Abstract

Considering the fact that the orbital angular momentum of light can be transferred through light-matter interactions, we experimentally induced a dressed vortex four-wave mixing (FWM) with the interaction between a vortex probe beam and an inverted Y-type four-level atomic system with a photonic band gap. Further, the Kerr-nonlinearity-modulated propagation behaviors of the probe and the dressed FWM vortices are investigated, including the spatial shift, splitting, and incompleteness of the vortex shape. Strikingly, the propagation behaviors of the vortex beams can be influenced by the interaction between the nonlinear phase and the spiral phase. This study would promote the development of optical computing and information processing science related to the interactions between optical vortices and samples.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, the orbital angular momentum (OAM) of light, which is characterized as a multi-degree freedom, has been used to generate entangled states [1,2] and perform micromanipulations [3] as well as induce higher-dimensional entangled states [4]. One of the commonly used light fields with OAM is the so-called Laguerre-Gaussian (LG) mode beam with a spiral phase structure along the propagation direction [5]. An optical vortex (OV) is a typical case of the LG mode and possesses a singular point, where the field intensity becomes zero and around which the phase screws up like an n-armed spiral, with n being the topological charge [6]. Studies on the interaction between OV and matters have investigated covering second-harmonic generation [7], parametric down-conversion [8], Raman-resonant four-wave mixing (FWM) [9,10], light scattering [11,12], structured photonic media [13], and electromagnetically induced transparency (EIT) [14,15]. Also, by exploiting light–matter interactions, OV beams are extended to carry out studies in quantum computations [16], improving astronomical imaging [17]. With respect to various interactions that occur between the OV and the adopted medium, nonlinear processes easy accessible in optics are effective and feasible in unveiling interesting physical mechanisms involved. Meanwhile, it should be noted that the optical nonlinearity also modulates the dynamic behaviors of vortex beams. Recently, propagation behaviors of vortex in an atomic system without dressing effect are investigated [18], and more types of energy-level systems about exchanging optical vortices to FWM process are predicted theoretically [19], vortex FWM applied in CNOT-gate has been demonstrated [20]. However, to the best of our knowledge, there is no report on dressing vortex FWM that are modulated by Kerr-nonlinearity and the spiral phase of vortex light.

To address this gap in the research, in this study, we theoretically and experimentally demonstrate the Kerr-nonlinearity-modulated propagating behaviors of a dressed vortex FWM in a rubidium atomic vapor cell with a photonic band gap (PBG) structure. By adding a dressing field, the behaviors of vortex FWM could be effectively modulated, once the phase-matching condition (PMC) had been satisfied. During the propagation of the vortex beam in the third-order nonlinear medium, the spatial effects, including focusing/defocusing, shifting, and the incompleteness of the vortex shape are obtained experimentally and analyzed theoretically. The results should be applicable both for dressed vortex FWM modulation and applications involving an OV in nonlinear optical processes.

2. Experimental setup

The experiment was performed in a cell filled with rubidium vapor. The corresponding inverted-Y type four-level atomic configuration is shown in Fig. 1(b), which is composed of two hyperfine states, F = 2 (state |3〉) and F = 3 (state |0〉), of the ground state 5S1/2; the first-excited state 5P3/2 (state |1〉); and the higher-excited state 5D5/2 (state |2〉). The probe laser beam, E1 (frequency  ω1, wave vector k1, and Rabi frequency G1) connects the transition between levels |0〉 ↔ |1〉. A pair of coupling laser beams, E3 (ω3, k3, G3) and E3 (ω3, k3, G3), drive transition |1〉 ↔ |3〉. A helical phase is added onto the probe laser using a spatial light modulator (SLM) to obtain the vortex probe which is shown in Fig. 1(a). The dressing field, E2 (ω2, k2, G2), couples with the upper transition, |1〉 ↔ |2〉. In the experimental setup used (see Fig. 1(a)), the coupling fields, E3 and E3′ (780.2 nm), which propagate through the Rb vapor in opposite directions, establish a standing wave. These results are generated in the electromagnetically induced grating (EIG) shown in Fig. 1(c). The weak probe, E1 (780.2 nm), propagates through the Rb vapor in the same direction as E3′ but with a small angle θ of 0.3°, and the two beams intersect at the center of the cell. The dressing field E2 propagates in the same direction as E3, and the angle between them is small. In the case of phase matching condition (kF = k1 + k3’ - k3) is satisfied, the corresponding reflect component can be viewed as a FWM signal and the transmitted component of the incident probe beam conducted by the induced EIG are injected into APD2 and APD1, respectively. In this light-matter-interaction manner, the OAM of the probe field can also be transferred to the generated FWM [21]. CCD2 and CCD1 are used to capture images of the vortex probe and vortex FWM, respectively. During the transferring of the OAM through such a third-nonlinear process, both the momentum and the OAM of the photons involved are conserved as kF = k1 + k3’ - k3 and L1 = LF + LT, respectively, where Li represents the OAM of the corresponding photons.

