Abstract

We report on the study of quenching and thermal lensing based on simple effective lens approximation in a Cr2+:CdSe active medium, including detailed research on the medium’s luminescence lifetime dependence on temperature in the 236–391 K range. This work has allowed us to partially overcome the limitations associated with thermal effects in the medium and build a laser system that allowed power scalability to be realized for the Cr2+:CdSe laser. Longitudinal pumping using a continuous-wave Tm-doped fiber laser at 1.908 μm produced an output of 2.3 W at 2.65 μm with an absorbed pump power slope efficiency of 47.6%, which, to the best of our knowledge, is the highest output power achieved in Cr:CdSe continuous-wave lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Mid-infrared (mid-IR) lasers based on transition metal-doped II–VI chalcogenide crystals are promising and powerful tools for use in a variety of scientific and industrial applications [1]. Because of the huge number of absorption lines for various compounds in the mid-IR range and the wide tunability of their active media, these lasers could be implemented in high precision spectroscopy [2], remote sensing [3], and optical frequency standards [4] applications. Another promising application of these sources is in medical diagnostics and surgery [5]. Because both water and collagen have absorption maxima near 3 μm, these lasers can also be effective surgical tools for operations such as skin and nail microperforation [6], dental hard tissue ablation [7], and laser osteotomy [8], etc.

Among the numerous available transition metal-doped II–VI chalcogenide active media, crystalline Cr2+:CdSe appears to be the most interesting medium for medical applications [9] because of its high gain around 3 μm [1]. The optical properties of this crystal have been studied intensively by a variety of scientific groups worldwide. The first operation of a crystalline tunable Cr2+:CdSe laser was demonstrated in 1999 [10,11]. Over the next twenty years, substantial work was undertaken in the development of these lasers. The highest tunability in the wavelength range of 2.26–3.61 μm was achieved in the pulsed regime [12], 200 ns pulses at 10 kHz with 350 mW of average output power were obtained [13], wide tunability range from 2.2 to 3.12 μm in continuous-wave regime with Tm-fiber pumping was shown [14–16], effective diode pumped Cr2+:CdSe laser with output power of 280 mW and tunabilty range from 2.45 to 3.06 μm was developed [17, 18], Tm-fiber pumped Cr2+:CdSe laser with maximum output power of 1.7 W appears [19], and a tunable single-frequency continuous-wave (CW) Cr2+:CdSe laser was demonstrated [20]. Periodically pulsed pump laser was implemented to achieve ns-scale pulse generation in a Cr2+:CdSe laser [21].

Despite the considerable potential of Cr2+:CdSe crystals for use as active media, power scalability is urgently required for Cr2+:CdSe lasers for a wide range of biomedical applications. To provide further enhancement of the power scalability of Cr2+:CdSe lasers, the limitations caused by thermal effects in the active media, such as thermal lensing and radiative lifetime decay, must also be overcome.

In this paper, we report on a comprehensive experimental investigation of Cr2+:CdSe lasing around 2.65 μm. Particular attention is paid to characterization of the main physical and technical limitations that affect the power scalability of Tm-fiber-laser-pumped Cr2+:CdSe single crystals in the form of quenching and thermal lensing based on simple effective lens approximation in the active medium, including detailed research into the temperature dependence of the luminescence lifetime. Detailed studies of these effects have allowed us to partially overcome the limitations associated with the thermal effects and construct a laser system that allowed us to realize power scalability. Using a Cr2+:CdSe single crystal, we demonstrated a diffraction-limited beam with maximum CW output power of 2.3 W at the emission wavelength of 2.65 μm from absorbed pump power of 6.3 W. This corresponds to a slope efficiency of 47.6 %. The output power of 2.3 W, to the best of our knowledge, corresponds to the highest value achieved in Cr:CdSe CW lasers. Full characterization of laser’s performance shows that Cr2+:CdSe has the potential to be used as an efficient lasing medium for a variety of biomedical applications.

2. Cr2+:CdSe luminescence lifetime measurement

Previously, temperature-dependent photoluminescence lifetime measurements of the upper laser 5E level in a Cr2+ in CdSe host have been performed in the 77–300 K [22] and 77–320 K [23] temperature ranges. However, the temperature in the active volume of high-power CW Cr2+:CdSe lasers can reach much higher levels than room temperature. In this work, we have studied the luminescence decay of the 5E state of Cr2+ in single-crystal CdSe over the temperature range from 236 to 391 K. For the luminescence lifetime measurements, a monocrystalline sample was fabricated in the form of a plane-parallel plate that was 9 mm in length with a cross-section of 5.5×3 mm2. The sample surfaces with dimensions of 5.5×3 mm2 were mechanically polished to an optical finish. The crystal’s c-axis was aligned parallel to the sample’s long side. The Cr2+ doping level was determined to be 2·1018 cm−3 from room temperature optical absorption measurements using absolute values of the absorption cross-section that were taken from [22]. The specimen was mounted on a copper finger structure, on which the temperature could be varied over the range from 235 to 400 K. The crystal temperature was monitored using a chromel-constantan thermocouple that was attached to the crystal surface.

