7% of the core size deviation. The high thermo optical coefficient of TCE -6$\cdot $10−6 [43] allows tuning the PM wavelength at a rate of 0.1 nm/K, which is almost 10 times higher than in [22] and can prove beneficial in future studies.

The nonlinear dephasing results from SPM and was estimated as follows:

$\mathrm{\Delta }{\beta _{\textrm{NL}}} = 3 \times n_2^{\textrm{el}}{k_0}/{A_{\textrm{eff}}}\cdot {P_P} = 2.5\textrm{m}{\textrm{m}^{ - 1}}$. Here we used ${A_{\textrm{eff}}} = 9.1\mathrm{\mu}{\textrm{m}^2}$, the highest pulse peak power ${P_P} = 33\; \textrm{kW}$ and the electronic nonlinearity $n_2^{\textrm{el}} = 5.5\cdot {10^{ - 20}}{\textrm{m}^2}/\textrm{W}$ reported in Ref. [30] (which is considerably higher than in Ref. [44] while the NI fraction is 3% only). ${k_0}$ is the free space wavevector. This serves as an upper estimate of the nonlinear dephasing rate.

Molecular contribution to nonlinearity

The molecular nonlinearity is calculated as

$$n_2^{\textrm{mol}} = \frac{{\smallint I(t)\smallint R(t - t^{\prime})I(t^{\prime})d t^{\prime}dt}}{{\smallint {I^2}(t)dt }},$$
where $R(t )$ is the non-instantaneous component of the third order response function and $I(t )$ is the irradiance [45,46]. It should be noted that the molecular nonlinearity solely depends on the functional form of $I(t )$ due to the normalization that is employed. The molecular fraction is defined:
$${f_m} = \frac{{n_2^{\textrm{mol}}}}{{n_2^{\textrm{el}} + n_2^{\textrm{mol}}}}$$

Funding

Deutsche Forschungsgemeinschaft (SCHM2655/10-1, SCHM2655/11-1, SCHM2655/12-1, International Research Training Group GRK 2101).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

1. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997). [CrossRef]  

2. R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017). [CrossRef]  

3. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]  

4. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schröder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, “Generation of sub-3 fs pulses in the deep ultraviolet,” Opt. Lett. 35(13), 2248–2250 (2010). [CrossRef]  

5. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962). [CrossRef]  

6. J. M. Gabriagues, “Third-harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber,” Opt. Lett. 8(3), 183–185 (1983). [CrossRef]  

7. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26(15), 1158–1160 (2001). [CrossRef]  

8. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11(20), 2567–2576 (2003). [CrossRef]  

9. F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003). [CrossRef]  

10. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11(8), 910–918 (2003). [CrossRef]  

11. D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003). [CrossRef]  

12. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010). [CrossRef]  

13. K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8(2), 206–220 (2007). [CrossRef]  

14. F. Gravier and B. Boulanger, “Triple-photon generation: comparison between theory and experiment,” J. Opt. Soc. Am. B 25(1), 98–102 (2008). [CrossRef]  

15. M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36(2), 190–192 (2011). [CrossRef]  

16. M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84(3), 033823 (2011). [CrossRef]  

17. S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett. 36(15), 3000–3002 (2011). [CrossRef]  

18. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express 20(8), 8503–8511 (2012). [CrossRef]  

19. R. Ismaeel, T. Lee, M. Ding, N. G. R. Broderick, and G. Brambilla, “Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation,” Opt. Lett. 37(24), 5121–5123 (2012). [CrossRef]  

20. K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett. 37(3), 289–291 (2012). [CrossRef]  

21. A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015). [CrossRef]  

22. A. Cavanna, F. Just, X. Jiang, G. Leuchs, M. V. Chekhova, P. S. J. Russell, and N. Y. Joly, “Hybrid photonic-crystal fiber for single-mode phase matched generation of third harmonic and photon triplets,” Optica 3(9), 952–955 (2016). [CrossRef]  

23. S. C. Warren-Smith, J. Wie, M. Chemnitz, M. A. Schmidt, R. Kostecki, H. Ebendorff-Heidepriem, and T. M. Monro, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016). [CrossRef]  

24. S. C. Warren-Smith, M. Chemnitz, H. Schneidewind, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Nanofilm-induced spectral tuning of third harmonic generation,” Opt. Lett. 42(9), 1812–1815 (2017). [CrossRef]  