 

Fig. 1. (a) Experimental setup and probe vortex image before injecting cell sample for this study. PBS: polarization beam splitter, CCD: charge-coupled device camera, L: convex lens, APD: avalanche photodiode. (b) Inverted-Y type four-level atomic configuration. (c) Schematic of electromagnetically induced grating formed by coupling beams E3 and E3′.

Download Full Size | PPT Slide | PDF

3. Theoretical model

The OV exhibits a spiral phase distribution of exp(imφ) and carries an OAM of mh, where m is an integer denoting the azimuthal mode index (topological charge) and φ is the azimuthal coordinate. With the probe beam E1 and the coupling beam E3′ turned on, an EIT window satisfying Δ1 − Δ'3 = 0 is created under the Doppler-free conditions. Here, frequency detuning is defined as Δi = ωij - ωi, where ωij is the transition frequency between states |i〉 and |j〉. Similarly, with E1 and E2 on, a second EIT window (Δ1 + Δ2 = 0) can also be generated. As a result, we can get the vortex EIT signal from the probe channel when the spiral phase is appended onto the probe field by the SLM. Firstly, when strong fields E3’ and E2 drive level |1〉 together, according to the energy system and based on perturbation chain [22] $\rho _{00}^{(0)}\mathop \to \limits^{\omega 1} \rho _{10}^{(1)}$, the considering spiral phase first-order density matrix element for describing the coexisting EIT windows can be written as

$$\rho _{10}^{(1)} = \frac{{i({{G_1}{e^{im\varphi }}} )}}{{{d_1} + {{|{G_3}{|^2}} \mathord{\left/ {\vphantom {{|{G_3}{|^2}} {{d_3}}}} \right.} {{d_3}}} + {{|{G_2}{|^2}} \mathord{\left/ {\vphantom {{|{G_2}{|^2}} {{d_2}}}} \right.} {{d_2}}}}},\,$$
where d1 = Γ10+iΔ1, d2 = Γ20+i12), and d3 = Γ30+i13), with Γij being the transverse relaxation rate. Here, the Rabi frequency is ${G_i} = {\mu _{ij}}{E_i}/\hbar$, where μij is the transition dipole moment for transition |i〉 ↔ |j〉 and Ei is the electric-field intensity of field Ei. Then, with all the beams turned on, the third-order density matrix element [23] (according to perturbation chain $\rho _{00}^{(0 )} \to \rho _{10}^{(1 )} \to \rho _{30}^{(2 )} \to \rho _{{G_3}{G_3}{G_2}}^{(3 )}$) is responsible for describing the dressed vortex FWM can be expressed as
$$\rho _{10}^{(3)} = \frac{{ - i({{G_1}{e^{im\varphi }}} )({{G^{\prime}_3}}{e^{i{\phi _3}}})({G_3}{e^{i{\phi _3}}})}}{{{{({d_1} + {{|{G_{3s}}{|^2}} \mathord{\left/ {\vphantom {{|{G_{3s}}{|^2}} {{d_3}}}} \right.} {{d_3}}} + {{|{G_2}{|^2}{e^{i{\phi _2}}}} \mathord{\left/ {\vphantom {{|{G_2}{|^2}{e^{i{\phi_2}}}} {{d_2}}}} \right.} {{d_2}}})}^2}{d_3}}},\,$$
where ${{\mathop{\rm e}\nolimits} ^{i{\phi _i}}}$ is additional phase factor introduced for considering propagation effect, ϕi is the nonlinear phase shift caused by strong beams Ei (i=2, 3) and |G3s|2=μ132(E32+E32+2E3E3′cos2k3x)/h2. The corresponding intensity of vortex FWM is ${\mathop{I}\nolimits} \propto {|{\rho_{\textrm{10}}^{\textrm{(3)}}} |^2}$. Here, the first- and third-order nonlinear susceptibilities are given as χ(1) = 10ρ10(1)/ε0E1 and χ(3) = Nμρ10(3)/ε0E1E2E3, respectively, where N and ε0 are the atomic density and dielectric constant, respectively.

