Abstract

An actively tunable broadband terahertz absorber is numerically demonstrated, which consists of four identical vanadium dioxide (VO2) square loops and a metal ground plane separated by a dielectric spacer. Simulation results show that an excellent absorption bandwidth of 90% terahertz absorptance reaches as wide as 2.45 THz from 1.85 to 4.3 THz under normal incidence. By changing the conductivity of VO2, an approximately perfect amplitude modulation is realized with the absorptance dynamically tuned from 4% to 100%. This absorption performance is greatly improved compared with previously reported VO2-based absorbers. The physical mechanisms of a single absorption band and the perfect absorption are elucidated by the wave-interference theory and the impedance matching theory, respectively. Field distributions are further discussed to explore the physical origin of this absorber. In addition, it also has the advantages of polarization insensitivity and wide-angle absorption. The proposed absorber may have many promising applications in the terahertz range such as modulator, sensor, cloaking and optic-electro switches.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Terahertz (THz) wave has attracted lots of interest in the past few decades, due to its promising applications in the fields of wireless communication [1], sensor [2], and imaging [3]. In order to promote the development of THz technology, various functional devices based on metamaterials have been proposed, such as filters [46], absorbers [79], polarization convertors [10] and so on. Among these functional devices, metamaterial perfect absorbers (MPAs) play a very important role in the THz range due to its extensive applications in thermal emitters [11,12], photovoltaic cells [13,14], and stealth technology [15,16].

Since the first MPA was experimentally verified by Landy et al. in 2008 [17], various types of single narrowband, dual-band and multi-band absorbers have been proposed and investigated [1820]. However, not only do these MPAs have narrow absorption bandwidth, but also their electromagnetic responses cannot be adjusted once the structures are determined, which limit their practical applications. In order to achieve broadband absorption, one typical approach is incorporating multiple resonant structures with different size within one unit cell [2123]. Another approach is stacking multilayer structures separated by dielectric layers with different thicknesses [2426]. Nevertheless, the designed MPAs based on these approaches are complicated for fabrication and difficult to actively control. In order to realize the reconfigurable characteristics, numerous research studies on the combination of metamaterials with semiconductors, graphene, liquid crystal, and phase transition materials have been reported [2730]. Vanadium dioxide (VO2), as a phase transition material, shows the transition behavior from the insulator phase to the metal phase at around 340 K. Several studies have demonstrated that the phase transition can be triggered by electrical [3133], thermal [34,35], or optical excitation [36,37] and the conductivity varies several orders of magnitude during the transition. Thus, combining metamaterials with VO2 is a promising method to realize the reconfigurable characteristics in the THz range. Recently, some MPAs with both broadband and tunable absorption properties based on VO2 have also been reported [see [3844] in Table 1]. Unfortunately, the current absorption bandwidth and the tunable range still have a distance to reach the expectations for practical applications.

Tables Icon

Table 1. Comparison of absorption performance between different absorbers. MPA marked with * represents multi-band absorption.

In this paper, we propose an actively tunable broadband terahertz absorber, which consists of four identical VO2 square loops and a metal ground plane separated by a dielectric spacer. The results show that the bandwidth of 90% absorptance reaches as wide as 2.45 THz from 1.85 to 4 THz under normal incidence. By changing the conductivity of VO2, an approximately perfect amplitude modulation is realized with the absorptance dynamically tuned from 4% to 100%. This absorption performance is greatly improved compared with previously reported VO2-based absorbers. The wave-interference theory and the impedance matching theory are introduced to elucidate the physical mechanisms of a single absorption band and the perfect absorption, respectively. Field distributions are further discussed to explore the physical origin of this absorber. Furthermore, the influences of different polarization angles and incident angles on absorption performances are also investigated. The proposed absorber promises diverse applications in the THz range.

2. Design and simulation

The unit cell of the designed broadband THz absorber is illustrated in Fig. 1(a), which consists of four identical VO2 square loops and a gold (Au) ground plane separated by a dielectric spacer (SiO2). The thickness of VO2, Au, and SiO2 are 0.2 µm, 0.2 µm, and d = 12 µm, respectively. The conductivity of Au is 4.56 × 107 S/m. And the relative permittivity of SiO2 is ε=3.8 with negligible loss in the THz range [38]. The top view of the unit cell is shown in Fig. 1(b), where P is the period of the unit cell, d1 is the interval between VO2 patterns, P1 and w are the length and width of the square loop, respectively. The dimension parameters are set as: P = 75 µm, P1=23 µm, d1=17µm, w = 4 µm.

 figure: Fig. 1.

