Abstract

We report the demonstration of a fiber-based supercontinuum source delivering up to 825 mW of average output power between 2.5 and 5.0 µm generated in all-normal dispersion regime. The pumping source consists of an amplified ultrafast Er3+:ZrF4 fiber laser providing high peak power femtosecond pulses at 3.6 µm with an average output power exceeding the watt-level. These pulses are spectrally broadened through self-phase modulation using commercial chalcogenide-based step-index fibers. Al2O3 anti-reflection coatings were sputtered on chalcogenide fiber tips to increase the launching efficiency from 54% to 82%, making this record output power possible, and thus confirming that such coatings can support watt-level pumping with intense femtosecond pulses. To the best of our knowledge, this result represents the highest average output power ever achieved from a As2Se3-based mid-IR supercontinuum source with the potential of a high degree of coherence.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In spectroscopic applications such as those involving frequency combs [1], remote sensing [2] and medical diagnosis [3], poor signal-to-noise ratio (SNR) is often the most limiting issue. For this reason, high-power, low-noise and coherent sources are needed. Spectroscopic measurements performed in the mid-infrared (MIR) usually provide the highest molecular absorption contrast since the fundamental resonances of most molecules fall within this spectral range. MIR supercontinuum (SC) light sources are thus of keen interest, especially in the 3–5 µm atmospheric window, as they possess both a broad spectrum and the high brightness of a laser. SC sources emitting above 5 µm are usually based on chalcogenide glass (ChG) fibers since they benefit from an extended MIR transmission window while providing a nonlinear refractive index (n2) as high as 1000 times that of silicate and fluoride glasses [4]. Additionally, ChG fibers were shown recently to support high continuous wave power in the MIR when their tip was properly conditioned [5].

Nowadays, fiber lasers are arguably the most promising pumping sources for MIR SC generation given their compactness, ruggedness and efficiency. Fiber lasers generally provide a high beam quality, a high brightness and strong potential for power scaling. Until recently, most available ultrafast fiber lasers were restricted to either low peak powers or short wavelength operation (i.e. below 2.2 µm). Therefore, engineering the dispersion and nonlinearity of ChG fiber was required to reach the threshold for extended MIR SC generation. For this purpose, several studies have been reported using either tapered fibers (TF) [6], micro-structured fibers (MOF) [7] or step-index fibers with high numerical aperture (HNASIF) [8]. Recently, based on a mode-locked fiber laser near 3 µm as the pumping source, Hudson et al. demonstrated a SC spanning from 2 to 12.1 µm with >35 mW average power via a tapered HNASIF having a multi-material ChG design [9]. However, the power handling of chalcogenide-based TF and MOF is usually quite low, thus limiting their power scalability.

SC generation in cascaded fiber amplifiers and nonlinear fibers is another promising approach for the spectral broadening of longer pulses (ps or ns), provided by either a laser diode or a fiber laser. For example, a 15 W average power SC extending up to 4.5 µm in a ZBLAN SIF was recently demonstrated by Yin et al. [10]. In other demonstrations, the cascaded approach was also used to generate spectral broadening up to 5.4 µm in InF3 SIF [11], up to 8 µm in AsSe SIF [12] and, very recently, up to 11 µm in cascaded AsS-AsSe SIFs [13]. Moreover, Ref. [13] sets output power records for both As2S3 and As2Se3 based MIR SC with 1.39 W and 417 mW respectively. A cascaded ChG-based SC with an average power of 565 mW was also achieved by Gattass et al. using an AsS SIF [14]. Since these SC sources are seeded with long pulses, spectral broadening originates from sub-pulses building up from noise via modulation instability [15], which notably reduces their SNR and, thereby, their utility for demanding spectroscopic applications.