25. S. C. Warren-Smith, K. Schaarschmidt, M. Chemnitz, E. P. Schartner, H. Schneidewind, H. Ebendorff-Heidepriem, and M. A. Schmidt, “Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber,” Opt. Lett. 44(3), 626–629 (2019). [CrossRef]  

26. J. Hammer, A. Cavanna, R. Pennetta, M. V. Chekhova, P. S. J. Russell, and N. Y. Joly, “Dispersion tuning in sub-micron tapers for third-harmonic and photon triplet generation,” Opt. Lett. 43(10), 2320–2323 (2018). [CrossRef]  

27. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mater. Express 3(9), 1358–1364 (2013). [CrossRef]  

28. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015). [CrossRef]  

29. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017). [CrossRef]  

30. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018). [CrossRef]  

31. M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018). [CrossRef]  

32. K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. A. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019). [CrossRef]  

33. S. Junaid, K. Schaarschmidt, M. Chemnitz, M. Chambonneau, S. Nolte, and M. A. Schmidt, “Tailoring modulation instabilities and four-wave mixing in dispersion-managed composite liquid-core fibers,” Opt. Express 28(3), 3097–3106 (2020). [CrossRef]  

34. M. Chemnitz, S. Junaid, N. Walther, R. Scheibinger, K. Schaarschmidt, J. Kobelke, and M. Schmidt, “Tailoring soliton fission at telecom wavelengths using composite-liquid-core fibers,” Opt. Lett. 45(11), 2985–2988 (2020). [CrossRef]  

35. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010). [CrossRef]  

36. V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018). [CrossRef]  

37. V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T. R. Woliński, M. Trippenbach, K. D. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019). [CrossRef]  

38. V. T. Hoang, R. Kasztelanic, G. Stępniewski, K. D. Xuan, V. C. Long, M. Trippenbach, M. Klimczak, R. Buczyński, and J. Pniewski, “Femtosecond supercontinuum generation around 1560 nm in hollow-core photonic crystal fibers filled with carbon tetrachloride,” Appl. Opt. 59(12), 3720–3725 (2020). [CrossRef]  

39. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20(23), 2393–2395 (1995). [CrossRef]  

40. R. M. Gerosa, A. Sudirman, L. d. S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2(2), 186–193 (2015). [CrossRef]  

41. D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37(15), 3288–3290 (2012). [CrossRef]  

42. M. Vieweg, S. Pricking, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidic coupler,” Opt. Lett. 37(6), 1058–1060 (2012). [CrossRef]  

43. S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo-and piezo-optical characterization of liquids,” Opt. Express 25(19), 22932–22946 (2017). [CrossRef]  

44. D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.

45. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1(6), 436–445 (2014). [CrossRef]  

46. P. Zhao, M. Reichert, S. Benis, D. J. Hagan, and E. W. Van Stryland, “Temporal and polarization dependence of the nonlinear optical response of solvents,” Optica 5(5), 583–594 (2018). [CrossRef]  

47. K. Schaarschmidt, M. Chemnitz, R. Scheibinger, and M. A. Schmidt, “Third Harmonic Generation with Ultrashort Pulses in a C2Cl4 filled Liquid Core Fiber,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), p. cd_12_3.

48. A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006). [CrossRef]  

49. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005). [CrossRef]  

50. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013).

51. A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012). [CrossRef]  

52. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica*,†,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]  

53. J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), pp. 32–51.

54. S. Kedenburg, A. Steinmann, R. Hegenbarth, and T. Steinle, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117(3), 803–816 (2014). [CrossRef]  

55. M. Chemnitz and M. A. Schmidt, “Verfahren zur Herstellung von vollständig System-integrierbaren Flüssig-Kern-Fasern und deren Verwendung,” German patent, DE102018115194 (25 June 2018).