Fig. 1. (a) Schematic of the unit cell of the proposed broadband THz absorber. (b) Top view of the unit cell. The four identical VO2 square loops (cyan) on the top, the dielectric layer (grey) in the middle, and the metal ground plane (yellow) on the bottom.

Download Full Size | PPT Slide | PDF

The electromagnetic response of the absorber is simulated by CST Microwave Studio 2015. Unit cell boundary conditions are employed in x and y directions and open boundary condition is employed in z direction. Drude model is taken to describe the optical properties of VO2 in the THz range [45], which is written as $\varepsilon (\omega ) = {\varepsilon _\infty } - \frac{{{\omega _\rho }^2(\sigma )}}{{({\omega ^2} + i\gamma \omega )}}$, where $\varepsilon _\infty = 12$ is the permittivity at the infinite frequency and $\gamma = 5.75 \times {10^{13}}\;\textrm{rad/s}$ is the collision frequency. The plasma frequency at σ can be expressed by ${\omega _\rho }^2(\sigma ) = \frac{\sigma }{{{\sigma _0}}}{\omega _\rho }^2({\sigma _0})$ with $\sigma = 3 \times {10^5}\;\textrm{S/m}$ and ${\omega _\rho }({\sigma _0}) = 1.4 \times {10^{15}}\;\textrm{rad/s}$. In this paper, the conductivities of VO2 in the insulator phase and the metal phase are assumed to be 200 S/m and 2 × 105 S/m, respectively. Since the thickness of the continuous metal ground plane is larger than the penetration depth of THz wave, transmittance $T(\omega )$ is 0. Therefore, absorptance is calculated as $A(\omega ) = 1 - R(\omega ) = 1 - |{S_{11}}(\omega ){|^2}$, where $R(\omega )$ is the reflectance retrieved from frequency-dependent S-parameters.

3. Results and discussions

The reflection, transmission, and absorption spectrums of the proposed broadband absorber withVO2 in the metal phase are displayed in Fig. 2(a). The absorption performances for both TE and TM polarizations are coincident, which indicates good polarization-insensitivity property. The absorber has an excellent absorption bandwidth of 90% absorptance reaches as high as 2.45 THz from 1.85 to 4.3 THz under the normal incidence, which is wider than other VO2-based THz MPAs. And there are also three perfect absorption peaks located at f1=2.23 THz, f2=3.02 THz, and f3=3.9 THz, respectively. Because of the bottom metal ground plane, transmittance is completely suppressed as 0. Figure 2(b) shows the absorption spectrums with different polarization angles. It is clear that the proposed absorber is insensitive to the polarization angle due to the rotational symmetry of the structure [46].

 figure: Fig. 2.

Fig. 2. (a) Reflection, transmission, and absorption spectra of the broadband absorber. (b) Color map of the absorption spectrums with different polarization angles.

Download Full Size | PPT Slide | PDF

The reflection and absorption spectrums with different conductivities of VO2 are shown in Figs. 3(a) and 3(b). When the conductivity changes from 200 S/m to 2 × 105 S/m, the corresponding absorptance continuously increases from 4% to 100%, and the central position of peak keeps almost unchanged. This phenomenon is mainly attributed to the variation of VO2 permittivity. The real and imaginary parts of permittivity with different VO2 conductivities are displayed in Figs. 3(c) and 3(d). The results show that the change of the imaginary parts under different conductivities are much larger than that of the real parts. This results in a remarkable change in spectral intensity and a nearly constant of the central position of peak.

 figure: Fig. 3.

Fig. 3. (a) Reflection and (b) absorption spectra with different conductivities of VO2. (c) Real parts and (d) imaginary parts of permittivity with different conductivities of VO2.

Download Full Size | PPT Slide | PDF

The physical mechanism of a single absorption band can be explained by the wave-interference theory [47]. Figure 4 shows the comparison of the absorption spectrums between the dielectric-metal structure (without VO2) and the absorber (VO2 in the insulator phase) under different thicknesses of dielectric spacer. It is obvious that the central position of peak changes significantly with the variation of the thickness. For the dielectric-metal structure with d = 12 µm (red line), the central position of peak is 3.3 THz corresponding to the wavelength of ${\lambda _0} = 91\;{\mathrm{\mu}} {\textrm{m}}$ in free space. Within the dielectric layer, the wavelength is $\lambda _1 = \lambda _0/n = 46.68\;{\mathrm {\mu}} {\textrm{m}}$, where $n = \sqrt \varepsilon $ is the refractive index of SiO2. Finally, $t = 12\;{\mathrm{\mu}} {\textrm{m}} \approx {\lambda _\textrm{1}}/4$ means the condition for the minimal reflection is satisfied due to the destructive interference between the incident and the reflected waves. Therefore, the central position of peak is mainly determined by the thickness of dielectric spacer. In order to enhance the absorption, four identical VO2 square loops in the insulator phase are placed on the top to form a classic structure of MPAs. It can be observed from Fig. 4 that compared with the dielectric-metal structure, not only the central position of peak remains almost unchanged, but also the absorption is further enhanced. This is because the interaction between the THz wave and the well-designed VO2 microstructures causes more energy to be consumed by the absorber. Therefore, the absorption is enhanced.