In this Letter, we report a coherent As2Se3 fiber-based MIR SC exhibiting both a 825 mW average power and a spectrum spanning from 2.5 to 5.0 µm (at −30 dB level). Instead of using a cumbersome solid-state pump source [16], these record-breaking performances are made possible by the use of a newly developed femtosecond fiber laser pump source that provides a high input average power (1150 mW) around 3.6 µm in combination with the use of Al2O3 AR-coatings deposited on the ChG fiber facets to significantly enhance the pump launching efficiency. The use of a ChG fiber with a normal dispersion throughout the 3–5 µm spectral range is allowing for the generation of a self-phase-modulation based SC which is thus potentially coherent.

2. Method

As shown in Fig. 1, the experimental setup merely consists of a fiber master oscillator power amplifier (MOPA) and a short piece of ChG SIF. The seeding source is a mode-locked femtosecond fiber oscillator [17] that is amplified and redshifted at 3.58 µm through soliton self-frequency shift (SSFS) in a single-pass amplifier stage, as recently demonstrated in [18]. The amplifier is made of a 20-meter long erbium-doped fluoride fiber, which is pumped at 976 nm over the first 1.25 m only. Parasitic CW lasing in the fiber amplifier was avoided by splicing a 500 µm long AlF3 end-cap and by using a long-pass filter (LPF) at 3 µm between the coupling lenses (L1 and L2). This filter was used to attenuate the secondary solitons generated during the SFSS process [18]. Even though the coupling lenses (ZnSe, f = 12.7 mm) were 3–5 µm AR coated, their transmission losses were still high with around 10% each. The long pass filter also added ∼12% loss within the 3–5 µm region. Overall, the free-space optics reduced the total available incident power by ∼30%. For each SC measurement, the average power and the spectrum were recorded with the same calibrated measurement setup as in [18]. The average power was measured with a thermopile detector and the output spectra were measured with a monochromator coupled to a nitrogen-cooled InSb detector. Each spectrum was measured with a spectral resolution of 2 nm.

 figure: Fig. 1.

Fig. 1. Schematic of the experimental setup. L1-L2, ZnSe aspheric lenses; LPF: long pass filter, cutoff wavelength at 3 µm (−3 dB level); CMS: cladding mode stripper.

Download Full Size | PPT Slide | PDF

3. Results and discussion

We first compared the impact of the fiber design on the resulting SC by launching the filtered redshifted ultrafast laser pulse at its maximum pump level into three different low-loss ChG SIFs: a single-mode fiber based on As2S3 (named AsS), a few-mode fiber based on As2Se3 (named AsSe), and a highly multimode multimaterial fiber based on As2Se3 in the core and As2S3 in the cladding (named AsSe/S). All of these fibers are commercially available at CorActive HighTech inc. The fiber parameters are summarized in Tab.1 and their fabrication process is described in [12]. The group velocity dispersions ($\beta $2) along with the mode field diameters for the LP01 mode of the three fibers are presented in Fig. 2, calculated from the Sellmeier coefficients found in [19] and [20]. A few centimeters on both ends of each ChG SIF segment were covered with a high-index indium-gallium alloy to remove the cladding modes.

 figure: Fig. 2.

Fig. 2. Calculated group velocity dispersion coefficients (β2) (solid line) and mode field diameters (MFD) (dotted line) for the three ChG fibers (Table 1) between 2 – 7 µm. λi refers to input wavelength.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Fiber parameters summarya