The propagation behaviors (induced by the self- and cross-phase modulation (SPM and XPM, respectively)) of the vortex probe and vortex FWM can be understood based on the following equations [24]:

$$\frac{{\partial {E_1}}}{{\partial z}} - \frac{{i\nabla _ \bot ^2{E_1}}}{{2{{\mathop{\rm k}\nolimits} _{{E_1}}}}} = \frac{{i{{\mathop{\rm k}\nolimits} _1}}}{{{n_1}}}[{n_2^{S1}{{|{{E_1}} |}^2} + 2n_2^{X1}{{|{{{E^{\prime}_3}}} |}^2} + 2n_2^{X2}{{|{{E_2}} |}^2}} ]{E_1},\,$$
$$\frac{{\partial {E_F}}}{{\partial z}} - \frac{{i\nabla _ \bot ^2{E_F}}}{{2{{\mathop{\rm k}\nolimits} _F}}} = \frac{{i{{\mathop{\rm k}\nolimits} _F}}}{{{n_1}}}[{n_2^{S2}{{|{{E_F}} |}^2} + 2n_2^{X3}{{|{{E_3}} |}^2} + 2n_2^{X4}{{|{{E_2}} |}^2}} ]{E_F}.\,$$
Here, z is the longitudinal coordinate; k1 = kF = ω3n1/c; n1 is the linear refractive index; n2S1, S2 is the self-Kerr coefficient of E1, F; and n2X1, X2 is the cross-Kerr coefficient of E1 induced by E3′ and E2. Further, n2X3, X4 is the cross-Kerr coefficient of EF induced by E3 and E2.

The Kerr nonlinear coefficients can be described using the following form

$${{\mathop{n}\nolimits} _2} = \textrm{Re}{\chi ^{\textrm{(3)}}}/{\varepsilon _0}{{\mathop{cn}\nolimits} _1},\,$$
which determines the spatial interplay effects, such as defocusing, focusing, shifting, and splitting. Using the propagation equations given in Eq. (3), the nonlinear phase shift [21] introduced by strong field E2 or E3 can be expressed as
$${\phi _{NL}}(z,\xi ) = 2{k_{1,F}}{n_2}{I_i}{e^{ - {\xi ^2}}}z/{n_1},\,$$
where ξ is the center coordination of E2 or E3 in the transverse dimension relative to the center coordination of E1, F as the original point, Ii is the intensity of Ei field (i = 2, 3). Therefore, the additional transverse vortex propagation wavevector is $\delta {{\mathop{\rm k}\nolimits} _ \bot } = \partial {\phi _{NL}}({z,\xi } )/\partial \xi $, which determines the E3- and E2-induced spatial characteristics of E1, F in the transverse dimension. The dressed FWM expressed by the perturbation chain (Eq. (2)) can also be considered as the reflected part of the vortex probe launched from the PBG. Consequently, this FWM can also be called the PBG FWM. Meanwhile, considering that the OAM of the probe beam can be transferred to the FWM, the spiral phase, φ, and nonlinear phase, ϕi (i = 2, 3), induced by E2 and E3 can interact with each other. As a result, the spatial dynamics of the vortex beams can be governed by the Kerr nonlinear coefficient n2; the intensities of the coupling fields; and the interactions between the spiral phase, φ, and the nonlinear phase, ϕi. The sum of the circular spiral phase shift and the nonlinear phase shift (mφ + ϕi) gives the nonlinear phase shift for the different points in the spiral phase.

4. Experimental results

First, we study the vortex FWM in the absence of the dressing effect of E2. The spectrum and spatial transmission behaviors of the FWM versus Δ1 based on a three-level configuration (|0〉 ↔ |1〉 ↔ |3〉) when E2 is blocked are shown in Fig. 2. The spectrum of the PBG FWM (received by APD1) versus Δ1 is given in Fig. 2(a) under the phase-matching condition (kF = k1 + k3 - k3′), and one can be seen clearly that the strongest position appears near two-photon resonance, with Δ1 - Δ3 = 0 is strictly satisfied. The changes in the intensity of the FWM images, shown in Fig. 2(c), are in line with the intensity profile in Fig. 2(a). Next, we show the spatial evolutions of the Gaussian FWM (without carrying the OAM) and the vortex FWM (carrying the OAM) with respect to Δ1. One can clearly see from Figs. 2(c1)–2(c2) that the Gaussian FWM images in Fig. 2(c1) exhibit a slight shift along with y-direction with discrete increases in the probe detuning value, Δ1; however, the vortex FWM images in Fig. 2(c2) do not exhibit this shift but split appear. On the one hand, the cross-Kerr nonlinearity coefficient n2X3, which corresponds to E3, varies with Δ1, as shown in Fig. 2(b). When Δ1 < 55 MHz and Δ1 > 105 MHz, the nonlinear refractive index coefficient, n2, tends to zero. Thus, the spatial movement is not obvious. With the Kerr nonlinearity coefficient is n2 < 0 by properly setting the detuning value Δ1 ≈ 80 MHz, the Gaussian FWM and vortex FWM are all repulsed [16] by E3 (arranged slightly above the FWM). When the value of n2 reaches to the highest, the repulsive force is the largest, and so the spot position move most. As n2 decreases, the spot gradually returns back to its original point, causing Gaussian FWM to shift and vortex FWM to split. On the other hand, the spiral phase (in the ranges of 0-2π) carried by the vortex FWM interacts with the nonlinear phase shift caused by E3, and the resulted nonlinear phase shift may be different in both sign and value for different points on the vortex beam. Thus, the vortex FWM does not move, as the attractive and repulsive forces cancel each other. Then, with a change in the power proportion of E3 and E3′, the Kerr nonlinearity arising from E3 increases; the corresponding results are shown in Fig. 2(c3). One can see from the figures that, over the range of Δ1, the spiral phase only balances a part of the nonlinear phase shift. Thus, the cross-Kerr nonlinearity attributable to E3 causes the singularity position of the vortex FWM to move downwards along the y-direction and then move up.