References

  • View by:

  1. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
    [Crossref]
  2. R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
    [Crossref]
  3. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [Crossref]
  4. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schröder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, “Generation of sub-3 fs pulses in the deep ultraviolet,” Opt. Lett. 35(13), 2248–2250 (2010).
    [Crossref]
  5. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
    [Crossref]
  6. J. M. Gabriagues, “Third-harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber,” Opt. Lett. 8(3), 183–185 (1983).
    [Crossref]
  7. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26(15), 1158–1160 (2001).
    [Crossref]
  8. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11(20), 2567–2576 (2003).
    [Crossref]
  9. F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003).
    [Crossref]
  10. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11(8), 910–918 (2003).
    [Crossref]
  11. D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
    [Crossref]
  12. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
    [Crossref]
  13. K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8(2), 206–220 (2007).
    [Crossref]
  14. F. Gravier and B. Boulanger, “Triple-photon generation: comparison between theory and experiment,” J. Opt. Soc. Am. B 25(1), 98–102 (2008).
    [Crossref]
  15. M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36(2), 190–192 (2011).
    [Crossref]
  16. M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84(3), 033823 (2011).
    [Crossref]
  17. S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett. 36(15), 3000–3002 (2011).
    [Crossref]
  18. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express 20(8), 8503–8511 (2012).
    [Crossref]
  19. R. Ismaeel, T. Lee, M. Ding, N. G. R. Broderick, and G. Brambilla, “Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation,” Opt. Lett. 37(24), 5121–5123 (2012).
    [Crossref]
  20. K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett. 37(3), 289–291 (2012).
    [Crossref]
  21. A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
    [Crossref]
  22. A. Cavanna, F. Just, X. Jiang, G. Leuchs, M. V. Chekhova, P. S. J. Russell, and N. Y. Joly, “Hybrid photonic-crystal fiber for single-mode phase matched generation of third harmonic and photon triplets,” Optica 3(9), 952–955 (2016).
    [Crossref]
  23. S. C. Warren-Smith, J. Wie, M. Chemnitz, M. A. Schmidt, R. Kostecki, H. Ebendorff-Heidepriem, and T. M. Monro, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016).
    [Crossref]
  24. S. C. Warren-Smith, M. Chemnitz, H. Schneidewind, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Nanofilm-induced spectral tuning of third harmonic generation,” Opt. Lett. 42(9), 1812–1815 (2017).
    [Crossref]
  25. S. C. Warren-Smith, K. Schaarschmidt, M. Chemnitz, E. P. Schartner, H. Schneidewind, H. Ebendorff-Heidepriem, and M. A. Schmidt, “Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber,” Opt. Lett. 44(3), 626–629 (2019).
    [Crossref]
  26. J. Hammer, A. Cavanna, R. Pennetta, M. V. Chekhova, P. S. J. Russell, and N. Y. Joly, “Dispersion tuning in sub-micron tapers for third-harmonic and photon triplet generation,” Opt. Lett. 43(10), 2320–2323 (2018).
    [Crossref]
  27. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mater. Express 3(9), 1358–1364 (2013).
    [Crossref]
  28. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
    [Crossref]
  29. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
    [Crossref]
  30. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
    [Crossref]
  31. M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
    [Crossref]
  32. K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. A. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019).
    [Crossref]
  33. S. Junaid, K. Schaarschmidt, M. Chemnitz, M. Chambonneau, S. Nolte, and M. A. Schmidt, “Tailoring modulation instabilities and four-wave mixing in dispersion-managed composite liquid-core fibers,” Opt. Express 28(3), 3097–3106 (2020).
    [Crossref]
  34. M. Chemnitz, S. Junaid, N. Walther, R. Scheibinger, K. Schaarschmidt, J. Kobelke, and M. Schmidt, “Tailoring soliton fission at telecom wavelengths using composite-liquid-core fibers,” Opt. Lett. 45(11), 2985–2988 (2020).
    [Crossref]
  35. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
    [Crossref]
  36. V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
    [Crossref]
  37. V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T. R. Woliński, M. Trippenbach, K. D. Xuan, M. Śmietana, and R. Buczyński, “Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride,” Opt. Mater. Express 9(5), 2264–2278 (2019).
    [Crossref]
  38. V. T. Hoang, R. Kasztelanic, G. Stępniewski, K. D. Xuan, V. C. Long, M. Trippenbach, M. Klimczak, R. Buczyński, and J. Pniewski, “Femtosecond supercontinuum generation around 1560 nm in hollow-core photonic crystal fibers filled with carbon tetrachloride,” Appl. Opt. 59(12), 3720–3725 (2020).
    [Crossref]
  39. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20(23), 2393–2395 (1995).
    [Crossref]
  40. R. M. Gerosa, A. Sudirman, L. d. S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2(2), 186–193 (2015).
    [Crossref]
  41. D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37(15), 3288–3290 (2012).
    [Crossref]
  42. M. Vieweg, S. Pricking, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidic coupler,” Opt. Lett. 37(6), 1058–1060 (2012).
    [Crossref]
  43. S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo-and piezo-optical characterization of liquids,” Opt. Express 25(19), 22932–22946 (2017).
    [Crossref]
  44. D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.
  45. M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1(6), 436–445 (2014).
    [Crossref]
  46. P. Zhao, M. Reichert, S. Benis, D. J. Hagan, and E. W. Van Stryland, “Temporal and polarization dependence of the nonlinear optical response of solvents,” Optica 5(5), 583–594 (2018).
    [Crossref]
  47. K. Schaarschmidt, M. Chemnitz, R. Scheibinger, and M. A. Schmidt, “Third Harmonic Generation with Ultrashort Pulses in a C2Cl4 filled Liquid Core Fiber,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), p. cd_12_3.
  48. A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
    [Crossref]
  49. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005).
    [Crossref]
  50. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013).
  51. A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
    [Crossref]
  52. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica*,†,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  53. J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), pp. 32–51.
  54. S. Kedenburg, A. Steinmann, R. Hegenbarth, and T. Steinle, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117(3), 803–816 (2014).
    [Crossref]
  55. M. Chemnitz and M. A. Schmidt, “Verfahren zur Herstellung von vollständig System-integrierbaren Flüssig-Kern-Fasern und deren Verwendung,” German patent, DE102018115194 (25 June 2018).