Figure 3 presents the SC spectra generated in the three ChG fibers without AR coating along with the filtered pump spectrum. As expected, the spectra extend almost symmetrically around the input signal wavelength as the nonlinear processes involved when pumping in the normal dispersion regime with femtosecond pulses are self-phase modulation (SPM) and optical wave-breaking [15]. In addition, the SC shape is almost completely settled after only 10–15 cm of propagation since the strong normal dispersion quickly broadens the pulse temporally, thus reducing its peak power and thus any further SPM-induced spectral broadening. This explanation is supported by simple calculations of the nonlinear length, defined as ${\textrm{L}_{\textrm{NL}}}\, = \, \,1/{\textrm{P}_0}\; {\gamma}$ where ${\gamma } = ({{{\omega }_0}{\textrm{n}_2}} )/({\textrm{c}\;{\textrm{A}_{\textrm{eff}}}} )$, the dispersive length, defined as ${\textrm{L}_{\textrm{D}}} = \, {T_0}^2\, /|{{{\beta }_2}} |$ and the optical wave-breaking length [21], defined as ${\textrm{L}_{\textrm{WB}}} = 1/({4\exp ({ - 3/2} ){L_D}/{L_{NL}}} )$. For example, the non-linear and dispersive lengths for the AsSe/S SIF are ∼ 1.7 mm and 62.8 mm, respectively, given n2 = 13 × 10−18 m2/W [22] for pulses with T0 = 136 fs and P0 = 50.6 kW. The optical wave-breaking length is thus evaluated to be 3.03 cm. For fiber lengths longer than the optical wave-breaking length, a slight decrease of the output average power is observed (a few milliwatts) due to the fiber losses, but the spectrum shape remains almost the same and flat. Hence, for convenience, fiber lengths of 35 cm or longer were used for the SC experiments.

 figure: Fig. 3.

Fig. 3. Comparison of the measured output SC spectra from three ChG SIFs without AR-coatings at the maximum input power.

Download Full Size | PPT Slide | PDF

Although each SC shows a similar spectrum between 3–5 µm, they all exhibit different features in term of noise, as the different fiber parameters modulate the number of supported transverse modes. The broadest (2.5–5.0 µm at −30 dB level) and most powerful (596 mW) SC was obtained with the HNASIF AsSe/S fiber. This output power already exceeds the previous record output power in an As2Se3 fiber [14]. Indeed, its high NA (∼1.4) leads to good modal confinement with a nearly constant MFD (∼12 µm) over the SC’s spectral extent (see Fig. 2). Nevertheless, it is possible that power transfers between higher order modes hamper the SC broadening [23]. These power transfers between the higher order modes keep most of the SC energy around the pumping wavelength. Hence, we believe that the observed spectrum asymmetry between 4.2 and 5.0 µm is generated mainly by the fundamental mode. The 450 mW SC generated in the AsSe SIF displays the narrowest bandwidth, i.e. from 2.7 to 4.7 µm, having both the highest normal dispersion and the largest MFD within the 3–5 µm spectral range. The single-mode AsS SC spreads between 2.5 to 4.8 µm with an output power of 576 mW. Such sulfide fiber has a lower normal dispersion between 2 - 4 µm compared to the selenide fibers, which explains its larger spectral power density (SPD) within the 2.5 - 3 µm range. However, the long-wavelength edge of the SC is limited by the sharp increase of its mode field diameter (MFD) above 4 µm. To better assess the nonlinear processes involved, we show the effect of the incident peak power on the generated SC spectrum in Fig. 4 for five incident power levels. Multiple broadband neutral density filters (with OD up to 1.9) were inserted in the optical path prior launching the pulses into the AsS fiber without changing the pump pulses characteristics. The spectra are indeed symmetrical around the pumping wavelength with a great flatness over the whole spectral range which confirms that SPM broadening is involved dominantly. In this figure, we can also observe the CO2 absorption band around 4.2 µm as well as the water vapor (OH) absorption band around 2.8 µm, both abundant in the ambient air of the free-space detection unit.

 figure: Fig. 4.

Fig. 4. Experimental output spectrums of the generated SC for different pumping level. The corresponding average output power is shown in the legend as well as the OD number of the used filter.

Download Full Size | PPT Slide | PDF

Compared to the AsS SC, we also note that the few-modes AsSe fiber exhibits evident noise between 3–4 µm while the AsSe/AsS fiber displayed a significant noise level over all its bandwidth. In fact, the noise seems to be caused by the interference and nonlinear coupling between higher order modes, which is highly sensitive to small perturbations in phase and amplitude.

