Abstract

We propose two hyperentanglement concentration protocols (hyper-ECPs) for two-photon entangled states in the polarization and orbital angular momentum degrees of freedom. The two cases distilling a maximally hyperentangled state from partially entangled pure state with unknown parameters and known parameters are dissected respectively. Both of the protocols require only linear optical elements which make our protocols more feasible for current technologies. In our protocols, the remote parties perform different local operations, which will reduce everyone’s operation and improve the total efficiency. Each of them has the theoretical maximum success probability in the corresponding situation. The hyper-ECPs can be exploited simply to hyperentangled Greenberger-Horne-Zeilinger states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum entanglement is a unique physical nonlocal phenomenon which is considered to be the most nonclassical manifestations of quantum formalism. The quantum state is entangled, if quantum state with pairs or groups of particles must be described as a whole, which means each particle cannot be described independently and the measurement of one particle will change the states of the rest particles. The entangled state, especially the maximally entangled state, is an important physical resource which has been widely exploited in quantum information process (QIP), such as quantum computation [1], quantum key distribution (QKD) [2, 3], quantum teleportation [4], quantum dense coding [5, 6], quantum security direct communication (QSDC) [7–11] and so on. In addition, the entangled photons and entanglement swapping [12] are exploited in the quantum repeater to improve the distance of quantum communication due to the limitations of current technologies in the quantum communication or quantum network. The entangled state are composed of different kinds of particles in a single degree of freedom (DOF), e.g. polarization, energy, spatial, momentum direction and so on. Different DOFs or different kinds of particles can also form entangled states which are called hyperentanglement [13] and hybridentanglement, respectively. The hyperentangled quantum state has attracted much more attention due to its extensive applications in quantum communication and quantum information processing. For example, it can be used to improve the channel capacity of quantum communication, assist in completing the Bell state analysis [14–16], help implement the deterministic entanglement purification protocols [17–19] (EPP), demonstrate basic physical problems [20] and so on. Several kinds of DOFs assisting QIPs have been reported in theory and experiments, such as polarization-time-energy [16, 21], polarization-momentum [22–23], polarization-spatial modes [17, 21, 24, 25], and polarization-spatial-time-bin entanglement [26–28]. Orbital angular momentum (OAM), especially the entanglement of OAM [29] is a novel kind of quantum resources for the multi-free degree space property which can beat the channel capability limit for linear optic QIP. It allows one to encode a single photon with a higher-dimensional quantum space for the OAM can take any integer value [30–32] which has led to many applications in qutrit quantum communication protocols [33, 34]. In 2008, Barreiro et al. [34] demonstrated the quantum advantage of hyperentanglement resorting to photons entangled in spin and OAM simultaneously. They proposed a dense coding experiment with linear optics which breaks through the channel capacity limit and designed an apparatus for spin-obit Bell-state analysis (BSA). In 2015, D. Bhatti et al. [35] investigated two- and multi-photon entangled states using OAM and spin angular momentum and presented the experimental setup to produce two-photon polarization-OAM entangled states.

In practice, the entangled photon pairs will inevitably interact with environment during their distribution or storage processes. The decoherence and loss of quantum states will influence the efficiency and the security of quantum communication processes, which will limit the communication distance. Several protocols are proposed to enhance the communication efficiency and increase distance, such as quantum repeater [36, 37], quantum error correction code (QECC) [38], entanglement purification [39–44], decoherence-free subspace (DFS) [45–50] and so on. Entanglement concentration is also an effective way to preserve the fidelityof entanglement channels, which is employed to distill maximally entangled states from an ensemble of partially entangled pure states [51]. Many kinds of entanglement concentration protocols have been proposed and discussed based on different quantum states [52–58]. In 2003, A. Vaziri et al. [59] presented the experimental realization of higher dimensional entanglement concentration of OAM entangled photons. The purification of hyperentangled states considering different physical systems and degrees of freedom has attracted more and more attention in recent years. Concentration of hyperentangled states with different physical systems and DOFs has attracted much more attention recently [2–28, 60–62]. In 2012, Chen [63] presented a hyperentanglement concentration protocol (Hyper-ECP) and a Shannon dimensionality measurement protocol for the polarization-OAM partially hyperentangled states with known parameters. Both of the remote parties performed local operations on the two DOFs of a photon. Here, we propose practical asymmetrical Hyper-ECPs of polarization-OAM entanglement with known and unknown parameters in different initial states, respectively.

In this paper we offer two Hyper-ECPs of two-photon entanglement with OAM and polarization DOFs. The first one is to concentrate one maximally hyperentangled Bell-like state from two partially hyperentangled states with unknown parameters. The second concentration protocol has higher success probability and only needs one partially entangled state with known parameters. Both of the protocols can be extended to multi-photon hyperentanglement concentration as in [61], and the efficiencies should be the highest in different cases. Our protocols can be exploited in long distance communication effectively and expediently.

2. Asymmetrical hyperentanglement concentration protocol with unknown parameters

Suppose the nonlocal two photons are partially hyperentangled in polarization and OAM DOFs, initially. The state can be written as [21]

|ϕAB=(α|HH+β|VV)AB(δ|l,l+η|l,l)AB.