2020 (3)

2019 (3)

2018 (5)

2017 (4)

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo-and piezo-optical characterization of liquids,” Opt. Express 25(19), 22932–22946 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

S. C. Warren-Smith, M. Chemnitz, H. Schneidewind, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Nanofilm-induced spectral tuning of third harmonic generation,” Opt. Lett. 42(9), 1812–1815 (2017).
[Crossref]

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

2016 (2)

2015 (3)

2014 (2)

M. Reichert, H. Hu, M. R. Ferdinandus, M. Seidel, P. Zhao, T. R. Ensley, D. Peceli, J. M. Reed, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide,” Optica 1(6), 436–445 (2014).
[Crossref]

S. Kedenburg, A. Steinmann, R. Hegenbarth, and T. Steinle, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117(3), 803–816 (2014).
[Crossref]

2013 (1)

2012 (6)

2011 (3)

2010 (3)

2009 (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

2008 (1)

2007 (1)

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8(2), 206–220 (2007).
[Crossref]

2006 (1)

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

2005 (1)

2003 (4)

2001 (1)

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

1995 (1)

1983 (1)

1965 (1)

1962 (1)

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013).

Akimov, D. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

Alfimov, M. V.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

Anuszkiewicz, A.

Arriaga, J.

Azzeer, A. M.

Bala, Y.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Beaurepaire, E.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Bencheikh, K.

Benis, S.

P. Zhao, M. Reichert, S. Benis, D. J. Hagan, and E. W. Van Stryland, “Temporal and polarization dependence of the nonlinear optical response of solvents,” Optica 5(5), 583–594 (2018).
[Crossref]

D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.

Bhawalkar, J. D.

Birks, T. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

Boivin, G.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Bondar, M. V

D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.

Borne, A.

Boulanger, B.

Brambilla, G.

Broderick, N. G. R.

Buczynski, R.

Bugar, I.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

Cavanna, A.

Chambonneau, M.

Chang, H.-J.

D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.

Chekhova, M. V.

Chemnitz, M.

M. Chemnitz, S. Junaid, N. Walther, R. Scheibinger, K. Schaarschmidt, J. Kobelke, and M. Schmidt, “Tailoring soliton fission at telecom wavelengths using composite-liquid-core fibers,” Opt. Lett. 45(11), 2985–2988 (2020).
[Crossref]

S. Junaid, K. Schaarschmidt, M. Chemnitz, M. Chambonneau, S. Nolte, and M. A. Schmidt, “Tailoring modulation instabilities and four-wave mixing in dispersion-managed composite liquid-core fibers,” Opt. Express 28(3), 3097–3106 (2020).
[Crossref]

K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. A. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019).
[Crossref]

S. C. Warren-Smith, K. Schaarschmidt, M. Chemnitz, E. P. Schartner, H. Schneidewind, H. Ebendorff-Heidepriem, and M. A. Schmidt, “Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber,” Opt. Lett. 44(3), 626–629 (2019).
[Crossref]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref]