 

Fig. 2. (a) Spectrum of Gaussian FWM versus Δ1. (b) Simulated curves of nonlinear refractive index n2XE3 from field E3 versus Δ1 according to Eq. (4). (c1, c2) Experimental images of Gaussian FWM and vortex FWM, respectively, versus Δ1 at Δ3 = 80 MHz without dressing field, E2. (c3) Vortex FWM versus Δ1 at Δ3 = 80 MHz when the power proportion of generating fields, E3 and E3′, is changed.

Download Full Size | PPT Slide | PDF

Next, when the dressing field E2 is turned on, the Kerr nonlinearity modulates the properties of dressed spatial vortex probe and vortex FWM transmission in different manners, owing to the changes in the power of E2, as shown in Fig. 3. In this part, the spectrum signals of Gaussian probe and FWM are presented in Figs. 3(a) and 3(b) to reflect the vortex probe and FWM intensity variation versus different detuning and power. In Fig. 3(a), the strongest transparency window appears almost at resonance, that is, at Δ2 = − 80 MHz, where the EIT condition Δ1 + Δ2 = 0 is well satisfied. Further, with the gradual decrease of E2 power, the dressing effect of E2 also weakens gradually. Thus, the transparency windows appearing on the probe field also decrease gradually. According to Ref. [25], the generated transparency windows are Autler-Townes splitting (ATS) [26] or EIT. If E2 field is strong, the transparency windows are ATS due to the frequency shift induced by strong control field. With E2 field decreasing, a transition from ATS to EIT can be induced so that there is just EIT caused by Fano interference existing under condition of weak E2 field. Further, for the FWM, as shown in Fig. 3(b), the spectra are suppressed in the term of the dip owing to the dressing effect of E2. With a decrease in the power of E2, the degree of suppression of the FWM is gradually reduced, and its transmitted intensity increases. The background (the straight line) of each of the FWM spectral signals represents the non-dressed FWM produced by E1, E3, and E3′. Correspondingly, switching probe field from Gaussian to Laguerre-Gaussian, with a decrease in the power of E2 from 26.6 mW (see Figs. 3(d1) and 3(e1)) to 0.01 mW (Figs. 3(d5) and 3(e5)), the changes in the intensities of the vortex probe and vortex FWM, shown in Figs. 3(d) and 3(e), well match with those in Figs. 3(a) and 3(b), respectively. It can be seen from the spatial vortex probe images in Fig. 3(d) that the output vortex intensity distribution is nonuniform, which can be attributed to the uniform absorption of medium but undesirably average atomic density. One can see clearly in Fig. 3(d1) from the left to the right that the probe vortex singularity shifts along the y-direction. From the top to the bottom, the slight shift in the vortex gradually disappears with a decrease in the power of E2. These results indicate that the shifting phenomenon is caused by the Kerr nonlinearity induced by E2. Owing to the fact that the cross-Kerr nonlinearity n2X2 arising from E2 varies with Δ2 (see Fig. 2(c)), with a change in Δ2 to values smaller than −105 MHz and greater than −55 MHz, the nonlinear refractive index coefficient, n2, becomes close to zero. Thus, the phenomenon of spatial movement cannot be observed. When Δ2 is close to −80 MHz, the sign of the Kerr nonlinear coefficient related to E2 is n2 < 0 such that the vortex probe is repulsed. Thus, the spot moves for a larger Δ2 value as n2 decreases, eventually returning to the point with the highest value. As the power of E2 is decreased gradually, the dressing effect of E2 on the vortex probe is also weakened. Thus, one can see that, from the top to the bottom, the slight shift in the vortex disappears gradually. On the other hand, the dressed vortex FWM, shown in Fig. 3(e), does not exhibit a shift. The reason for the generation of a stable vortex is that the spiral phase and the nonlinear phase ascribable to E3 balance each other, and the Kerr nonlinearity from E3 balances the Kerr nonlinearity from E2. The absence of both a shift and splitting in these dressed vortex FWMs confirms that the symmetry of the photon-excited structure is not sensitive to the effects of an external field.

 

Fig. 3. (a, b) Gaussian probe and FWM spectral signals versus Δ2 at Δ13) = 80 MHz with increase in power of E2 (from bottom to top). (c) Value of nonlinear refractive index according to Eq. (4) varies with detuning of E2. (d, e) Switching probe field from Gaussian to Laguerre-Gaussian, images of vortex probe and vortex FWM corresponding to (a, b), respectively.