Here|H and|V represent the horizontal state and vertical state of polarization DOF, respectively.|l and|l denote the OAM eigenstates of photon in Laguerre-Gauss mode [64, 65] with l helicity but without radial dependence. The subscripts A and B make a distinction between the photons belonging to Alice and Bob who have a great distance off. α, β, δ and η are normalized constants satisfying|α|2+|β|2=1 and|δ|2+|η|2=1. In most of the QIPs, the maximally hyperentangled Bell-like states withα=β=12 andδ=η=12 are used to transmit information as quantum channel. So we wish to concentrate the following state from Eq. (1)

|ΦAB=12(|HH+|VV)AB(|l,l+|l,l)AB.

When α, β, δ and η are unknow parameters, the Hyper-ECP can be implemented with the help of another partially hyperentangled state Eq. (1). At the very beginning of Hyper-ECP, the two pairs of two-photon state as Eq. (3) are prepared by the source and shared by two remote users, Alice and Bob, respectively.

|ΦAliceBob=|ϕA1B1|ϕA2B2=[(α|HH+β|VV)(δ|l,l+η|l,l)]A1B1[(α|HH+β|VV)(δ|l,l+η|l,l)]A2B2.

The subscripts A1, A2, B1, and B2 are used to distinguish the four photons. The photons A1, A2 (B1, B2) are send to Alice (Bob) through different paths as shown in Fig. 1.

 

Fig. 1 The schematic illustration of the Hyper-ECP with unknown parameters. BS: beam splitter; PBS: polarization beam splitter;

Download Full Size | PPT Slide | PDF

FBS: polarization beam splitter which|F=12(|H+|V) transmitted and|S=12(|H|V) reflected;D1A,D2A,D1B,D2B: single photon detectors which distinguish|F and|S; FBH: forked binary holograms, which can divide photon into upper and lower path based on its OAM of+l andl respectively, and its OAM changed into zero; SLM: spatial light modulator, which produces OAM with values+l(l);Ril: adding a phase factor i to a quantum state with an OAM number ofl;σx(z)p:σx(z) on polarization DOF;σx(z)l:σx(z) on OAM DOF.

First of all, Alice and Bob make theσxp (a Pauli operator σx acting on the polarization DOF) operation on A2 and B2, respectively. The quantum state should be written as following,

[α2|HHVV+β2|VVHH+αβ(|HHHH+|VVVV)_]A1B1A2B2[(δ|l,l+η|l,l)(δ|l,l+η|l,l)]A1B1A2B2.

Then Bob sends photons B1 and B2 to a PBS which consolidates them and makes a parity comparison of polarization states by postselection. The photon in horizontal state passes through the PBS and the vertical one is reflected. The even-parity polarization section of underline in Eq. (4) is chosen by the postselection process, and the following discuss bases on this case. It is noted that the photons in|HH will exchange the route after PBS as described in Eq. (5).

αβ(|HH2HH1+|VV1VV2)A1B1A2B2[(δ|l,l+η|l,l)(δ|l,l+η|l,l)]A1B1A2B2.

The superscript1 and2 denote the two routes following PBS. The following process is showed in Fig. 1, and we will give a particular introduction later. On Alice’s side,A1 andA2 photons first enter±lOAM splitters, which consist of forked binary holograms (FBHs) and single-mode fiber [34]. The action of the FBH is a binary plane-wave phase grating, which divides an incoming photon in the state|l(|l) into “up” (“down”) path. The state of photon is transformed into Gaussian state with0 OAM. The state of the photons is following,

αβ(|HH2HH1+|VV1VV2)A1B1A2B2[(δ|0u,l+η|0d,l)(δ|0u,l+η|0d,l)]A1B1A2B2

u, u, d, and d are used to distinguish different lines in Fig. 1. The photon with l (l) OAM enters the u (d) route after passing through FBH 1 or u (d) route following FBH 2, and its OAM is changed into zero. The photons in line u (u) pass through a spatial light modulator (SLM) which changes the Gaussian beam into OAM of+l (l) before getting into BS 1. After the photon in line d or d passes through the beam splitter (BS) BS 2, it is detected by special single photon detectors (SPDs) D 1A and D 2A. The SPDs can distinguish the|F and|S polarization states of the photons, where|F=12(|H+|V) and|S=12(|H|V) are two superposition states of horizontally and vertically polarized states. After passing through the devices BS 1 and BS 2, the photons in line u and d or d and u will be chosen by postselection process. On the other hand, Bob makes Ri operation on the OAM DOF (Ril) of photon in line1, which will change the state|l intoi|l and keep state|l constant. Then the photon passes through a Mach-Zehnder (M-Z) interferometer to performσxl operation on the photons in the horizontal state, and the vertical state photons do not operate. Photon in line2 passes through the FBH first, which will change it into Gaussian state. Then Bob makes a special polarization measurement as Alice after the photon passing the BS 3. The non normalized quantum state before the SPDs can be represented as follows,

αβδη22|H|Hb|H|H(|la2+i|la1)|l(|0D1A+i|0D2A)(|0D1B+i|0D2B)+αβδη22|H|Hb|H|H(|la1+i|la2)|l(|0D2A+i|0D1A)(|0D2B+i|0D1B)+αβδη22|V|Vb|V|V(|la2+i|la1)|l(|0D1A+i|0D2A)(|0D2B+i|0D1B)+αβδη22|V|Vb|V|V(|la1+i|la2)|l(|0D2A+i|0D1A)(|0D1B+i|0D2B).