M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo-and piezo-optical characterization of liquids,” Opt. Express 25(19), 22932–22946 (2017).
[Crossref]

S. C. Warren-Smith, M. Chemnitz, H. Schneidewind, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Nanofilm-induced spectral tuning of third harmonic generation,” Opt. Lett. 42(9), 1812–1815 (2017).
[Crossref]

S. C. Warren-Smith, J. Wie, M. Chemnitz, M. A. Schmidt, R. Kostecki, H. Ebendorff-Heidepriem, and T. M. Monro, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016).
[Crossref]

K. Schaarschmidt, M. Chemnitz, R. Scheibinger, and M. A. Schmidt, “Third Harmonic Generation with Ultrashort Pulses in a C2Cl4 filled Liquid Core Fiber,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), p. cd_12_3.

M. Chemnitz and M. A. Schmidt, “Verfahren zur Herstellung von vollständig System-integrierbaren Flüssig-Kern-Fasern und deren Verwendung,” German patent, DE102018115194 (25 June 2018).

Chorvat, D.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

Churin, D.

Codemard, C. A.

Coillet, A.

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Corona, M.

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36(2), 190–192 (2011).
[Crossref]

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84(3), 033823 (2011).
[Crossref]

de Matos, C. J. S.

Débarre, D.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Ding, M.

Doppagne, B.

Douady, J.

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8(2), 206–220 (2007).
[Crossref]

Dudley, J. M.

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), pp. 32–51.

Ebendorff-Heidepriem, H.

Efimov, A.

Eggleton, B. J.

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Ensley, T. R.

Ertman, S.

Farlay, D.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Félix, C.

Ferdinandus, M. R.

Filipkowski, A.

Fishman, D. A.

Frosz, M. H.

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), pp. 32–51.

Gabriagues, J. M.

Gaida, C.

Garay-Palmett, K.

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84(3), 033823 (2011).
[Crossref]

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36(2), 190–192 (2011).
[Crossref]

Gebhardt, M.

Genthial, R.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Gerosa, R. M.

Giessen, H.

Gissibl, T.

Gooijer, F.

Goulielmakis, E.

Gourrier, A.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Graf, U.

Gravier, F.

F. Gravier and B. Boulanger, “Triple-photon generation: comparison between theory and experiment,” J. Opt. Soc. Am. B 25(1), 98–102 (2008).
[Crossref]

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8(2), 206–220 (2007).
[Crossref]

Grelu, P.

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Grubsky, V.

Hagan, D. J.

Hammer, J.

Hartl, I.

He, G. S.

Hegenbarth, R.

S. Kedenburg, A. Steinmann, R. Hegenbarth, and T. Steinle, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117(3), 803–816 (2014).
[Crossref]

Hoang, V. T.

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Hu, H.

Ismaeel, R.

Ivanov, A. A.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

Jiang, X.

Joly, N. Y.

Junaid, S.

Jung, Y.

Just, F.

Karpowicz, N.

Kartashov, Y. V.

Kasztelanic, R.

Katsura, T.

Kedenburg, S.

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
[Crossref]

S. Kedenburg, A. Steinmann, R. Hegenbarth, and T. Steinle, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117(3), 803–816 (2014).
[Crossref]

Kienberger, R.

Kieu, K.

Klimczak, M.

Knight, J.

Knight, J. C.

Kobelke, J.

Kolevatova, O. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

Konorov, S. O.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

Kostecki, R.

Krabshuis, G.

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Krausz, F.

Kuhlmey, B. T.

Lee, T.

Leuchs, G.

Levenson, A.

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8(2), 206–220 (2007).
[Crossref]

Levenson, J. A.

Limpert, J.

Long, V. C.

Lopez-Cortes, D.

Lorenc, D.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Malitson, I. H.

Margulis, W.

Mélin, G.

Menezes, L. d. S.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Monro, T. M.

Moores, M. D.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Naumov, A. N.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

Nguyen, T. N.

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Nolte, S.

Norwood, R. A.

O’Donnell, R. M.

D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Olivier, C.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Omenetto, F.

Omenetto, F. G.

Park, C.

Peceli, D.

Pennetta, R.

Peyghambarian, N.

Peyrin, F.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Pniewski, J.

Podshivalov, A. A.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

Prasad, P. N.