 figure: Fig. 4.

Fig. 4. The comparison of the absorption spectra between the dielectric-metal structure (without VO2) and the absorber (VO2 in the insulator phase) under different thicknesses of dielectric spacer.

Download Full Size | PPT Slide | PDF

The impedance matching theory is used to explain the physical mechanism of the perfect absorption. As is well known, when the effective impedance of the absorber, defined as $Z(\omega ) = \sqrt {\mathrm {\mu}} {(\omega )/\varepsilon (\omega )}$, matches to that of free space, the reflection reaches minimized. If at the same time the thickness of the bottom metal ground plane is larger than the penetration depth of THz wave, which causes vary low transmission. Then, perfect absorption can be achieved [48]. The absorptance and the relative impedance can be obtained by

$$A(\omega ) = 1 - R(\omega ) = 1 - {\left|{\frac{{Z - {Z_0}}}{{Z + {Z_0}}}} \right|^2} = 1 - {\left|{\frac{{{Z_r} - 1}}{{{Z_r} + 1}}} \right|^2}$$
$${Z_r} ={\pm} \sqrt {\frac{{{{(1 + {S_{11}}(\omega ))}^2} - {S_{21}}^2(\omega )}}{{{{(1 - {S_{11}}(\omega ))}^2} - {S_{21}}^2(\omega )}}}$$
where Z0 and Z are the effective impedance of free space and the absorber, respectively. And ${Z_r} = Z/{Z_0}$ is the relative impedance. Figure 5 shows the real parts and the imaginary parts of the relative impedance with different conductivities of VO2. The results show that real part gradually reaches to 1 and the imaginary part gradually reaches to 0 in the frequency range from 1.85 THz to 4.3 THz with the increase of conductivity, which means the impedance of the absorber has gradually matched to that of free space. Finally, the highest absorption and widest bandwidth are achieved when the conductivity of VO2 changes to 2 × 105 S/m.

 figure: Fig. 5.

Fig. 5. (a) Real parts and (b) the imaginary parts of the relative impedance with different conductivities of VO2.

Download Full Size | PPT Slide | PDF

In order to further explore the physical origin of the absorber, the electric field distributions at three perfect absorption peaks are analyzed in Fig. 6. The plus and minus signs represent the distribution of the positive and negative charges. Figure 6(a) shows the electric field distribution at f1. There are two opposite poles with equal magnitude. The negative and positive charges are mainly concentrated in the upper and lower half of the square loop. Therefore, the first absorption peak is caused by the excitation of the electric dipole resonance. Figure 6(b) shows the electric field distribution at f2. There are also two opposite poles with equal magnitude. But the negative and positive charges accumulate at the upper and lower square loops, respectively. Therefore, the second absorption peak is also caused by the electric dipole resonance. As for the electric field distribution at f3 in Fig. 6(c), it is similar to that at f1, except that the charges are more accumulated inside the square loop. Thus, this mode is also an electric dipole resonance. It should be noted that compared with the electric field distributions at f1 and f3, the electric dipole resonance at f2 is not caused by a single square loop, but by interaction between the upper and lower square loops, which results in the shape spectral feature at f2 in Fig. 2(a).

 figure: Fig. 6.

Fig. 6. Electric field distributions of the proposed absorber at (a) f1=2.23 THz, (b) f2=3.02 THz, (c) f3=3.9 THz.