a1,a2 and b denote different routes showed in Fig. 1 in detail.D1A,D2A,D1B andD2B are also used to distinguish the routes followed by different SPDs. The maximally hyperentangled Bell-like state as Eq. (2) can be obtained by postselecting the situations in which the detectorsD1A(F),D1B(F)click and the photon passes linea1, orD2A(F),D1B(F) click and the photon passes linea2 with a success probability of|αβδη|2/4. In order to achieve the highest probability, the two users can make proper operations according to the measurement results of the SPDs. For example, if theD1A(S) (D2A(S)) detector clicks, Alice makes a σz operation on polarization DOF (σzp) [66] on the photon which passes through linea1 (a2). Bob makes σz operation on the polarization DOF (σzp) when the SPDD1B(S) clicks. The operation via measured results ofD1A,D2A,D1B, andD2B is shown in TABLE I. After using single-photon detectors and postselection, the success probability will be enhanced to the highest4|αβδη|2 in the unknown parameters case. The success probability with|α|([0,1]) and|δ|([0,1]) is shown in Fig. 3(a).

Tables Icon

Table 1. The Relationship of Operations and Measurement Results of D1A, D2A, D1B, and D2B.

3. Asymmetrical hyperentanglement concentration protocol with known parameters

In some of the practical process, users may known the values of parameters α, β, δ, and η. For example, Alice and Bob obtained parameter information by state estimation. The nonlocal state estimation of hyperentanglement has been well studied [63, 67, 68]. In this case, they may develop more efficient concentration protocols than the unknown parameters case. We will introduce a Hyper-ECP and give a brief discussion of the probability in this section. Each one of Alice and Bob initially have one photon of the hyperentangled state as in Eq. (1). Without loss of generality, we assume|α||β| and|δ||η| in the following discussion. In our asymmetrical protocol, the concentration of polarization DOF and OAM DOF can be implemented by Alice and Bob, respectively. It can also be accomplished by one of them. The concentration devices of the two DOFs is shown in Figs. 2(a) and 2(b), respectively. Here we discuss the first case as an example. The later case has the same result.

In order to distill the maximum polarization entangled state, Alice and Bob allow their photons to pass through the devices in Figs. 2(a) and 2(b), respectively. UBS represents an unbalanced beam splitter with the transmittanceT=|α|2|β|2 and reflectivityR=|β|2|α|2|β|2. It can be implemented by a adjustable beam splitting device which has been discussed a lot in other work [60, 61, 69]. It can also be replaced with optical attenuator in our protocol. Photon passes by the PBS 2 when the detector D’ is clicked. Then it is guided to the input port of the devices in Fig. 2(b), which concentrate the entangled state on OAM DOF. The UBS in Fig. 2(b) is an unbalanced beam splitter with the transmittanceT=|δ|2|η|2 and reflectivityR=|η|2|δ|2|η|2. The non normalized quantum state postselected by photon appeared in path 1 is

|ϕAB=αδ2(|HH+|VV)AB(|l,l+|l,l)AB,
and the quantum state when the photon appeared in path 2 is
|ϕAB=αδ2(|HH+|VV)AB(|l,l|l,l)AB.

The UBS can be changed into adjustable intensity modulator (AIM) [70] with attenuation rate R. The theoretical total success probability of our hyper-ECPs with known parameters is4|αδ|2if Alice makes aσzl operation on the photon in path 2, which is higher than the unknown parameters case, and also the maximum value of known parameters case [27, 28, 61]. Therefore, if the number of initial states is large, it is necessary to perform state estimation before concentration, which makes the protocol more efficient and practical. The success probability of this case with|α|([0,1]) and|δ|([0,1]) is shown in Fig. 3 (b).

 

Fig. 2 The schematic illustration of the Hyper-ECP for an initial state with known parameters. (a) This part is used to concentrate the Bell state of polarization DOF. UBS1 is an adjustable beam splitting with transmittance T, and can be replaced by an adjustable intensity modulator. (b) This part is used to concentrate the maximal entangled state of OAM. The UBS2 has transmittance here.

Download Full Size | PPT Slide | PDF

 

Fig. 3 (a) and (b) depict the success probability of our hyper-ECP for each two-photon four-qubit system with unknown and known parameters, respectively. The dash line in (b) corresponds to the highest probability 12.5% in unknown parameters case.

Download Full Size | PPT Slide | PDF

4. Discuss and summary

Hyperentanglement concentration is an effective solution for improving the entanglement of nonlocal photon systems. We have discussed the hyperentanglement concentration protocols in the case of known parameters and unknown parameters, respectively. The two-photon four-qubit hyperentangled state is in the spin-orbit modes. The success probability of the unknown parameters and known parameters initial states are4|αβδη|2 and4|αδ|2 (|α|<|β| and|δ|<|η|), respectively. Both of their probability reach the theoretical maximum value by using the improved measurement device and postselection. The concentration with known parameters initial states has a higher success probability and it only requires one copyof the less-entangled state. Therefore, if the number of states to be concentrated is large, the state estimation is necessary.

The success probability discussed above is based on the ideal situation, which means the efficiency of the elements such as PBS, BS are perfect. We also assume the efficiency of the SPDs is100%. In practice, they do not work ideally. The imperfect elements and detectors will decrease the probability of the hyper-ECPs. In this case, the two parties can still obtain the maximally hyperentangled states by postselection and the photon detector. Single Photon detector can be added to thea2 path. If no photons are detected, the maximum hyperentangled state can be concentrated from the post-selection of thea1 path. The generalized Shannon dimensionality [63] can be introduced to evaluate the performance.