Pricking, S.

Pumpe, S.

Pysz, D.

Reed, J. M.

Reichert, M.

Reiter, F.

Richard, S.

Russell, P.

Russell, P. S. J.

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Savchenko, A.

Schaarschmidt, K.

Schanne-Klein, M. C.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Schartner, E. P.

Scheibinger, R.

Schmidt, M.

Schmidt, M. A.

S. Junaid, K. Schaarschmidt, M. Chemnitz, M. Chambonneau, S. Nolte, and M. A. Schmidt, “Tailoring modulation instabilities and four-wave mixing in dispersion-managed composite liquid-core fibers,” Opt. Express 28(3), 3097–3106 (2020).
[Crossref]

K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. A. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019).
[Crossref]

S. C. Warren-Smith, K. Schaarschmidt, M. Chemnitz, E. P. Schartner, H. Schneidewind, H. Ebendorff-Heidepriem, and M. A. Schmidt, “Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber,” Opt. Lett. 44(3), 626–629 (2019).
[Crossref]

M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
[Crossref]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo-and piezo-optical characterization of liquids,” Opt. Express 25(19), 22932–22946 (2017).
[Crossref]

S. C. Warren-Smith, M. Chemnitz, H. Schneidewind, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Nanofilm-induced spectral tuning of third harmonic generation,” Opt. Lett. 42(9), 1812–1815 (2017).
[Crossref]

S. C. Warren-Smith, J. Wie, M. Chemnitz, M. A. Schmidt, R. Kostecki, H. Ebendorff-Heidepriem, and T. M. Monro, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016).
[Crossref]

K. Schaarschmidt, M. Chemnitz, R. Scheibinger, and M. A. Schmidt, “Third Harmonic Generation with Ultrashort Pulses in a C2Cl4 filled Liquid Core Fiber,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), p. cd_12_3.

M. Chemnitz and M. A. Schmidt, “Verfahren zur Herstellung von vollständig System-integrierbaren Flüssig-Kern-Fasern und deren Verwendung,” German patent, DE102018115194 (25 June 2018).

Schneidewind, H.

Schröder, H.

Schultze, M.

Schweinberger, W.

Segonds, P.

Seidel, M.

Serebryannikov, E. E.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

Shi, J.

D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Smietana, M.

Steinle, T.

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
[Crossref]

S. Kedenburg, A. Steinmann, R. Hegenbarth, and T. Steinle, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117(3), 803–816 (2014).
[Crossref]

Steinmann, A.

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
[Crossref]

S. Kedenburg, A. Steinmann, R. Hegenbarth, and T. Steinle, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117(3), 803–816 (2014).
[Crossref]

Stepniewski, G.

Stutzki, F.

Sudirman, A.

Tarasenko, O.

Taylor, A.

Taylor, A. J.

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Tofighi, S.

D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.

Torner, L.

Travers, J. C.

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), pp. 32–51.

Trippenbach, M.

Tünnermann, A.

U’Ren, A. B.

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84(3), 033823 (2011).
[Crossref]

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36(2), 190–192 (2011).
[Crossref]

Uherek, F.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

Van Stryland, E. W.

Vial, J. C.

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Vieweg, M.

Wadsworth, W.

Wadsworth, W. J.

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26(15), 1158–1160 (2001).
[Crossref]

Walther, N.

Warren-Smith, S. C.

Webster, S.

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Wie, J.

Wolinski, T.

Wolinski, T. R.

Wu, D. C.

Xuan, H.

Xuan, K. D.

Zhao, C. F.

Zhao, P.

Zheltikov, A. M.

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

D. A. Akimov, A. A. Ivanov, A. N. Naumov, O. A. Kolevatova, M. V. Alfimov, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, A. A. Podshivalov, and A. M. Zheltikov, “Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber,” Appl. Phys. B 76(5), 515–519 (2003).
[Crossref]

S. Kedenburg, A. Steinmann, R. Hegenbarth, and T. Steinle, “Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response,” Appl. Phys. B 117(3), 803–816 (2014).
[Crossref]

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

C. R. Phys. (1)

K. Bencheikh, F. Gravier, J. Douady, A. Levenson, and B. Boulanger, “Triple photons: a challenge in nonlinear and quantum optics,” C. R. Phys. 8(2), 206–220 (2007).
[Crossref]

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

Nat. Photonics (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Opt. Commun. (1)