Download Full Size | PPT Slide | PDF

In practical applications, wide-angle absorption is a very important characteristic for the absorber. So, the influences of different incident angles on absorption performance are investigated in Fig. 7. For TE polarization as displayed in Fig. 7(a), the absorptance keeps larger than 80% until the incident angle varies up to 600. When the incident angle further increases, the bandwidth becomes wider and the absorptance decreases sharply. For TM polarization as displayed in Fig. 7(b), the absorption performance maintains stable within 150. When the incident angle is larger than 150, the bandwidth becomes narrower and some higher-order modes appear. A similar dependence of absorption spectrum on incident angle was observed in previously reported VO2-based absorbers [40,49]. Therefore, the absorption performance of TE polarization is better than that of TM polarization. There are two reasons for this phenomenon. The first reason is that the three absorption peaks all come from the excitation of electric dipole resonance, which can be concluded from Fig. 6. Another reason is that for TE polarization, when the incident angle gradually increases, the electric field is always parallel to x-axis, which allows the electric dipole resonance to be effectively excited. While for TM polarization, the tangential component of the electric field decreases as the incident angle increases, which results in the electric dipole resonance can no longer be effectively excited at higher incident angles. Therefore, these two reasons cause that the absorption performance of TE polarization is better than that of TM polarization.

 figure: Fig. 7.

Fig. 7. The absorption spectra of the proposed absorber with different incident angles for (a) TE polarization and (b) TM polarization.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we have numerically demonstrated an actively tunable broadband THz perfect absorber consisting of four identical VO2 square loops and a metal ground plane separated by a dielectric spacer. The results show that the absorber has an excellent absorption bandwidth of 90% terahertz absorptance reaches as wide as 2.45 THz from 1.85 to 4.3 THz. By changing the conductivity of VO2, an approximately perfect amplitude modulation is realized with the absorptance dynamically tuned from 4% to 100%. This absorption performance is greatly improved compared with preciously reported VO2-based absorbers. The wave-interference theory and the impedance matching theory are introduced to explain the physical mechanisms of a single absorption band and the perfect absorption, respectively. According to the electric field distributions at three perfect absorption peaks, it demonstrated that they all come from the excitation of the electric dipole resonance. In addition, this absorber also has the advantage of the polarization insensitive and the absorption performance keeps stable when the incident angle varies up to 600 for TE polarization and 150 for TM polarization. Therefore, it may have many promising applications in the terahertz range such as modulator, sensor, cloaking, and optic-electro switches.

Funding

National Natural Science Foundation of China (61705162, 61735010).

Acknowledgments

Thanks for Key Laboratory of Opto-electronic Information Technology of Tianjin University.

Disclosures

The authors declare no conflicts of interest.

References

1. K. C. Huang and Z. Wang, “Terahertz terabit wireless communication,” IEEE Microw. Mag. 12(4), 108–116 (2011). [CrossRef]  

2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005). [CrossRef]  

3. P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016). [CrossRef]  

4. Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011). [CrossRef]  

5. R. Xiong and J. Li, “Double layer frequency selective surface for Terahertz bandpass filter,” J. Infrared, Millimeter, Terahertz Waves 39(10), 1039–1046 (2018). [CrossRef]  

6. X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, “Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency,” Opt. Express 19(6), 5283–5289 (2011). [CrossRef]  

7. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015). [CrossRef]  

8. K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 393–398 (2017). [CrossRef]  

9. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lede, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012). [CrossRef]  

10. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013). [CrossRef]  

11. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011). [CrossRef]  

12. F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, “Narrowband terahertz emitters using metamaterial films,” Opt. Express 20(19), 21025–21032 (2012). [CrossRef]  

13. H. A. Atwater and A. Polman, “Erratum: Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef]  

14. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012). [CrossRef]  

15. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015). [CrossRef]  

16. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef]  

17. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef]  

18. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018). [CrossRef]  

19. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011). [CrossRef]  

20. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012). [CrossRef]  

21. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012). [CrossRef]  

22. C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012). [CrossRef]  

23. Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015). [CrossRef]  

24. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015). [CrossRef]  

25. W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014). [CrossRef]  

26. H. Deng, L. Stan, D. A. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017). [CrossRef]  

27. Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016). [CrossRef]  

28. X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019). [CrossRef]  

29. J. Shin, K. H. Park, and H. C. Ryu, “Electrically controllable terahertz square-loop metamaterial based on VO2 thin film,” Nanotechnology 27(19), 195202 (2016). [CrossRef]  

30. R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, and J. Zhang, “Weimin Sun Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017). [CrossRef]  

31. F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019). [CrossRef]  

32. Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020). [CrossRef]  

33. L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016). [CrossRef]  

34. Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010). [CrossRef]  

35. J. Liu and L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020). [CrossRef]  

36. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011). [CrossRef]  

37. Y. Zhang, S. Qiao, L. Sun, Q. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014). [CrossRef]  

38. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018). [CrossRef]  

39. S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019). [CrossRef]  

40. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019). [CrossRef]  