In long-distance high-capacity quantum communication with multi-parties, the hyperentangled GHZ state of multi-photon system is an important resource. Both methods can be extended to concentrate the N-photon partially hyperentangled GHZ state [27, 28, 61]:

|ϕ1,2,,N=(α|HHH+β|VVV)1,2,,N(δ|l,l,,l+η|l,l,,l)1,2,,N.

Here the subscripts1,2,,N denote the N photons which are held by N remote parties, respectively. For the first case, the parameters of the initial sates are unknown. All of the users share two identical copy of the partially entangled states|ϕ1,2,,N and|ϕ1,2,,N. Two of the users named Alice and Bob do the same work as Alice and Bob in our first protocol. Each one of the other parties first performsRil(σxp) operation on his or her first (second) photon. Then the second photon passes through the same device as the device in path 2 of Fig. 1. In order to obtain the maximum entangled state, each user operates on the first photon based on the measurement result of the second photon. Operations{I,σzp,σzpσzl andσzl} correspond to measurements{D1i(F),D1i(S),D2i(F) andD2i(S)} (i=1,2,,N2 denotes the ith user other than Alice and Bob), respectively. It is easy to see the success probability to obtain the maximally hyperentangled GHZ state as in Eq. (9) is the same as that of the two-photon Hyper-ECP.

|Φ1,2,,N=12(|HHH+|VVV)1,2,,N(|l,l,,l+|l,l,,l)1,2,,N.

For the second case, only one copy of partially hyperentangled state is need to concentrate the maximally hyperentangled state with known parameters. Two parties concentrate the polarization and OAM DOFs as showed in Figs. 2(a) and 2(b), respectively, and the otherN2 parties do nothing. Both of the operations can also be performed by one party. The success probability in this case has the same success probability as two-parties protocol. Moreover, other maximally hyperentangled Bellstates or GHZ states can also be obtained by performing appropriate single-photon operations. It is easy to get the conclusion that both of our protocols can be extended to the multi-photon hyperentangled system without increasing the experimental difficulty and reducing the success probability.

In summary, we have proposed two hyper-ECPs for two-photon four-qubit states entangled in two DOFs in two kinds of conditions. Both of the protocols can be used to concentrate the hyperentanglement of N photons in GHZ states. Only linear-optical elements, such as BS, PBS, SLM, and FBH, are employed to accomplish the concentration work, which makes our protocol more convenient to be implemented in current technologies. Different from the protocol in [63], the concentration of polarization DOF and OAM DOF are accomplished independently by Alice and Bob respectively in our work. This will greatly reduce the amount of per user’s operations and the number of devices that each photon passes through during the quantum information process. The total efficiency in practice will be increased. All these characteristics show that our protocol is practical and useful to improve the entanglement with nonlocal multi-photon polarization and OAM DOFs in the long-distance high-capacity quantum information processing.

Funding

National Natural Science Foundation of China (NSFC) (11204377, 11604385, 61072071, 11574398); Specialized Research Fund for the Doctoral Program of Higher Education (2012 4307120005).

Acknowledgments

C. Y. would like to thank Prof. F. G. Deng and Prof. B. C. Ren for many helpful discussions.

References

1. A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996). [CrossRef]  

2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991). [CrossRef]   [PubMed]  

3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992). [CrossRef]   [PubMed]  

4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993). [CrossRef]   [PubMed]  

5. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992). [CrossRef]   [PubMed]  

6. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002). [CrossRef]  

7. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002). [CrossRef]  

8. F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003). [CrossRef]  

9. W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017). [CrossRef]   [PubMed]  

10. F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017). [CrossRef]  

11. S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018). [CrossRef]  

12. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993). [CrossRef]  

13. P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997). [CrossRef]  

14. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998). [CrossRef]  

15. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003). [CrossRef]  

16. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

17. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010). [CrossRef]  

18. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010). [CrossRef]  

19. F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011). [CrossRef]  

20. M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006). [CrossRef]   [PubMed]  

21. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005). [CrossRef]  

22. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995). [CrossRef]   [PubMed]  

23. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012). [CrossRef]  

24. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012). [CrossRef]  

25. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012). [CrossRef]   [PubMed]  

26. B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017). [CrossRef]  

27. H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017). [CrossRef]  

28. H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018). [CrossRef]  

29. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001). [CrossRef]   [PubMed]  

30. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992). [CrossRef]   [PubMed]  

31. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005). [CrossRef]   [PubMed]  

32. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007). [CrossRef]  

33. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004). [CrossRef]   [PubMed]  

34. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008). [CrossRef]  

35. D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015). [CrossRef]  

36. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998). [CrossRef]  

37. W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015). [CrossRef]  

38. A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998). [CrossRef]  

39. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996). [CrossRef]   [PubMed]  

40. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001). [CrossRef]   [PubMed]  

41. L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016). [CrossRef]  

42. F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016). [CrossRef]  

43. L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017). [CrossRef]  

44. H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018). [CrossRef]  

45. Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003). [CrossRef]   [PubMed]  

46. J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004). [CrossRef]   [PubMed]  

47. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008). [CrossRef]  

48. C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011). [CrossRef]  

49. C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010). [CrossRef]  

50. C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013). [CrossRef]  

51. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996). [CrossRef]   [PubMed]  