Download Full Size | PPT Slide | PDF

Finally, we show the evolution of intensity of the stable vortex FWM when Δ3 is discretely reduced from 110 MHz to 50 MHz, as shown in Fig. 4. As is evident from the dressed FWM spectrum shown in Fig. 4(a), the dressing effect of E3 suppresses the FWM and the corresponding suppression pit is generated. When Δ3 is discretely reduced from 110 MHz to 50 MHz, the spectrum shape of the FWM is first strengthened and then weakened from the top to the bottom. Further, when Δ3 = 80 MHz and Δ2 = −80 MHz, the two dressing conditions (Δ1 + Δ2 = 0 and Δ1 - Δ3 = 0) are satisfied. As a result, the suppression pit initially becomes deeper and then shallower. The intensity evolution of the FWM in Fig. 4(b) is in keeping with the intensity profile in Fig. 4(a). To allow for better visualization of the spatial evolution of the dressed vortex FWM, pink dashed lines indicating the vortex have been added at the center of each image. It can be seen clearly from Fig. 4(b) that the dressed vortex FWM profiles remain constant and that the vortex singularities do not shift; however, their intensity distributions around vortex singularity vary with the Kerr nonlinearity caused by E3. This is the reason the spiral phase, φ, and nonlinear phase, ϕ3, induced by E3 interact with each other. As a result, the periodic spiral phase shift in combination with the nonlinear phase shift (mφ+ϕ3) may result in variations in the nonlinear phase shift at different points in the spiral phase.

 

Fig. 4. (a, b) Fixing Δ1 at 80 MHz, spectral signals and images of FWM versus Δ2 for (1) Δ3 = 110 MHz, (2) Δ3 = 90 MHz, (3) Δ3 = 70 MHz, and (4) Δ3 = 50 MHz.

Download Full Size | PPT Slide | PDF

5. Conclusion

In summary, we investigated the Kerr-nonlinearity-modulated spatial characteristics and spectral signals of a vortex probe and a vortex FWM with the dressing effect in a four-level rubidium atomic system. By adjusting the frequency detuning value and the power of the dressing field, we could elucidate the spatial propagation characteristics. It was found that the nonlinear phase shift and the spiral phase of the vortex light mutually affect the generation and dynamic of the vortex FWM. The results of this study should help further the applicability of optical vortices in applications such as optical computing and information processing.

Funding

National Key Research and Development Program of China (2017YFA0303700); National Natural Science Foundation of China (11604256, 11804267, 11904279, 61975159); The New Star Team of Xi'an University of Posts & Telecommunications.

Disclosures

The authors declare no conflicts of interest.

References

1. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef]  

2. B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010). [CrossRef]  

3. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [CrossRef]  

4. G. F. Calvo, A. Picón, and E. Bagan, “Quantum field theory of photons with orbital angular momentum,” Phys. Rev. A 73(1), 013805 (2006). [CrossRef]  

5. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54(10), 1312–1329 (1966). [CrossRef]  

6. F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84(6), 061801 (2011). [CrossRef]  

7. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef]  

8. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999). [CrossRef]  

9. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1-3), 21–27 (2001). [CrossRef]  

10. Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018). [CrossRef]  

11. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336(1605), 165–190 (1974). [CrossRef]  

12. N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).

13. Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019). [CrossRef]  

14. Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009). [CrossRef]  

15. Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018). [CrossRef]  

16. H. H. Arnaut and G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85(2), 286–289 (2000). [CrossRef]  

17. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006). [CrossRef]  

18. Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017). [CrossRef]  

19. H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup,” Phys. Rev. A 98(1), 013840 (2018). [CrossRef]  

20. M. Cao, Y. Yu, L. Zhang, F. Ye, Y. Wang, D. Wei, P. Zhang, W. Guo, S. Zhang, H. Gao, and F. Li, “Demonstration of CNOT gate with Laguerre Gaussian beams via four-wave mixing in atom vapor,” Opt. Express 22(17), 20177–20184 (2014). [CrossRef]  

21. Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011). [CrossRef]  

22. Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: From Ultrafast Polarization Beats to Electromagnetically Induced Transparency (HEP & Springer, 2009).