41. J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019). [CrossRef]  

42. T. Wang, Y. Zhang, H. Zhang, and M. Cao, “Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial,” Opt. Mater. Express 10(2), 369 (2020). [CrossRef]  

43. R. Dao, X. Kong, H. Zhang, and X. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019). [CrossRef]  

44. J. Huang, J. Li, Y. Yang, J. Li, Y. Zhang, and J. Yao, “Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide,” Opt. Express 28(5), 7018–7027 (2020). [CrossRef]  

45. S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 1–8 (2017). [CrossRef]  

46. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010). [CrossRef]  

47. L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019). [CrossRef]  

48. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012). [CrossRef]  

49. A. Chen and Z. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. K. C. Huang and Z. Wang, “Terahertz terabit wireless communication,” IEEE Microw. Mag. 12(4), 108–116 (2011).
    [Crossref]
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  3. P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
    [Crossref]
  4. Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011).
    [Crossref]
  5. R. Xiong and J. Li, “Double layer frequency selective surface for Terahertz bandpass filter,” J. Infrared, Millimeter, Terahertz Waves 39(10), 1039–1046 (2018).
    [Crossref]
  6. X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, “Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency,” Opt. Express 19(6), 5283–5289 (2011).
    [Crossref]
  7. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
    [Crossref]
  8. K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 393–398 (2017).
    [Crossref]
  9. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lede, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref]
  10. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  11. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref]
  12. F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, “Narrowband terahertz emitters using metamaterial films,” Opt. Express 20(19), 21025–21032 (2012).
    [Crossref]
  13. H. A. Atwater and A. Polman, “Erratum: Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref]
  14. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref]
  15. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref]
  16. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref]
  17. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  18. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
    [Crossref]
  19. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref]
  20. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  21. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
    [Crossref]
  22. C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012).
    [Crossref]
  23. Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
    [Crossref]
  24. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  25. W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014).
    [Crossref]
  26. H. Deng, L. Stan, D. A. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017).
    [Crossref]
  27. Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
    [Crossref]
  28. X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
    [Crossref]
  29. J. Shin, K. H. Park, and H. C. Ryu, “Electrically controllable terahertz square-loop metamaterial based on VO2 thin film,” Nanotechnology 27(19), 195202 (2016).
    [Crossref]
  30. R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, and J. Zhang, “Weimin Sun Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
    [Crossref]
  31. F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
    [Crossref]
  32. Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020).
    [Crossref]
  33. L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
    [Crossref]
  34. Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
    [Crossref]
  35. J. Liu and L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
    [Crossref]
  36. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
    [Crossref]
  37. Y. Zhang, S. Qiao, L. Sun, Q. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
    [Crossref]
  38. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref]
  39. S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
    [Crossref]
  40. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
    [Crossref]
  41. J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
    [Crossref]
  42. T. Wang, Y. Zhang, H. Zhang, and M. Cao, “Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial,” Opt. Mater. Express 10(2), 369 (2020).
    [Crossref]
  43. R. Dao, X. Kong, H. Zhang, and X. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
    [Crossref]
  44. J. Huang, J. Li, Y. Yang, J. Li, Y. Zhang, and J. Yao, “Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide,” Opt. Express 28(5), 7018–7027 (2020).
    [Crossref]
  45. S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 1–8 (2017).
    [Crossref]
  46. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
    [Crossref]
  47. L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019).
    [Crossref]
  48. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref]
  49. A. Chen and Z. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
    [Crossref]

2020 (5)

2019 (7)

L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019).
[Crossref]

R. Dao, X. Kong, H. Zhang, and X. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

2018 (3)

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

R. Xiong and J. Li, “Double layer frequency selective surface for Terahertz bandpass filter,” J. Infrared, Millimeter, Terahertz Waves 39(10), 1039–1046 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

2017 (4)

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 1–8 (2017).
[Crossref]

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

H. Deng, L. Stan, D. A. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017).
[Crossref]

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, and J. Zhang, “Weimin Sun Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

2016 (4)

J. Shin, K. H. Park, and H. C. Ryu, “Electrically controllable terahertz square-loop metamaterial based on VO2 thin film,” Nanotechnology 27(19), 195202 (2016).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

2015 (4)

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

2014 (2)

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014).
[Crossref]

Y. Zhang, S. Qiao, L. Sun, Q. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref]

2013 (1)

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

2012 (7)

F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, “Narrowband terahertz emitters using metamaterial films,” Opt. Express 20(19), 21025–21032 (2012).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lede, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
[Crossref]

C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012).
[Crossref]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref]

2011 (6)

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, “Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency,” Opt. Express 19(6), 5283–5289 (2011).
[Crossref]

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

K. C. Huang and Z. Wang, “Terahertz terabit wireless communication,” IEEE Microw. Mag. 12(4), 108–116 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

2010 (3)

H. A. Atwater and A. Polman, “Erratum: Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Abbas, M. N.

C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012).
[Crossref]

AbdollahRamezani, S.