52. T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001). [CrossRef]  

53. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003). [CrossRef]   [PubMed]  

54. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008). [CrossRef]  

55. F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012). [CrossRef]  

56. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012). [CrossRef]  

57. Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012). [CrossRef]  

58. J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016). [CrossRef]  

59. A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003). [CrossRef]   [PubMed]  

60. B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013). [CrossRef]  

61. X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015). [CrossRef]  

62. C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016). [CrossRef]  

63. L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012). [CrossRef]  

64. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011). [CrossRef]  

65. L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012). [CrossRef]  

66. S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015). [CrossRef]  

67. L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014). [CrossRef]  

68. Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015). [CrossRef]  

69. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994). [CrossRef]   [PubMed]  

70. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
    [Crossref]
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991).
    [Crossref] [PubMed]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
    [Crossref] [PubMed]
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
    [Crossref] [PubMed]
  5. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
    [Crossref] [PubMed]
  6. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
    [Crossref]
  7. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
    [Crossref]
  8. F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
    [Crossref]
  9. W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
    [Crossref] [PubMed]
  10. F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
    [Crossref]
  11. S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
    [Crossref]
  12. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
    [Crossref]
  13. P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997).
    [Crossref]
  14. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
    [Crossref]
  15. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
    [Crossref]
  16. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).
  17. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
    [Crossref]
  18. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010).
    [Crossref]
  19. F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011).
    [Crossref]
  20. M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
    [Crossref] [PubMed]
  21. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
    [Crossref]
  22. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
    [Crossref] [PubMed]
  23. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
    [Crossref]
  24. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
    [Crossref]
  25. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
    [Crossref] [PubMed]
  26. B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
    [Crossref]
  27. H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
    [Crossref]
  28. H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
    [Crossref]
  29. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
    [Crossref] [PubMed]
  30. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
    [Crossref] [PubMed]
  31. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
    [Crossref] [PubMed]
  32. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
    [Crossref]
  33. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
    [Crossref] [PubMed]
  34. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
    [Crossref]
  35. D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
    [Crossref]
  36. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
    [Crossref]
  37. W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
    [Crossref]
  38. A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
    [Crossref]
  39. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
    [Crossref] [PubMed]
  40. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
    [Crossref] [PubMed]
  41. L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
    [Crossref]
  42. F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
    [Crossref]
  43. L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
    [Crossref]
  44. H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
    [Crossref]
  45. Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
    [Crossref] [PubMed]
  46. J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
    [Crossref] [PubMed]
  47. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
    [Crossref]
  48. C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
    [Crossref]
  49. C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
    [Crossref]
  50. C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
    [Crossref]
  51. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
    [Crossref] [PubMed]
  52. T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
    [Crossref]
  53. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
    [Crossref] [PubMed]
  54. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
    [Crossref]
  55. F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012).
    [Crossref]
  56. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
    [Crossref]
  57. Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
    [Crossref]
  58. J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
    [Crossref]
  59. A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
    [Crossref] [PubMed]
  60. B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
    [Crossref]
  61. X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
    [Crossref]
  62. C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
    [Crossref]
  63. L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012).
    [Crossref]
  64. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
    [Crossref]
  65. L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
    [Crossref]
  66. S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
    [Crossref]
  67. L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
    [Crossref]
  68. Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
    [Crossref]
  69. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
    [Crossref] [PubMed]
  70. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
    [Crossref]

2018 (3)

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

2017 (5)

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

2016 (4)

L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
[Crossref]

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

2015 (5)

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
[Crossref]

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

2014 (1)

L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
[Crossref]

2013 (2)

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

2012 (8)

F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012).
[Crossref]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
[Crossref]

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012).
[Crossref]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
[Crossref] [PubMed]

2011 (3)

F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
[Crossref]

C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
[Crossref]

2010 (3)

C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010).
[Crossref]

2009 (1)

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

2008 (3)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

2007 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

2006 (2)

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

2005 (2)

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

2004 (2)

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

2003 (5)

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

2002 (2)

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
[Crossref]

2001 (3)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

1998 (3)

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
[Crossref]

1997 (1)

P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997).
[Crossref]

1996 (3)

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

1994 (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

1993 (2)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

1992 (3)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991).
[Crossref] [PubMed]

Abouraddy, A. F.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

Agarwal, G. S.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

Aiello, A.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

Alsaedi, A.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

Alzahrani, F.

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

Annabestani, R.

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

Barbieri, M.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

Bartlett, S. D.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
[Crossref] [PubMed]

Bernstein, H. J.

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

Bhatti, D.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

Boileau, J. C.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

Briegel, H. J.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

Brukner, C.

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

Cabello, A.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Calderbank, A. R.

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Cao, C.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

Chan, P.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Chen, L.

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012).
[Crossref]

Chen, L. X.

L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
[Crossref]

Chen, S.

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

Chen, Y. A.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Chen, Z. B.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

Cirac, J. I.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

Dalton, R. B.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Deng, F.

F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012).
[Crossref]

F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011).
[Crossref]

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

Deng, F. G.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
[Crossref] [PubMed]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

Ding, D.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

Du, F. F.

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

Dür, W.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

Ekert, A.

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
[Crossref]

Ekert, A. K.

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991).
[Crossref] [PubMed]

Eliel, E. R.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Ghose, S.