We decided to investigate the potential of the AsSe/S fiber to further increase the SC output power by reducing the strong Fresnel reflections (i.e. 22% from each AsSe facet) that led to poor launching efficiencies: respectively 42% for the AsSe fiber, 51% for the AsS fiber and 54% for the AsSe/S fiber. Different approaches have been demonstrated to reduce the reflection from the fiber facet, including AR coatings [5] and the moth-eye patterning technique [24]. Here, we investigated Al2O3-based AR-coatings, following the recent demonstration by Sincore et al. [5] that reported a multi-watt power handling of such AR-coatings in AsS fibers. Initial deposition tests were performed on polished AsSe preform slices with a deposition system based on mid-frequency ac-dual magnetron sputtering assisted by an ion beam (IntLVac, model Nanochrome). It was found that an AR-coating made of a single layer of Al2O3 (with 530 nm thickness for a design wavelength of 3.6 µm) could sustain high optical average power while providing a quasi-ideal refractive index of n ∼ 1.69, close to the square root of the refractive index of As35Se65 glass at 3.6 µm (n ∼ 2.73). Transmittance measurements of the AsSe samples with and without Al2O3 AR-coatings were performed with a FTIR spectrometer (PerkinElmer, model Frontier), as shown in Fig. 5. We see that the transmission near 3.6 µm was increased up to 99.1% with AR-coatings on both sides. The same deposition process was then performed on both ends for the AsSe/S fiber.

 figure: Fig. 5.

Fig. 5. Transmission of the polished AsSe sample with and without Al2O3 AR-coating(s). The dash lines correspond to the calculated Fresnel reflection of one (small dots) and two surfaces (thick dots). Inset: a picture of the Al2O3 AR-coated AsSe sample.

Download Full Size | PPT Slide | PDF

A similar SC generation experiment was conducted on the AR-coated AsSe/S fiber. The dataset is compared in Fig. 6 with the previous uncoated AsSe/S SC spectrum. We note that the long wavelength edge is slightly shifted for the AR-coated fiber due to an increase of about 20% of the launched peak power (P0 = 60.6 kW vs 50.6 kW). Moreover, the evolution of the coupling efficiency with respect to the incident power of all SC experiments is shown in Fig. 7. In this figure, although the measured output average power was very stable for every generated SCs, all the curves seem to saturate with increasing incident power. In fact, the SC spectrum meets higher background and AR-coating losses as it broadens in the ChG fiber. For the AsSe/S fiber, the pump launching efficiency was increased from 54.4%, without AR-coatings, to 82.2% with AR-coatings. The ratio between these values is about 65% which corresponds well to the Fresnel reflections of two AsSe surfaces (see Fig. 5), thus confirming that the AR-coatings significantly reduced the reflections.

 figure: Fig. 6.

Fig. 6. Comparison of the SC spectrum at the output of the AR-coated (blue) and uncoated AsSe/S (red) fiber at maximum input power.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. Comparison of the measured SC output power with respect to the incident power, for experiments with (triangles) and without (circles) AR-Coatings. Linear regressions are also shown next to each corresponding dataset.

Download Full Size | PPT Slide | PDF

Several improvements could be made to the SC source to improve its overall optical performances. The average output power could be maximized either by (1) increasing the oscillator repetition rate by decreasing its cavity length [25] or by (2) using optical components with lower losses, especially fiber-based components such as pump combiners and fusion splices [26]. The SC bandwidth could be improved with the use of a novel double-clad fiber [27] or a smaller core single-mode AsSe SIF. As recently reported, the fiber amplifier design can be further optimized to increase the incident peak power and/or output wavelength [28]. For extreme SC broadening above 8 µm, a proper multi-material HNASIF design with downshifted ZDW could be used [15]. Indeed, coherent SC can be generated when femtosecond pulses are nonlinearly interacting within a single-mode fiber under normal dispersion regime [15]. In our case, the SC generated from the single-mode AsS SIF is most likely coherent, and its output power could be improved with similarly designed Al2O3 AR coatings.