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

Ahn, K. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Ahn, Y. H.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Alaee, R.

Alves, F.

Arik, K.

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Erratum: Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Averitt, R. D.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

Bai, J.

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Bao, H.

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Buchwald, W.

Cai, C.

Cai, G.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Cao, M.

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Chang, S.

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Chang, Y.

C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012).
[Crossref]

Chen, A.

A. Chen and Z. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
[Crossref]

Chen, H.

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, H.-T.

Chen, K.

Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Chen, L.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Chen, Q.

Chen, T.

Cheng, C.

C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012).
[Crossref]

Cheng, Y.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Cheng, Z.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Chiang, Y.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Chiu, C.

C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012).
[Crossref]

Choi, S. B.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Cumming, D. R. S.

Czaplewski, D. A.

Dao, R.

R. Dao, X. Kong, H. Zhang, and X. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Davies, A. G.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

Dean, P.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

Deng, H.

Duan, G.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

Fan, F.

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Fan, L.

J. Liu and L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
[Crossref]

Farhat, M.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Feng, Y.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Gao, J.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gong, R.

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

Grant, J.

Grbovic, D.

Gu, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Guan, J.

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014).
[Crossref]

Guo, J.

Han, J.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Han, X.

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

Hendrickson, J.

Hong, M.

Hu, C.

Hu, F.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Huang, C.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, J.

Huang, K. C.

K. C. Huang and Z. Wang, “Terahertz terabit wireless communication,” IEEE Microw. Mag. 12(4), 108–116 (2011).
[Crossref]

Huang, S.

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

Huang, W.

Jiang, M.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Jiang, T.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Jiang, W.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Jin, X.

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Kang, L.

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 1–8 (2017).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Karunasiri, G.

Kearney, B.

Keeley, J.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Khalid, A.

Khavasi, A.

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

Kim, B. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kim, D. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kim, H. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kim, H. T.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Kong, X.

R. Dao, X. Kong, H. Zhang, and X. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Kundu, I.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

Kyoung, J. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Lai, K.

C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lede, F.

Li, J.

Li, L.

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, and J. Zhang, “Weimin Sun Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

Y. Zhang, S. Qiao, L. Sun, Q. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref]

Li, Q.

Li, S.

Li, W.

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014).
[Crossref]

Li, X.

Linfield, E. H.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

Liu, C.

L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019).
[Crossref]

Liu, F.

Liu, J.

J. Liu and L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
[Crossref]

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, and J. Zhang, “Weimin Sun Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

Liu, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Liu, Q. H.

Liu, S.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Liu, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Luo, X.

Ma, Y.

Mayer, T. S.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Miao, Y.

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Mitrofanov, O.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Pan, C.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Park, D. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Park, H. R.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Park, K. H.

J. Shin, K. H. Park, and H. C. Ryu, “Electrically controllable terahertz square-loop metamaterial based on VO2 thin film,” Nanotechnology 27(19), 195202 (2016).
[Crossref]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Erratum: Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Qi, L.

L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019).
[Crossref]

Qiao, S.

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Rockstuhl, C.

Rong, Q.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Rotermund, F.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

Ryu, H. C.

J. Shin, K. H. Park, and H. C. Ryu, “Electrically controllable terahertz square-loop metamaterial based on VO2 thin film,” Nanotechnology 27(19), 195202 (2016).
[Crossref]

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Schalch, J.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Shah, S. M. A.

L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019).
[Crossref]

Shan, Y.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Shen, X.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Shi, C.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Shi, Q.

Shih, M.

C. Cheng, M. N. Abbas, C. Chiu, K. Lai, M. Shih, and Y. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Lett. 20(9), 10376–10381 (2012).
[Crossref]

Shin, J.

J. Shin, K. H. Park, and H. C. Ryu, “Electrically controllable terahertz square-loop metamaterial based on VO2 thin film,” Nanotechnology 27(19), 195202 (2016).
[Crossref]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Song, Z.

A. Chen and Z. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

Soref, R.

Stan, L.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Su, X.

R. Dao, X. Kong, H. Zhang, and X. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Sun, D.

L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019).
[Crossref]

Sun, L.

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Sun, X.

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Tian, F.

Tian, H.

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

Wang, F.