23. D. Zhang, Z. Wang, M. Gao, Z. Ullah, Y. Zhang, H. Chen, and Y. Zhang, “Observation of triple-dressing on photonic band gap of optically driven hot atoms,” J. Opt. Soc. Am. B 32(9), 1961–1967 (2015). [CrossRef]  

24. Z. Ullah, Z. Wang, M. Gao, D. Zhang, Y. Zhang, H. Gao, and Y. Zhang, “Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating,” Opt. Express 22(24), 29544–29553 (2014). [CrossRef]  

25. P. Anisimov, J. Dowling, and B. Sanders, “Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency,” Phys. Rev. Lett. 107(16), 163604 (2011). [CrossRef]  

26. S. H. Autler and C. H. Townes, “Stark Effect in Rapidly Varying Fields,” Phys. Rev. 100(2), 703–722 (1955). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref]
  2. B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
    [Crossref]
  3. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  4. G. F. Calvo, A. Picón, and E. Bagan, “Quantum field theory of photons with orbital angular momentum,” Phys. Rev. A 73(1), 013805 (2006).
    [Crossref]
  5. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54(10), 1312–1329 (1966).
    [Crossref]
  6. F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84(6), 061801 (2011).
    [Crossref]
  7. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
    [Crossref]
  8. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
    [Crossref]
  9. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1-3), 21–27 (2001).
    [Crossref]
  10. Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
    [Crossref]
  11. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336(1605), 165–190 (1974).
    [Crossref]
  12. N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).
  13. Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
    [Crossref]
  14. Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
    [Crossref]
  15. Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
    [Crossref]
  16. H. H. Arnaut and G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85(2), 286–289 (2000).
    [Crossref]
  17. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
    [Crossref]
  18. Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
    [Crossref]
  19. H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
    [Crossref]
  20. M. Cao, Y. Yu, L. Zhang, F. Ye, Y. Wang, D. Wei, P. Zhang, W. Guo, S. Zhang, H. Gao, and F. Li, “Demonstration of CNOT gate with Laguerre Gaussian beams via four-wave mixing in atom vapor,” Opt. Express 22(17), 20177–20184 (2014).
    [Crossref]
  21. Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
    [Crossref]
  22. Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: From Ultrafast Polarization Beats to Electromagnetically Induced Transparency (HEP & Springer, 2009).
  23. D. Zhang, Z. Wang, M. Gao, Z. Ullah, Y. Zhang, H. Chen, and Y. Zhang, “Observation of triple-dressing on photonic band gap of optically driven hot atoms,” J. Opt. Soc. Am. B 32(9), 1961–1967 (2015).
    [Crossref]
  24. Z. Ullah, Z. Wang, M. Gao, D. Zhang, Y. Zhang, H. Gao, and Y. Zhang, “Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating,” Opt. Express 22(24), 29544–29553 (2014).
    [Crossref]
  25. P. Anisimov, J. Dowling, and B. Sanders, “Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
    [Crossref]
  26. S. H. Autler and C. H. Townes, “Stark Effect in Rapidly Varying Fields,” Phys. Rev. 100(2), 703–722 (1955).
    [Crossref]

2019 (1)

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

2018 (3)

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

2017 (1)

2015 (1)

2014 (2)

2011 (4)

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref]

P. Anisimov, J. Dowling, and B. Sanders, “Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84(6), 061801 (2011).
[Crossref]

2010 (1)

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

2009 (1)

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

2006 (2)

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref]

G. F. Calvo, A. Picón, and E. Bagan, “Quantum field theory of photons with orbital angular momentum,” Phys. Rev. A 73(1), 013805 (2006).
[Crossref]

2001 (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1-3), 21–27 (2001).
[Crossref]

2000 (1)

H. H. Arnaut and G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85(2), 286–289 (2000).
[Crossref]

1999 (1)

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

1996 (1)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

1981 (1)

N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336(1605), 165–190 (1974).
[Crossref]

1966 (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54(10), 1312–1329 (1966).
[Crossref]

1955 (1)

S. H. Autler and C. H. Townes, “Stark Effect in Rapidly Varying Fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Allen, L.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Anisimov, P.

P. Anisimov, J. Dowling, and B. Sanders, “Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref]

Anzolin, G.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref]

Arecchi, F. T.

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84(6), 061801 (2011).
[Crossref]

Arlt, J.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

Arnaut, H. H.

H. H. Arnaut and G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85(2), 286–289 (2000).
[Crossref]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark Effect in Rapidly Varying Fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Bagan, E.

G. F. Calvo, A. Picón, and E. Bagan, “Quantum field theory of photons with orbital angular momentum,” Phys. Rev. A 73(1), 013805 (2006).
[Crossref]

Baranova, N. B.

N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).

Barbieri, C.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref]

Barbosa, G. A.

H. H. Arnaut and G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85(2), 286–289 (2000).
[Crossref]

Barnett, S. M.

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336(1605), 165–190 (1974).
[Crossref]

Bianchini, A.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref]

Bleu, O.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Bortolozzo, U.

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84(6), 061801 (2011).
[Crossref]

Calvo, G. F.

G. F. Calvo, A. Picón, and E. Bagan, “Quantum field theory of photons with orbital angular momentum,” Phys. Rev. A 73(1), 013805 (2006).
[Crossref]

Cao, M.

Chang, H.

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Chen, H.