With the improvements proposed above, this approach could lead to an octave-spanning watt-level coherent SC source that has tremendous added-value for applications in spectroscopy and fundamental science. For instance, it could be used in a f-2f interferometer for carrier-envelop phase stabilization of the ultrafast fiber laser seed [29], enabling the generation of high-power frequency combs covering the whole 3–5 µm region. The output pulses from this SC system could also be compressed to the few-cycle regime for high-energy XUV generation [30] by using a pair of gratings [31] or bulk glass material [32].

4. Summary

To conclude, we have achieved, to the best of our knowledge, the highest average power ever reported from a MIR SC generated in an As2Se3 fiber. This demonstration was made possible by the use of a novel MIR SSFS fiber-based pumping source as well as the use of Al2O3 AR-coatings deposited on the ChG fiber facets. The proposed SC source is completely fiber-based and made with commercially available SIFs. This demonstration could lead to practical applications in spectroscopy and fundamental sciences.

Funding

Natural Sciences and Engineering Research Council of Canada (CG112389, IRCPJ469414-13); Canada Foundation for Innovation (5180); Fonds de Recherche du Québec - Nature et Technologies (144616).

Disclosures

LRR, SD: Femtum Inc. (I,E,P). MB, RV: Femtum Inc. (S). The authors declare no conflicts of interest.

References

1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012). [CrossRef]  

2. N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014). [CrossRef]  

3. F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5(4), 378 (2018). [CrossRef]  

4. G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015). [CrossRef]  

5. A. Sincore, J. Cook, F. Tan, A. El Halawany, A. Riggins, S. McDaniel, G. Cook, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “High power single-mode delivery of mid-infrared sources through chalcogenide fiber,” Opt. Express 26(6), 7313–7323 (2018). [CrossRef]  

6. A. Al-Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Two octaves mid-infrared supercontinuum generation in As2Se3 microwires,” Opt. Express 22(25), 31131–7 (2014). [CrossRef]  

7. U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015). [CrossRef]  

8. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “18-10 Μm Mid-Infrared Supercontinuum Generated in a Step-Index Chalcogenide Fiber Using Low Peak Pump Power,” Opt. Lett. 40(6), 1081 (2015). [CrossRef]  

9. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163 (2017). [CrossRef]  

10. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with > 1 W power beyond 3.8 µm,” Opt. Lett. 42(12), 2334 (2017). [CrossRef]  

11. J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2,4 to 5,4 µm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756 (2016). [CrossRef]  

12. L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 µm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605 (2016). [CrossRef]  

13. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to 11 µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296 (2018). [CrossRef]  

14. R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012). [CrossRef]  

15. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]  

16. O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016). [CrossRef]  

17. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623 (2015). [CrossRef]  

18. S. Duval, J.-C. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm,” Opt. Lett. 41(22), 5294 (2016). [CrossRef]  

19. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444 (2014). [CrossRef]  

20. W. S. Rodney, I. H. Maltison, and T. A. King, “Refractive Index of Arsenic Trisulfide,” J. Opt. Soc. Am. 48(9), 633–635 (1958). [CrossRef]  

21. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938 (2008). [CrossRef]  

22. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011 (2014). [CrossRef]  

23. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513 (2016). [CrossRef]  

24. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760 (2010). [CrossRef]  

25. S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piche, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” SPIE Fiber Lasers XIII Technol. Syst. Appl.9728, 2–9 (2016). [CrossRef]  

26. K. Yin, B. Zhang, J. Yao, Z. Cai, G. Liu, and J. Hou, “Toward High-Power All-Fiber 2–5 µm Supercontinuum Generation in Chalcogenide Step-Index Fiber,” J. Lightwave Technol. 35(20), 4535–4539 (2017). [CrossRef]  

27. K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017). [CrossRef]  

28. S. Duval, M. Olivier, L.-R. Robichaud, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Numerical modeling of mid-infrared ultrashort pulse propagation in Er 3: fluoride fiber amplifiers,” J. Opt. Soc. Am. B 35(6), 1450 (2018). [CrossRef]  

29. D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000). [CrossRef]  

30. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012). [CrossRef]  