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
[Crossref]

Gilchrist, A.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Gottesman, D.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Gu, S. P.

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Guo, G.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

Guo, R.

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

Harvey, M. D.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Hayat, T.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

Hobiny, A.

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

Hooft, G. W. ’t

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Horne, M. A.

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

Hosier, S.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Hua, M.

Huang, Y. D.

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

Huber, G.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

Imoto, N.

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

Jennewein, T.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

Jiang, M. S.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Jin, G. S.

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

Jozsa, R.

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
[Crossref]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

Koashi, M.

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

Kurtsiefer, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

Kwiat, P. G.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
[Crossref]

P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

Laflamme, R.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Li, C. Y.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
[Crossref]

C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
[Crossref]

Li, F.

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

Li, T.

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
[Crossref] [PubMed]

Li, X. H.

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

Li, Y. S.

C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
[Crossref]

C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
[Crossref]

Liang, L. M.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Liu, X.

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

Liu, X. S.

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

Long, G. L.

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
[Crossref]

Lu, C. Y.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

Lu, Y.

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

Lucio-Martinez, I.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Lütkenhaus, N.

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

Ma, X.

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

Martini, F. D.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Mataloni, P.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

Mi, S. C.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

Mo, X.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

Monken, C. H.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

O’Brien, J. L.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Oemrawsingh, S. S. R.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
[Crossref]

Pádua, S.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

Pan, J.

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

Pan, J. W.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

Pan, J.-W.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

Popescu, S.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

Poulin, D.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Pryde, G. J.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Rains, E. M.

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Reck, M.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

Ren, B. C.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,”Opt. Express 20,24664–24677 (2012).
[Crossref] [PubMed]

Saleh, B. E. A.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

Schuck, C.

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

Sergienko, A. V.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

Sheng, Y.

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
[Crossref]

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Sheng, Y. B.

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
[Crossref]

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
[Crossref]

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
[Crossref]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

Shi, B.

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

Shor, P. M.

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Simon, C.

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

Sloane, N. J. A.

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

Spekkens, R. W.

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

Stacey, W.

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

Sun, S. H.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Teich, M. C.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

Tittel, W.

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Tong, D. M.

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

Vallone, G.

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

Vaziri, A.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

Voigt, D.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

von Zanthier, J.

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

Walborn, S. P.

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

Walton, Z. D.

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

Wang, A. H.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

Wang, C.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

Wang, H.

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

Wang, Q.

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Wang, T. J.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

Wang, X. F.

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

Wei, H. R.

Wei, T. C.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

Weihs, G.

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

Weinfurter, H.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

White, A. G.

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
[Crossref] [PubMed]

Woerdman, J. P.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

Wu, Q. P.

L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
[Crossref]

Yamamoto, T.

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

Yang, T.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
[Crossref]

Zeilinger, A.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

Zhang, A. N.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

Zhang, R.

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

Zhang, W.

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

Zhang, Z. R.

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Zhao, S.

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Zhao, S. M.

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Zhao, Z.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Zheng, B.

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Zhong, W.

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

Zhou, H. Y.

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

Zhou, L.

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
[Crossref]

L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
[Crossref]

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
[Crossref]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Zhu, F.

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

Zoller, P.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

Zukowski, M.

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,”Adv. Opt. Photonics 3,161–204 (2011).
[Crossref]

Annals Phys. (5)

C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, “Nonlocal hyperconcentration on entangled photons using photonic module system,”Annals Phys. 369,128–138 (2016).
[Crossref]

F. F. Du, T. Li, and G. L. Long, “Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction,”Annals Phys. 375,105–118 (2016).
[Crossref]

L. Zhou and Y. B. Sheng, “Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state,”Annals Phys. 385,10–35 (2017).
[Crossref]

H. Zhang, A. Alsaedi, T. Hayat, and F. G. Deng, “Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED,”Annals Phys. 391,112–119 (2018).
[Crossref]

B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics,”Annals Phys. 385,86–94 (2017).
[Crossref]

Chin. Phys. Lett. (1)

C. Y. Li and Y. S. Li, “Fault-tolerate three-party quantum secret sharing over a collective-noise channel,”Chin. Phys. Lett. 28,020304 (2011).
[Crossref]

Front. Phys. (1)

H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, “General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics,”Front. Phys. 13,130315 (2018).
[Crossref]

Ieee Photonics J. (1)

S. C. Mi, T. J. Wang, G. S. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,”Ieee Photonics J. 7,7600108 (2015).
[Crossref]

IEEE Transactions on Inf. Theory (1)

A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),”IEEE Transactions on Inf. Theory 44,1369–1387 (1998).
[Crossref]

Int. J. Quantum Inf. (1)

C. Y. Li and Y. S. Li, “Fault-tolerate quantum key distribution over a collective-noise channel,”Int. J. Quantum Inf. 8,1101–1109 (2010).
[Crossref]

J. Mod. Opt. (1)

P. G. Kwiat, “Hyper-entangled states,”J. Mod. Opt. 44,2173–2184 (1997).
[Crossref]

J. Opt. Soc. Am. B-Optical Phys. (1)

C. Y. Li, Z. R. Zhang, S. H. Sun, M. S. Jiang, and L. M. Liang,“Logic-qubit controlled-not gate of decoherence-free subspace with nonlinear quantum optics,”J. Opt. Soc. Am. B-Optical Phys. 30,1872–1877 (2013).
[Crossref]