D. Zhang, Z. Wang, M. Gao, Z. Ullah, Y. Zhang, H. Chen, and Y. Zhang, “Observation of triple-dressing on photonic band gap of optically driven hot atoms,” J. Opt. Soc. Am. B 32(9), 1961–1967 (2015).
[Crossref]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref]

Dholakia, K.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Dowling, J.

P. Anisimov, J. Dowling, and B. Sanders, “Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref]

Dubik, B.

J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1-3), 21–27 (2001).
[Crossref]

Feng, J.

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Franke-Arnold, S.

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

Gao, H.

Gao, M.

Guo, W.

Hamedi, H.

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

Ireland, D. G.

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

Jack, B.

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

Juzeliunas, G.

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

Kogelnik, H.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54(10), 1312–1329 (1966).
[Crossref]

Koniakhin, S.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Leach, J.

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

Lenzini, F.

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84(6), 061801 (2011).
[Crossref]

Li, C.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Li, F.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

M. Cao, Y. Yu, L. Zhang, F. Ye, Y. Wang, D. Wei, P. Zhang, W. Guo, S. Zhang, H. Gao, and F. Li, “Demonstration of CNOT gate with Laguerre Gaussian beams via four-wave mixing in atom vapor,” Opt. Express 22(17), 20177–20184 (2014).
[Crossref]

Li, T.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54(10), 1312–1329 (1966).
[Crossref]

Liu, X.

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Lu, K.

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref]

Ma, D.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Malpuech, G.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Mamaev, A. V.

N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).

Masajada, J.

J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1-3), 21–27 (2001).
[Crossref]

Nie, Z.

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336(1605), 165–190 (1974).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Picón, A.

G. F. Calvo, A. Picón, and E. Bagan, “Quantum field theory of photons with orbital angular momentum,” Phys. Rev. A 73(1), 013805 (2006).
[Crossref]

Pilipetskii, N. F.

N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).

Residori, S.

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84(6), 061801 (2011).
[Crossref]

Romero, J.

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

Ruseckas, J.

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

Sanders, B.

P. Anisimov, J. Dowling, and B. Sanders, “Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref]

Sheng, J.

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Shkukov, V. V.

N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Solnyshkov, D.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Song, J.

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Tamburini, F.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark Effect in Rapidly Varying Fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Ullah, Z.

Umbriaco, G.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Wang, Y.

Wang, Z.

Wei, D.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Xiao, M.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: From Ultrafast Polarization Beats to Electromagnetically Induced Transparency (HEP & Springer, 2009).

Xu, Z.

Yang, L.

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

Ye, F.

Yu, Y.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Zel’Dovich, B. Y.

N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).

Zhang, D.

Zhang, L.

Zhang, P.

Zhang, S.

Zhang, Y.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
[Crossref]

D. Zhang, Z. Wang, M. Gao, Z. Ullah, Y. Zhang, H. Chen, and Y. Zhang, “Observation of triple-dressing on photonic band gap of optically driven hot atoms,” J. Opt. Soc. Am. B 32(9), 1961–1967 (2015).
[Crossref]

D. Zhang, Z. Wang, M. Gao, Z. Ullah, Y. Zhang, H. Chen, and Y. Zhang, “Observation of triple-dressing on photonic band gap of optically driven hot atoms,” J. Opt. Soc. Am. B 32(9), 1961–1967 (2015).
[Crossref]

Z. Ullah, Z. Wang, M. Gao, D. Zhang, Y. Zhang, H. Gao, and Y. Zhang, “Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating,” Opt. Express 22(24), 29544–29553 (2014).
[Crossref]

Z. Ullah, Z. Wang, M. Gao, D. Zhang, Y. Zhang, H. Gao, and Y. Zhang, “Observation of the four wave mixing photonic band gap signal in electromagnetically induced grating,” Opt. Express 22(24), 29544–29553 (2014).
[Crossref]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: From Ultrafast Polarization Beats to Electromagnetically Induced Transparency (HEP & Springer, 2009).

Zhang, Z.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Z. Zhang, D. Ma, Y. Zhang, M. Cao, Z. Xu, and Y. Zhang, “Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap,” Opt. Lett. 42(6), 1059–1062 (2017).
[Crossref]

Zheng, H.

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Zuo, C.

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

N. B. Baranova, B. Y. Zel’Dovich, A. V. Mamaev, N. F. Pilipetskiǐ, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33(4), 195–199 (1981).