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

wang, H.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Wang, K.

Wang, R.

Wang, S.

Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020).
[Crossref]

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 1–8 (2017).
[Crossref]

Wang, T.

Wang, W.

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014).
[Crossref]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Wang, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

K. C. Huang and Z. Wang, “Terahertz terabit wireless communication,” IEEE Microw. Mag. 12(4), 108–116 (2011).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Wei, M.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Wen, Q.

Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Werner, D. H.

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 1–8 (2017).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

Wu, M.

Wu, T.

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014).
[Crossref]

Xie, Y.

Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Xie, Z.

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

Xiong, R.

R. Xiong and J. Li, “Double layer frequency selective surface for Terahertz bandpass filter,” J. Infrared, Millimeter, Terahertz Waves 39(10), 1039–1046 (2018).
[Crossref]

Xu, B.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Xu, X.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yan, F.

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, and J. Zhang, “Weimin Sun Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

Yang, C.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Yang, L.

Yang, Q.

Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Yang, X.

Yang, Y.

J. Huang, J. Li, Y. Yang, J. Li, Y. Zhang, and J. Yao, “Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide,” Opt. Express 28(5), 7018–7027 (2020).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

Yang, Z.

Yao, J.

Yen, T.

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

You, M.

Zang, X.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhai, P.

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014).
[Crossref]

Zhang, B.

Zhang, H.

T. Wang, Y. Zhang, H. Zhang, and M. Cao, “Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial,” Opt. Mater. Express 10(2), 369 (2020).
[Crossref]

R. Dao, X. Kong, H. Zhang, and X. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Zhang, J.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, and J. Zhang, “Weimin Sun Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

Zhang, S.

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Zhang, W.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, X.

Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020).
[Crossref]

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, Y.

Zhao, J.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Zhao, S.

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

Zhao, X.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

Zhou, H.

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

Zhou, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Zhu, B.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Zhu, Y.

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Appl. Phys. Express (1)

L. Qi, C. Liu, X. Zhang, D. Sun, and S. M. A. Shah, “Structure-insensitive switchable terahertz broadband metamaterial absorbers,” Appl. Phys. Express 12(6), 062011 (2019).
[Crossref]

Appl. Phys. Lett. (9)

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, and D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[Crossref]

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108(9), 091113 (2016).
[Crossref]

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter,” Appl. Phys. Lett. 99(19), 191909 (2011).
[Crossref]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 031107 (2015).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

W. Li, T. Wu, W. Wang, J. Guan, and P. Zhai, “Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers,” Appl. Phys. Lett. 104(2), 022903 (2014).
[Crossref]

Q. Wen, H. Zhang, Q. Yang, Y. Xie, K. Chen, and Y. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Hu, H. wang, X. Zhang, X. Xu, W. Jiang, Q. Rong, S. Zhao, M. Jiang, W. Zhang, and J. Han, “Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–7 (2019).
[Crossref]

IEEE Microw. Mag. (1)

K. C. Huang and Z. Wang, “Terahertz terabit wireless communication,” IEEE Microw. Mag. 12(4), 108–116 (2011).
[Crossref]

IEEE Photonics J. (1)

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

IEEE Trans. Nanotechnol. (1)

A. Chen and Z. Song, “Tunable isotropic absorber with phase change material VO2,” IEEE Trans. Nanotechnol. 19, 197–200 (2020).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

R. Xiong and J. Li, “Double layer frequency selective surface for Terahertz bandpass filter,” J. Infrared, Millimeter, Terahertz Waves 39(10), 1039–1046 (2018).
[Crossref]

Microw. Opt. Technol. Lett. (1)

J. Liu and L. Fan, “Development of a tunable terahertz absorber based on temperature control,” Microw. Opt. Technol. Lett. 62(4), 1681–1685 (2020).
[Crossref]

Nano Lett. (1)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref]

Nanotechnology (1)

J. Shin, K. H. Park, and H. C. Ryu, “Electrically controllable terahertz square-loop metamaterial based on VO2 thin film,” Nanotechnology 27(19), 195202 (2016).
[Crossref]

Nat. Commun. (1)

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Erratum: Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Opt. Commun. (4)

Y. Shan, L. Chen, C. Shi, Z. Cheng, X. Zang, B. Xu, and Y. Zhu, “Ultrathin flexible dual band terahertz absorber,” Opt. Commun. 350, 63–70 (2015).
[Crossref]

Y. Cheng, R. Gong, and Z. Cheng, “A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves,” Opt. Commun. 361, 41–46 (2016).
[Crossref]