The experimental setup used to perform the photoluminescence lifetime measurements is depicted in Fig. 1(a). The measurements were performed under pulsed excitation using 1.94 μm radiation from a passively Q-switched Tm:YAP laser (pulse energy of 1 mJ, pulse width of 100 ns full width at half maximum (FWHM)). The exciting beam was focused to the 2 mm spot by spherical mirror and entered into the sample through the surface with dimensions of 5.5×3 mm2. Luminescence of the crystal was observed in the direction perpendicular to the pump beam. The excitation pulse and the luminescence response in the 2–3.5 μm spectral region were recorded using PD-24 and PD-36 photodiodes (IBSG Co., Ltd, Saint Petersburg, Russia), respectively, with temporal resolution of 30 ns. The PD-36 photodiode was equipped with a low-pass filter (cut-off: 2 μm) and was placed close to the sample. The experimantal temperature-dependent photoluminescence lifetime data are presented in Fig. 1(b) (squares).

 figure: Fig. 1

Fig. 1 (a) Schematic of experimental setup used for luminescence lifetime measurements. BS: beam splitter; PD-24, PD-36: photodiodes (b) Luminescence lifetime dependence on temperature of Cr2+:CdSe crystal.

Download Full Size | PPT Slide | PDF

The luminescence lifetime decreased from 6 μs at 236 K to 150 ns at 391 K. At room temperature (293 K), the emission lifetime was measured to be 4.45 μs, which shows good agreement with previously reported values [22,23] (see Fig. 1(b)). It is also seen that an increase in temperature to above 275 K causes a sharp reduction in lifetime, which leads to a significant increase in the threshold pump power and a drop in the Cr2+:CdSe laser’s efficiency.

The temperature dependence of the luminescence lifetime is typical for nonradiative relaxation in optical centers with strong electron-phonon coupling, which can be described using the following expressions [24]:

τ1=τr1+Wnr,
Wnr=W0exp(Ea/kT),
where τr is the radiative lifetime, Wnr is the non-radiative transition rate, Ea is the activation energy, and T is the crystal temperature. The red line shown in Fig. 1(b) is an approximation of the experimental data corresponding to the best fit parameters Ea= 3707 cm−1 and 1/W0 = 0.205 ps, and the radiative lifetime value is τr =6.07 μs, which is in good agreement with the data obtained in [22,23].

3. Experimental setup for the Cr2+:CdSe laser

The experimental setup for the single-crystal Cr2+:CdSe laser is shown in Fig. 2. A Cr2+:CdSe crystal with a Cr2+ concentration of 1.7·1018 cm−3, length of 4 mm and a cross-section of 2 mm × 8 mm was placed at the waist of a quasi-concentric resonator consisting of two spherical dichroic mirrors.

 figure: Fig. 2

Fig. 2 Schematic of the Cr2+:CdSe laser.

Download Full Size | PPT Slide | PDF

The resonator configuration differs from that which was used in previous research [5,14,15,17] because of the need for precise alignment of the crystal, which is difficult when the crystal is located near a flat mirror. The second advantage of a system with two spherical mirrors is its high resistance to misalignment, which is particularly important in systems with strong thermal lensing [25].

Figure 3(a) and Fig. 3(b) show the transmission spectra of high-reflectivity (HR) mirror (R = 100 mm) and various output couplers (R = 50 mm), respectively.

 figure: Fig. 3

Fig. 3 (a) Transmission spectrum of the HR mirror (b) Transmission spectra of the output couplers.

Download Full Size | PPT Slide | PDF

The uncoated normally oriented Cr2+:CdSe single-crystal has low signal absorption of 3.22 cm−1 at a pump wavelength of 1.908 μm and was wrapped using indium foil and placed in a water-cooled copper heatsink, which was cooled using flowing water. The water temperature was approximately 11°C. The air humidity was approximately 30%. A Tm-doped fiber laser with a wavelength of 1.908 μm was selected as the pump source, based on the absorption spectrum of the Cr2+:CdSe single crystal. The maximum output power of the pump laser was 20 W. The pump-to-laser beam overlap in the active medium was provided by focusing the pump radiation using a plano-convex lens with the focal length of 77.8 mm. The HR mirror has a negative focal length for the pump radiation and this was taken into account during calculation of the pump waist. The divergence of the output laser beam was compensated using another focusing lens with a focal length of 100 mm. Selective mirrors were used to filter the pump radiation from the laser output.