31. R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42(23), 4893–4896 (2017). [CrossRef]  

32. B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  2. N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014).
    [Crossref]
  3. F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5(4), 378 (2018).
    [Crossref]
  4. G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
    [Crossref]
  5. A. Sincore, J. Cook, F. Tan, A. El Halawany, A. Riggins, S. McDaniel, G. Cook, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “High power single-mode delivery of mid-infrared sources through chalcogenide fiber,” Opt. Express 26(6), 7313–7323 (2018).
    [Crossref]
  6. A. Al-Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Two octaves mid-infrared supercontinuum generation in As2Se3 microwires,” Opt. Express 22(25), 31131–7 (2014).
    [Crossref]
  7. U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
    [Crossref]
  8. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “18-10 Μm Mid-Infrared Supercontinuum Generated in a Step-Index Chalcogenide Fiber Using Low Peak Pump Power,” Opt. Lett. 40(6), 1081 (2015).
    [Crossref]
  9. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. El Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163 (2017).
    [Crossref]
  10. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with > 1 W power beyond 3.8 µm,” Opt. Lett. 42(12), 2334 (2017).
    [Crossref]
  11. J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2,4 to 5,4 µm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756 (2016).
    [Crossref]
  12. L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 µm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605 (2016).
    [Crossref]
  13. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to 11 µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296 (2018).
    [Crossref]
  14. R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
    [Crossref]
  15. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  16. O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
    [Crossref]
  17. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623 (2015).
    [Crossref]
  18. S. Duval, J.-C. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm,” Opt. Lett. 41(22), 5294 (2016).
    [Crossref]
  19. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444 (2014).
    [Crossref]
  20. W. S. Rodney, I. H. Maltison, and T. A. King, “Refractive Index of Arsenic Trisulfide,” J. Opt. Soc. Am. 48(9), 633–635 (1958).
    [Crossref]
  21. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938 (2008).
    [Crossref]
  22. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, and B. Luther-Davies, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011 (2014).
    [Crossref]
  23. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513 (2016).
    [Crossref]
  24. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760 (2010).
    [Crossref]
  25. S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piche, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” SPIE Fiber Lasers XIII Technol. Syst. Appl.9728, 2–9 (2016).
    [Crossref]
  26. K. Yin, B. Zhang, J. Yao, Z. Cai, G. Liu, and J. Hou, “Toward High-Power All-Fiber 2–5 µm Supercontinuum Generation in Chalcogenide Step-Index Fiber,” J. Lightwave Technol. 35(20), 4535–4539 (2017).
    [Crossref]
  27. K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
    [Crossref]
  28. S. Duval, M. Olivier, L.-R. Robichaud, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Numerical modeling of mid-infrared ultrashort pulse propagation in Er 3: fluoride fiber amplifiers,” J. Opt. Soc. Am. B 35(6), 1450 (2018).
    [Crossref]
  29. D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref]
  30. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
    [Crossref]
  31. R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42(23), 4893–4896 (2017).
    [Crossref]
  32. B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
    [Crossref]

2018 (4)

2017 (4)

2016 (5)

2015 (3)

2014 (3)

2012 (3)

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

2010 (2)

J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760 (2010).
[Crossref]

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

2008 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2000 (1)

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

1958 (1)

Abdel-Moneim, N.

Abouraddy, A. F.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Aggarwal, I.

Aggarwal, I. D.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Alamgir, I.

Alisauskas, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Al-Kadry, A.

Alvarez, O.

Andriukaitis, G.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Antipov, S.

Arpin, P.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Badding, J. V.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Balciunas, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Ballato, J.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Baltuska, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Bang, O.

Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Bedford, R.

Béjot, P.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Benson, T. M.

Bernier, M.

Besson, C.

N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014).
[Crossref]

Bisson, É

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Borondics, F.

Brandon Shaw, L.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Brilland, L.

U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
[Crossref]

Brown, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Busse, L.

Cai, Z.

Caillaud, C.

U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
[Crossref]

Canat, G.

N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014).
[Crossref]

Carrée, J.-Y.

Cezard, N.

N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014).
[Crossref]

Châtigny, S.