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Opt. Express (11)

V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005).
[Crossref]

S. Pumpe, M. Chemnitz, J. Kobelke, and M. A. Schmidt, “Monolithic optofluidic mode coupler for broadband thermo-and piezo-optical characterization of liquids,” Opt. Express 25(19), 22932–22946 (2017).
[Crossref]

A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11(20), 2567–2576 (2003).
[Crossref]

F. Omenetto, A. Efimov, A. Taylor, J. Knight, W. Wadsworth, and P. Russell, “Polarization dependent harmonic generation in microstructured fibers,” Opt. Express 11(1), 61–67 (2003).
[Crossref]

A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11(8), 910–918 (2003).
[Crossref]

T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express 20(8), 8503–8511 (2012).
[Crossref]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref]

S. Junaid, K. Schaarschmidt, M. Chemnitz, M. Chambonneau, S. Nolte, and M. A. Schmidt, “Tailoring modulation instabilities and four-wave mixing in dispersion-managed composite liquid-core fibers,” Opt. Express 28(3), 3097–3106 (2020).
[Crossref]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
[Crossref]

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinmann, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
[Crossref]

S. C. Warren-Smith, J. Wie, M. Chemnitz, M. A. Schmidt, R. Kostecki, H. Ebendorff-Heidepriem, and T. M. Monro, “Third harmonic generation in exposed-core microstructured optical fibers,” Opt. Express 24(16), 17860–17867 (2016).
[Crossref]

Opt. Lett. (16)

S. C. Warren-Smith, M. Chemnitz, H. Schneidewind, R. Kostecki, H. Ebendorff-Heidepriem, T. M. Monro, and M. A. Schmidt, “Nanofilm-induced spectral tuning of third harmonic generation,” Opt. Lett. 42(9), 1812–1815 (2017).
[Crossref]

S. C. Warren-Smith, K. Schaarschmidt, M. Chemnitz, E. P. Schartner, H. Schneidewind, H. Ebendorff-Heidepriem, and M. A. Schmidt, “Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber,” Opt. Lett. 44(3), 626–629 (2019).
[Crossref]

J. Hammer, A. Cavanna, R. Pennetta, M. V. Chekhova, P. S. J. Russell, and N. Y. Joly, “Dispersion tuning in sub-micron tapers for third-harmonic and photon triplet generation,” Opt. Lett. 43(10), 2320–2323 (2018).
[Crossref]

S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett. 36(15), 3000–3002 (2011).
[Crossref]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. Park, and P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20(23), 2393–2395 (1995).
[Crossref]

M. Chemnitz, S. Junaid, N. Walther, R. Scheibinger, K. Schaarschmidt, J. Kobelke, and M. Schmidt, “Tailoring soliton fission at telecom wavelengths using composite-liquid-core fibers,” Opt. Lett. 45(11), 2985–2988 (2020).
[Crossref]

R. Ismaeel, T. Lee, M. Ding, N. G. R. Broderick, and G. Brambilla, “Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation,” Opt. Lett. 37(24), 5121–5123 (2012).
[Crossref]

K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett. 37(3), 289–291 (2012).
[Crossref]

A. Borne, T. Katsura, C. Félix, B. Doppagne, P. Segonds, K. Bencheikh, J. A. Levenson, and B. Boulanger, “Anisotropy analysis of third-harmonic generation in a germanium-doped silica optical fiber,” Opt. Lett. 40(6), 982–985 (2015).
[Crossref]

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36(2), 190–192 (2011).
[Crossref]

J. M. Gabriagues, “Third-harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber,” Opt. Lett. 8(3), 183–185 (1983).
[Crossref]

F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26(15), 1158–1160 (2001).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schröder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, “Generation of sub-3 fs pulses in the deep ultraviolet,” Opt. Lett. 35(13), 2248–2250 (2010).
[Crossref]

D. Lopez-Cortes, O. Tarasenko, and W. Margulis, “All-fiber Kerr cell,” Opt. Lett. 37(15), 3288–3290 (2012).
[Crossref]

M. Vieweg, S. Pricking, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidic coupler,” Opt. Lett. 37(6), 1058–1060 (2012).
[Crossref]

K. Schaarschmidt, H. Xuan, J. Kobelke, M. Chemnitz, I. Hartl, and M. A. Schmidt, “Long-term stable supercontinuum generation and watt-level transmission in liquid-core optical fibers,” Opt. Lett. 44(9), 2236–2239 (2019).
[Crossref]