Laser Phys. Lett. (1)

L. X. Chen and Q. P. Wu, “High-dimensional entanglement concentration of twisted photon pairs,”Laser Phys. Lett. 9,759–764 (2012).
[Crossref]

Nat. Phys. (2)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,”Nat. Phys. 4,282–286 (2008).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,”Nat. Phys. 3,305–310 (2007).
[Crossref]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,”Nature 412,313–316 (2001).
[Crossref] [PubMed]

J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,”Nature 410,1067–1070 (2001).
[Crossref] [PubMed]

New J. Phys. (1)

I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real-world quantum key distribution with quantum frames,”New J. Phys. 11,095001 (2009).
[Crossref]

Opt. Express (1)

Phys. Rev. A (23)

T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,”Phys. Rev. A 86,042337 (2012).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,”Phys. Rev. A 45,8185–8189 (1992).
[Crossref] [PubMed]

D. Bhatti, J. von Zanthier, and G. S. Agarwal, “Entanglement of polarization and orbital angular momentum,”Phys. Rev. A 91,062303 (2015).
[Crossref]

P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,”Phys. Rev. A 58,R2623–R2626 (1998).
[Crossref]

S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,”Phys. Rev. A 68,042313 (2003).
[Crossref]

Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,”Phys. Rev. A 81,032307 (2010).
[Crossref]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,”Phys. Rev. A 82,044304 (2010).
[Crossref]

F. Deng, “One-step error correction for multipartite polarization entanglement,”Phys. Rev. A 83,062316 (2011).
[Crossref]

X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,”Phys. Rev. A 65,022304 (2002).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,”Phys. Rev. A 65,032302 (2002).
[Crossref]

F. Deng, G. L. Long, and X. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,”Phys. Rev. A 68,042317 (2003).
[Crossref]

L. Zhou and Y. Sheng, “Detection of nonlocal atomic entanglement assisted by single photons,”Phys. Rev. A 90,024301 (2014).
[Crossref]

L. Chen, “Comblike entangled spectrum for composite spin-orbit modes from hyperconcentration,”Phys. Rev. A 85,012311 (2012).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Hyperentanglement concentration for two-photon four-qubit systems with linear optics,”Phys. Rev. A 88,012302 (2013).
[Crossref]

X. H. Li and S. Ghose, “Hyperentanglement concentration for time-bin and polarization hyperentangled photons,”Phys. Rev. A 91,062302 (2015).
[Crossref]

W. Stacey, R. Annabestani, X. Ma, and N. Lütkenhaus, #x0201C;Security of quantum key distribution using a simplified trusted relay,” Phys. Rev. A 91,012338 (2015).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,”Phys. Rev. A 78,022321 (2008).
[Crossref]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,”Phys. Rev. A 53,2046–2052 (1996).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, and N. Imoto,“Concentration and purification scheme for two partially entangled photon pairs,”Phys. Rev. A 64,012304 (2001).
[Crossref]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,”Phys. Rev. A 77,062325 (2008).
[Crossref]

F. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,”Phys. Rev. A 85,022311 (2012).
[Crossref]

Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,”Phys. Rev. A 85,042302 (2012).
[Crossref]

Y. Sheng, L. Zhou, S. Zhao, and B. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,”Phys. Rev. A 85,012307 (2012).
[Crossref]

Phys. Rev. Lett. (19)

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,”Phys. Rev. Lett. 90,207901 (2003).
[Crossref] [PubMed]

Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,”Phys. Rev. Lett. 91,087901 (2003).
[Crossref] [PubMed]

J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,”Phys. Rev. Lett. 92,017901 (2004).
[Crossref] [PubMed]

A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum,”Phys. Rev. Lett. 91,227902 (2003).
[Crossref] [PubMed]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,”Phys. Rev. Lett. 73,58–61 (1994).
[Crossref] [PubMed]

W. Zhang, D. Ding, Y. Sheng, L. Zhou, B. Shi, and G. Guo, “Quantum secure direct communication with quantum memory,”Phys. Rev. Lett. 118,220501 (2017).
[Crossref] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,”Phys. Rev. Lett. 67,661–663 (1991).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,”Phys. Rev. Lett. 68,557–559 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,”Phys. Rev. Lett. 70,1895–1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on einstein-podolsky-rosen states,”Phys. Rev. Lett. 69,2881–2884 (1992).
[Crossref] [PubMed]

M. Barbieri, F. D. Martini, P. Mataloni, G. Vallone, and A. Cabello, “Enhancing the violation of the Einstein-Podolsky-Rosen local realism by quantum hyperentanglement,”Phys. Rev. Lett. 97,140407 (2006).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,”Phys. Rev. Lett. 95,260501 (2005).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,”Phys. Rev. Lett. 75,4337–4341 (1995).
[Crossref] [PubMed]

C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,”Phys. Rev. Lett. 96,190501 (2006).