Chen, M.-C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Chenard, F.

Cheng, T.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

Choi, D.-Y.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cook, G.

Cook, J.

Corkum, P. B.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Couillard, J.-F.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Dantanarayana, H. G.

Danto, S.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

David, M.

U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
[Crossref]

Delarosbil, J.-L.

Désévédavy, F.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Dobroc, A.

N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Duhant, M.

N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014).
[Crossref]

Dumas, P.

Duval, S.

Ebendorff-heidepriem, H.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

El Amraoui, M.

El Halawany, A.

Fedorov, V. V.

Février, S.

Fink, Y.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Finot, C.

Florea, C.

Fortin, V.

Freeman, M. J.

Fuerbach, A.

Furniss, D.

Gadret, G.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Gaeta, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Gai, X.

Gaponov, D.

Gattass, R. R.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Gauthier, J.-C.

Genest, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gibson, R.

Giessen, H.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Giguère, M.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Guo, K.

Guo, W.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hernandez-Garcia, C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Hideur, A.

Hou, J.

Hu, T.

Hudson, D. D.

Ifarraguerri, A. I.

Islam, M. N.

Jackson, S. D.

Janiszewski, B.

Jaron-Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Jossent, M.

Jules, J.-C.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Kapteyn, H. C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Kasparian, J.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Kedenburg, S.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Kibler, B.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938 (2008).
[Crossref]

Kieffer, J. C.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

King, T. A.

Kubat, I.

Lavoute, L.

Légaré, F.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Li, L.

Liu, G.

Liu, L.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

Luther-Davies, B.

Madden, S.

Maltison, I. H.

Martinez, R. A.

Martyshkin, D. V.

Matsumoto, M.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

Maynard, R. L.

McDaniel, S.

Messaddeq, Y.

Miklos, F.

Mirov, S. B.

Møller, U.

U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
[Crossref]

Mouawad, O.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Mucke, O. D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Murnane, M. M.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Nagasaka, K.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

Nguyen, V. Q.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Ohishi, Y.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

Olivier, M.

Paradis, P.

Petersen, C. R.

U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
[Crossref]

Piche, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piche, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” SPIE Fiber Lasers XIII Technol. Syst. Appl.9728, 2–9 (2016).
[Crossref]

Piché, M.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Plaja, L.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Plant, G.

Popmintchev, D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Popmintchev, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Poulain, M.

Poulain, S.

Provost, L.

Pugzlys, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Pureza, P. C.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Qi, S.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Renard, W.

N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014).
[Crossref]

Riggins, A.

Robichaud, L.-R.

Rochette, M.

Rodney, W. S.

Sandt, C.

Sanghera, J.

Sanghera, J. S.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schmidt, B. E.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Schrauth, S. E.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Seddon, A. B.

Shaw, B.

Shen, X.

Shim, B.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Shiner, A. D.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Sincore, A.

Smektala, F.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Sojka, L.

Steinle, T.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Steinmann, A.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Stolyarov, A. M.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Sujecki, S.

Suzuki, T.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

Tan, F.

Tang, Z.

Tao, G.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Terry, F. L.

Tezuka, H.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

Trallero-Herrero, C.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Troles, J.

U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
[Crossref]

Tuan, T. H.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

Vallée, R.

Villeneuve, D. M.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Wabnitz, S.

Wang, R.

Wang, T.

Wei, W.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

Wolf, J. P.

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

Woodward, R. I.

Yang, L.

Yang, Z.

Yao, J.

Yin, K.

Yu, Y.

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “18-10 Μm Mid-Infrared Supercontinuum Generated in a Step-Index Chalcogenide Fiber Using Low Peak Pump Power,” Opt. Lett. 40(6), 1081 (2015).
[Crossref]

U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
[Crossref]

Zhai, C.

Zhang, B.