Opt. Mater. Express (3)

Optica (5)

Phys. Rev. A (1)

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A 84(3), 033823 (2011).
[Crossref]

Phys. Rev. E (1)

A. A. Ivanov, D. Lorenc, I. Bugar, F. Uherek, E. E. Serebryannikov, S. O. Konorov, M. V. Alfimov, D. Chorvat, and A. M. Zheltikov, “Multimode anharmonic third-order harmonic generation in a photonic-crystal fiber,” Phys. Rev. E 73(1), 016610 (2006).
[Crossref]

Phys. Rev. Lett. (1)

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[Crossref]

Sci. Rep. (1)

R. Genthial, E. Beaurepaire, M. C. Schanne-Klein, F. Peyrin, D. Farlay, C. Olivier, Y. Bala, G. Boivin, J. C. Vial, D. Débarre, and A. Gourrier, “Label-free imaging of bone multiscale porosity and interfaces using third-harmonic generation microscopy,” Sci. Rep. 7(1), 3419 (2017).
[Crossref]

Other (5)

K. Schaarschmidt, M. Chemnitz, R. Scheibinger, and M. A. Schmidt, “Third Harmonic Generation with Ultrashort Pulses in a C2Cl4 filled Liquid Core Fiber,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2019), p. cd_12_3.

D. J. Hagan, S. Tofighi, S. Benis, H.-J. Chang, R. M. O’Donnell, J. Shi, M. V Bondar, and E. W. Van Stryland, “Characterization of the ultrafast nonlinear response of new organic compounds,” in Organic Photonic Materials and Devices XXII, C. E. Tabor, F. Kajzar, and T. Kaino, eds. (SPIE, 2020), 11277, pp. 37–48.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013).

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), pp. 32–51.

M. Chemnitz and M. A. Schmidt, “Verfahren zur Herstellung von vollständig System-integrierbaren Flüssig-Kern-Fasern und deren Verwendung,” German patent, DE102018115194 (25 June 2018).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Sketch of the liquid core step-index fiber with pump in fundamental mode and third harmonic in higher order mode (not to scale). (b) Phase-matching design plot showing the core diameter vs. TH wavelength (star: experimental observation).
Fig. 2.
Fig. 2. (a) Experimental setup: Three different Er:doped fiber lasers are used as pump sources (30 fs, 90 fs, and 850 fs FWHM pulse duration). Typical autocorrelation traces are shown for 30 fs and 850 fs. The diagnostics used include an optical spectrum analyzer (OSA) and beam profilers for visible (CMOS sensor) and near infrared (InGaAs sensor) radiation (HWP: half-wave-plate, POL: polarizer, OFM: optofluidic mount, LCF: liquid filled fiber, SP: short pass filter, PM: power meter). (b) photograph of the mounted fiber. (c) SEM image of capillary.
Fig. 3.
Fig. 3. Measured spectral evolution of third harmonic (a, b, c) and pump (d, e, f) for different input pulse durations (left: 30 fs, center: 90 fs, right: 850 fs). Insets in top row: observed HE13 mode. For all plots: left axes – near-infrared pulse energy; right axes – near-infrared peak power. Molecular fraction is stated in bottom row. Color scale in f applies to bottom row. Marker in f denotes onset of harmonic generation.
Fig. 4.
Fig. 4. Experimentally measured harmonic signals for increasing pump peak power (a) and pump pulse energy (b). The legend refers to the different pulse lengths and applies to both panels. The upper limits of the y-axes in (a) and (b) are identical.

Tables (1)

Tables Icon

Table 1. Summary of benchmark figures / conversion efficiencies for THG in TCE-LCF.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

0 = Δ β = β H ( 3 ω P ) 3 β P ( ω P ) + Δ β NL β H ( 3 ω P ) 3 β P ( ω P ) + G V M Ω + Δ β NL .
Δ β NL = 3 ω P n 2 c ( 2 J XPM J SPM ) P P 3 ω P n 2 c A eff SPM P P = 3 γ P P ,
J THG = A N L ( F P F H ) ( F P F P ) d S ,
n 2 mol = I ( t ) R ( t t ) I ( t ) d t d t I 2 ( t ) d t ,
f m = n 2 mol n 2 el + n 2 mol

Metrics