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The role of imperfect local operations in quantum communication,”Phys. Rev. Lett. 81,5932–5935 (1998).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”Phys. Rev. Lett. 76,722–725 (1996).
[Crossref] [PubMed]

N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,”Phys. Rev. Lett. 93,053601 (2004).
[Crossref] [PubMed]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,”Phys. Rev. Lett. 95,240501 (2005).
[Crossref] [PubMed]

M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors" Bell experiment via entanglement swapping,”Phys. Rev. Lett. 71,4287–4290 (1993).
[Crossref]

Quantum Inf. Process. (3)

H. Wang, B. C. Ren, F. Alzahrani, A. Hobiny, and F. G. Deng, “Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics,”Quantum Inf. Process. 16,237 (2017).
[Crossref]

Y. B. Sheng, R. Guo, J. Pan, L. Zhou, and X. F. Wang, “Two-step measurement of the concurrence for hyperentangled state,”Quantum Inf. Process. 14,963–978 (2015).
[Crossref]

J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang,“Efficient entanglement concentration for concatenated Greenberger-Horne-Zeilinger state with the cross-kerr nonlinearity,”Quantum Inf. Process. 15,1669–1687 (2016).
[Crossref]

Rev. Mod. Phys. (2)

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,”Rev. Mod. Phys. 68,733–753 (1996).
[Crossref]

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, and A. Zeilinger, andM. Żukowski, “Multiphoton entanglement and interferometry,”Rev. Mod. Phys. 84,777–838 (2012).
[Crossref]

Sci. Bull. (1)

F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, “Experimental long-distance quantum secure direct communication,”Sci. Bull. 62,1519–1524 (2017).
[Crossref]

Sci. Reports (1)

L. Zhou and Y. B. Sheng, “Purification of logic-qubit entanglement,”Sci. Reports 6,28813 (2016).
[Crossref]

SCIENCE CHINA Physics, Mech. & Astron. (1)

S. Chen, L. Zhou, W. Zhong, and Y. Sheng, “Three-step three-party quantum secure direct communication,”SCIENCE CHINA Physics, Mech. & Astron. 61,090312 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The schematic illustration of the Hyper-ECP with unknown parameters. BS: beam splitter; PBS: polarization beam splitter;
Fig. 2
Fig. 2 The schematic illustration of the Hyper-ECP for an initial state with known parameters. (a) This part is used to concentrate the Bell state of polarization DOF. UBS1 is an adjustable beam splitting with transmittance T, and can be replaced by an adjustable intensity modulator. (b) This part is used to concentrate the maximal entangled state of OAM. The UBS2 has transmittance here.
Fig. 3
Fig. 3 (a) and (b) depict the success probability of our hyper-ECP for each two-photon four-qubit system with unknown and known parameters, respectively. The dash line in (b) corresponds to the highest probability 12.5% in unknown parameters case.

Tables (1)

Tables Icon

Table 1 The Relationship of Operations and Measurement Results of D 1 A , D 2 A , D 1 B , and D 2 B .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

| ϕ A B = ( α | H H + β | V V ) A B ( δ | l , l + η | l , l ) A B .
| Φ A B = 1 2 ( | H H + | V V ) A B ( | l , l + | l , l ) A B .
| Φ A l i c e B o b = | ϕ A 1 B 1 | ϕ A 2 B 2 = [ ( α | H H + β | V V ) ( δ | l , l + η | l , l ) ] A 1 B 1 [ ( α | H H + β | V V ) ( δ | l , l + η | l , l ) ] A 2 B 2 .
[ α 2 | H H V V + β 2 | V V H H + α β ( | H H H H + | V V V V ) _ ] A 1 B 1 A 2 B 2 [ ( δ | l , l + η | l , l ) ( δ | l , l + η | l , l ) ] A 1 B 1 A 2 B 2 .
α β ( | H H 2 H H 1 + | V V 1 V V 2 ) A 1 B 1 A 2 B 2 [ ( δ | l , l + η | l , l ) ( δ | l , l + η | l , l ) ] A 1 B 1 A 2 B 2 .
α β ( | H H 2 H H 1 + | V V 1 V V 2 ) A 1 B 1 A 2 B 2 [ ( δ | 0 u , l + η | 0 d , l ) ( δ | 0 u , l + η | 0 d , l ) ] A 1 B 1 A 2 B 2
α β δ η 2 2 | H | H b | H | H ( | l a 2 + i | l a 1 ) | l ( | 0 D 1 A + i | 0 D 2 A ) ( | 0 D 1 B + i | 0 D 2 B ) + α β δ η 2 2 | H | H b | H | H ( | l a 1 + i | l a 2 ) | l ( | 0 D 2 A + i | 0 D 1 A ) ( | 0 D 2 B + i | 0 D 1 B ) + α β δ η 2 2 | V | V b | V | V ( | l a 2 + i | l a 1 ) | l ( | 0 D 1 A + i | 0 D 2 A ) ( | 0 D 2 B + i | 0 D 1 B ) + α β δ η 2 2 | V | V b | V | V ( | l a 1 + i | l a 2 ) | l ( | 0 D 2 A + i | 0 D 1 A ) ( | 0 D 1 B + i | 0 D 2 B ) .
| ϕ A B = α δ 2 ( | H H + | V V ) A B ( | l , l + | l , l ) A B ,
| ϕ A B = α δ 2 ( | H H + | V V ) A B ( | l , l | l , l ) A B .
| ϕ 1 , 2 , , N = ( α | H H H + β | V V V ) 1 , 2 , , N ( δ | l , l , , l + η | l , l , , l ) 1 , 2 , , N .
| Φ 1 , 2 , , N = 1 2 ( | H H H + | V V V ) 1 , 2 , , N ( | l , l , , l + | l , l , , l ) 1 , 2 , , N .

Metrics