Adv. Opt. Photonics (1)

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7(2), 379–458 (2015).
[Crossref]

Appl. Phys. B (1)

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As 2 S 3 suspended-core fibers,” Appl. Phys. B 122(6), 177 (2016).
[Crossref]

Appl. Phys. Lett. (1)

B. E. Schmidt, P. Béjot, M. Giguère, A. D. Shiner, C. Trallero-Herrero, É Bisson, J. Kasparian, J. P. Wolf, D. M. Villeneuve, J. C. Kieffer, P. B. Corkum, and F. Légaré, “Compression of 1.8 µm laser pulses to sub two optical cycles with bulk material,” Appl. Phys. Lett. 96(12), 121109 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Opt. Lett. (7)

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 W spectrally flat all-fiber supercontinuum laser source with > 1 W power beyond 3.8 µm,” Opt. Lett. 42(12), 2334 (2017).
[Crossref]

J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2,4 to 5,4 µm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756 (2016).
[Crossref]

L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, and M. Bernier, “Compact 3–8 µm supercontinuum generation in a low-loss As2Se3 step-index fiber,” Opt. Lett. 41(20), 4605 (2016).
[Crossref]

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to 11 µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296 (2018).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “18-10 Μm Mid-Infrared Supercontinuum Generated in a Step-Index Chalcogenide Fiber Using Low Peak Pump Power,” Opt. Lett. 40(6), 1081 (2015).
[Crossref]

S. Duval, J.-C. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm,” Opt. Lett. 41(22), 5294 (2016).
[Crossref]

R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42(23), 4893–4896 (2017).
[Crossref]

Opt. Mater. Express (2)

Optica (3)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (2)

D. J. Jones, S. A. Diddams, J. L. Hall, S. T. Cundiff, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).
[Crossref]

Other (4)

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piche, and R. Vallée, “23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 µm,” SPIE Fiber Lasers XIII Technol. Syst. Appl.9728, 2–9 (2016).
[Crossref]

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in chalcogenide double-clad fiber with near zero-flattened normal dispersion profile,” J. Opt. (United Kingdom)19, (2017).
[Crossref]

N. Cezard, G. Canat, A. Dobroc, M. Duhant, W. Renard, and C. Besson, “Fast and wideband supercontinuum absorption spectroscopy in the mid-IR range,” Imaging Appl. Opt.2014, LW4D.4 (2014).
[Crossref]

U. Møller, C. R. Petersen, I. Kubat, Y. Yu, X. Gai, L. Brilland, M. David, C. Caillaud, J. Troles, B. Luther-davies, and O. Bang, “Two-Octave Mid-Infrared Supercontinuum Generation in As-Se Suspended Core Fibers,” 1, 8–9 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the experimental setup. L1-L2, ZnSe aspheric lenses; LPF: long pass filter, cutoff wavelength at 3 µm (−3 dB level); CMS: cladding mode stripper.
Fig. 2.
Fig. 2. Calculated group velocity dispersion coefficients (β2) (solid line) and mode field diameters (MFD) (dotted line) for the three ChG fibers (Table 1) between 2 – 7 µm. λi refers to input wavelength.
Fig. 3.
Fig. 3. Comparison of the measured output SC spectra from three ChG SIFs without AR-coatings at the maximum input power.
Fig. 4.
Fig. 4. Experimental output spectrums of the generated SC for different pumping level. The corresponding average output power is shown in the legend as well as the OD number of the used filter.
Fig. 5.
Fig. 5. Transmission of the polished AsSe sample with and without Al2O3 AR-coating(s). The dash lines correspond to the calculated Fresnel reflection of one (small dots) and two surfaces (thick dots). Inset: a picture of the Al2O3 AR-coated AsSe sample.
Fig. 6.
Fig. 6. Comparison of the SC spectrum at the output of the AR-coated (blue) and uncoated AsSe/S (red) fiber at maximum input power.
Fig. 7.
Fig. 7. Comparison of the measured SC output power with respect to the incident power, for experiments with (triangles) and without (circles) AR-Coatings. Linear regressions are also shown next to each corresponding dataset.

Tables (1)

Tables Icon

Table 1. Fiber parameters summary a

Metrics