X. Jin, F. Wang, S. Huang, Z. Xie, L. Li, X. Han, H. Chen, and H. Zhou, “Coherent perfect absorber with independently tunable frequency based on multilayer graphene,” Opt. Commun. 446, 44–50 (2019).
[Crossref]

J. Bai, S. Zhang, F. Fan, S. Wang, X. Sun, Y. Miao, and S. Chang, “Tunable broadband THz absorber using vanadium dioxide metamaterials,” Opt. Commun. 452, 292–295 (2019).
[Crossref]

Opt. Express (11)

Y. Zhang, S. Qiao, L. Sun, Q. Shi, W. Huang, L. Li, and Z. Yang, “Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method,” Opt. Express 22(9), 11070–11078 (2014).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref]

S. Wang, C. Cai, M. You, F. Liu, M. Wu, S. Li, H. Bao, L. Kang, and D. H. Werner, “Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study,” Opt. Express 27(14), 19436–19447 (2019).
[Crossref]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref]

J. Huang, J. Li, Y. Yang, J. Li, Y. Zhang, and J. Yao, “Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide,” Opt. Express 28(5), 7018–7027 (2020).
[Crossref]

H. Deng, L. Stan, D. A. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017).
[Crossref]

R. Wang, L. Li, J. Liu, F. Yan, F. Tian, H. Tian, and J. Zhang, “Weimin Sun Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal,” Opt. Express 25(26), 32280–32289 (2017).
[Crossref]

Q. Li, S. Liu, X. Zhang, S. Wang, and T. Chen, “Electromagnetically induced transparency in terahertz metasurface composed of meanderline and U-shaped resonators,” Opt. Express 28(6), 8792–8801 (2020).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lede, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref]

F. Alves, B. Kearney, D. Grbovic, and G. Karunasiri, “Narrowband terahertz emitters using metamaterial films,” Opt. Express 20(19), 21025–21032 (2012).
[Crossref]

X. Li, L. Yang, C. Hu, X. Luo, and M. Hong, “Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency,” Opt. Express 19(6), 5283–5289 (2011).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optik (1)

R. Dao, X. Kong, H. Zhang, and X. Su, “A tunable broadband terahertz metamaterial absorber based on the vanadium dioxide,” Optik 180, 619–625 (2019).
[Crossref]

Phys. Rev. B (1)

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Plasmonics (1)

K. Arik, S. AbdollahRamezani, and A. Khavasi, “Polarization insensitive and broadband terahertz absorber using graphene disks,” Plasmonics 12(2), 393–398 (2017).
[Crossref]

Prog. Electromagn. Res. (1)

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incidence angle,” Prog. Electromagn. Res. 101, 231–239 (2010).
[Crossref]

Sci. Rep. (1)

S. Wang, L. Kang, and D. H. Werner, “Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2),” Sci. Rep. 7(1), 1–8 (2017).
[Crossref]

Science (2)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the unit cell of the proposed broadband THz absorber. (b) Top view of the unit cell. The four identical VO2 square loops (cyan) on the top, the dielectric layer (grey) in the middle, and the metal ground plane (yellow) on the bottom.
Fig. 2.
Fig. 2. (a) Reflection, transmission, and absorption spectra of the broadband absorber. (b) Color map of the absorption spectrums with different polarization angles.
Fig. 3.
Fig. 3. (a) Reflection and (b) absorption spectra with different conductivities of VO2. (c) Real parts and (d) imaginary parts of permittivity with different conductivities of VO2.
Fig. 4.
Fig. 4. The comparison of the absorption spectra between the dielectric-metal structure (without VO2) and the absorber (VO2 in the insulator phase) under different thicknesses of dielectric spacer.
Fig. 5.
Fig. 5. (a) Real parts and (b) the imaginary parts of the relative impedance with different conductivities of VO2.
Fig. 6.
Fig. 6. Electric field distributions of the proposed absorber at (a) f1=2.23 THz, (b) f2=3.02 THz, (c) f3=3.9 THz.
Fig. 7.
Fig. 7. The absorption spectra of the proposed absorber with different incident angles for (a) TE polarization and (b) TM polarization.

Tables (1)

Tables Icon

Table 1. Comparison of absorption performance between different absorbers. MPA marked with * represents multi-band absorption.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = 1 R ( ω ) = 1 | Z Z 0 Z + Z 0 | 2 = 1 | Z r 1 Z r + 1 | 2
Z r = ± ( 1 + S 11 ( ω ) ) 2 S 21 2 ( ω ) ( 1 S 11 ( ω ) ) 2 S 21 2 ( ω )

Metrics