Laser Photonics Rev. (1)

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser Photonics Rev. 12(10), 1800155 (2018).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Opt. Commun. (1)

J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Opt. Commun. 198(1-3), 21–27 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

S. H. Autler and C. H. Townes, “Stark Effect in Rapidly Varying Fields,” Phys. Rev. 100(2), 703–722 (1955).
[Crossref]

Phys. Rev. A (8)

H. Hamedi, J. Ruseckas, and G. Juzeliunas, “Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup,” Phys. Rev. A 98(1), 013840 (2018).
[Crossref]

Y. Zhang, C. Zuo, H. Zheng, C. Li, Z. Nie, J. Song, H. Chang, and M. Xiao, “Controlled spatial beam splitter using four-wave-mixing images,” Phys. Rev. A 80(5), 055804 (2009).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced Talbot effect in an atomic system,” Phys. Rev. A 97(1), 013603 (2018).
[Crossref]

B. Jack, A. M. Yao, J. Leach, J. Romero, S. Franke-Arnold, D. G. Ireland, S. M. Barnett, and M. J. Padgett, “Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces,” Phys. Rev. A 81(4), 043844 (2010).
[Crossref]

G. F. Calvo, A. Picón, and E. Bagan, “Quantum field theory of photons with orbital angular momentum,” Phys. Rev. A 73(1), 013805 (2006).
[Crossref]

F. Lenzini, S. Residori, F. T. Arecchi, and U. Bortolozzo, “Optical vortex interaction and generation via nonlinear wave mixing,” Phys. Rev. A 84(6), 061801 (2011).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

Phys. Rev. Lett. (5)

H. H. Arnaut and G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85(2), 286–289 (2000).
[Crossref]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97(16), 163903 (2006).
[Crossref]

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particlelike Behavior of Topological Defects in Linear Wave Packets in Photonic Graphene,” Phys. Rev. Lett. 122(23), 233905 (2019).
[Crossref]

Y. Zhang, Z. Wang, Z. Nie, C. Li, H. Chen, K. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref]

P. Anisimov, J. Dowling, and B. Sanders, “Objectively Discerning Autler-Townes Splitting from Electromagnetically Induced Transparency,” Phys. Rev. Lett. 107(16), 163604 (2011).
[Crossref]

Proc. IEEE (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54(10), 1312–1329 (1966).
[Crossref]

Proc. R. Soc. Lond. A (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336(1605), 165–190 (1974).
[Crossref]

Other (1)

Y. Zhang and M. Xiao, Multi-Wave Mixing Processes: From Ultrafast Polarization Beats to Electromagnetically Induced Transparency (HEP & Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Experimental setup and probe vortex image before injecting cell sample for this study. PBS: polarization beam splitter, CCD: charge-coupled device camera, L: convex lens, APD: avalanche photodiode. (b) Inverted-Y type four-level atomic configuration. (c) Schematic of electromagnetically induced grating formed by coupling beams E3 and E3′.
Fig. 2.
Fig. 2. (a) Spectrum of Gaussian FWM versus Δ1. (b) Simulated curves of nonlinear refractive index n2XE3 from field E3 versus Δ1 according to Eq. (4). (c1, c2) Experimental images of Gaussian FWM and vortex FWM, respectively, versus Δ1 at Δ3 = 80 MHz without dressing field, E2. (c3) Vortex FWM versus Δ1 at Δ3 = 80 MHz when the power proportion of generating fields, E3 and E3′, is changed.
Fig. 3.
Fig. 3. (a, b) Gaussian probe and FWM spectral signals versus Δ2 at Δ13) = 80 MHz with increase in power of E2 (from bottom to top). (c) Value of nonlinear refractive index according to Eq. (4) varies with detuning of E2. (d, e) Switching probe field from Gaussian to Laguerre-Gaussian, images of vortex probe and vortex FWM corresponding to (a, b), respectively.
Fig. 4.
Fig. 4. (a, b) Fixing Δ1 at 80 MHz, spectral signals and images of FWM versus Δ2 for (1) Δ3 = 110 MHz, (2) Δ3 = 90 MHz, (3) Δ3 = 70 MHz, and (4) Δ3 = 50 MHz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ 10 ( 1 ) = i ( G 1 e i m φ ) d 1 + | G 3 | 2 / | G 3 | 2 d 3 d 3 + | G 2 | 2 / | G 2 | 2 d 2 d 2 ,
ρ 10 ( 3 ) = i ( G 1 e i m φ ) ( G 3 e i ϕ 3 ) ( G 3 e i ϕ 3 ) ( d 1 + | G 3 s | 2 / | G 3 s | 2 d 3 d 3 + | G 2 | 2 e i ϕ 2 / | G 2 | 2 e i ϕ 2 d 2 d 2 ) 2 d 3 ,
E 1 z i 2 E 1 2 k E 1 = i k 1 n 1 [ n 2 S 1 | E 1 | 2 + 2 n 2 X 1 | E 3 | 2 + 2 n 2 X 2 | E 2 | 2 ] E 1 ,
E F z i 2 E F 2 k F = i k F n 1 [ n 2 S 2 | E F | 2 + 2 n 2 X 3 | E 3 | 2 + 2 n 2 X 4 | E 2 | 2 ] E F .
n 2 = Re χ (3) / ε 0 c n 1 ,
ϕ N L ( z , ξ ) = 2 k 1 , F n 2 I i e ξ 2 z / n 1 ,

Metrics