4. Study of thermal lensing

Thermal effects in the Cr2+:CdSe crystal reduce its lasing performance sufficiently [14] such that it must be taken into account during laser development. The effects of quenching and thermal lensing play particularly important roles in Cr2+:CdSe media when compared with other chalcogenides such as Cr2+:ZnSe and Cr2+:ZnS [1].

The upper-state lifetime in Cr2+:CdSe crystals is strongly inversely dependent on the medium’s temperature, which result in increased quenching and additional heating of the medium. It is thus essential to maintain the temperature of the medium carefully to prevent population inversion reduction due to quenching.

It is important to note that heating of the active medium caused by pump radiation process not only leads to reduction of the upperstate lifetime but also causes thermal lensing. Pump-induced thermal lensing limits the stability zone of the laser resonator and distorts the propagating beams, which leads to high resonator sensitivity to misalignment. The thermal lens focal length should thus be calculated for correct design of the laser resonator.

In accordance with [25], the focal length of the thermal lens f′, which is caused by active medium heating, can be estimated using the following equation:

f(Pheat)=πKω02PheatdndT,
where K is the crystal’s thermal conductivity (WmK); ω0 is the pump waist radius in the active medium (m); Pheat is the heating power dissipated in active medium (W); dndT is the thermo-optical constant (K−1).

To calculate the focal length of the thermal lens, it is necessary to find the value of the heating power. There are two main processes that lead to active medium heating by the pump radiation: the presence of a quantum defect, which means that the difference between the energies of the pump and generated photons causes heating of the medium, and thermal quenching, as described above. It is assume that the heating power can be estimated using the following equation [25]:

Pheat=(1λpλg)Pabs,
where Pabs is the pump power absorbed in the active medium (W).

It is also seen from (4) that the heating power will continuously increase with pump power, which leads to an increase of the temperature inside the active medium and to a decrease of the luminescence lifetime, as was shown in Section 2. Due to the unsatisfactory thermal parameters of the Cr2+:CdSe crystal, all the effects mentioned above will result in an increase of the laser threshold and a reduction of the laser efficiency.

Another important parameter for the thermal lens calculation is the pumping spot radius on the active medium. To obtain the real pump caustic profile in the laser resonator, pump laser beam profiling was performed using the knife-edge method. The beam profiles were measured at output pump powers of 1.85 W, which refers to an absorbed pump power in Cr2+:CdSe crystal of 1.04 W, and 10.4 W, which refers to an absorbed power of 6.3 W. Fresnel reflection from a wedge-shaped fused silica plate was used to attenuate the beam. The beam profiles dependence on the distance from output collimator of the pump laser are depicted in Fig. 4(a). The results of these measurements show that increase in the laser power lead expansion of the beam radius.

 figure: Fig. 4

Fig. 4 (a) Pump beam caustics for two pump power values (b) Focused pump beam caustics for two power values.

Download Full Size | PPT Slide | PDF

The beam caustic was also profiled after an optical system consisting of a focusing lens with focal length of 77.8 mm and a plano-concave HR resonator mirror for a laser power of 1.85 W with zero attenuation. Figure 4(b) shows the measurement results and the results of caustic modeling using previous experimental data. The beam waists values were 46 μm and 41 μm for pump powers of 1.85 W and 10.4 W, respectively.

The focal length dependence on the absorbed pump power was calculated using the active medium properties listed in [1], the measured luminescence lifetime and the pump beam waist size of 41 μm. The results are shown in Fig. 5(a). The focal length dependence obtained was then used further to calculate the stability zone of the resonator.

 figure: Fig. 5

Fig. 5 (a) Dependence of focal length of thermal lens on absorbed pump power (b) Stability zone of laser resonator with thermal lens.

Download Full Size | PPT Slide | PDF

The resonator stability analysis and the laser caustic calculations were performed using the matrix method to estimate the influence of the thermal lens on the laser performance. Figure 5(b) represents the stability zone of a resonator with a thermal lens when taking the dependence of the beam radius on the distance between the laser crystal and the output mirror into consideration. The figure shows that the thermal lens significantly reduces the stability zone, which dramatically increases the resonator’s sensitivity to the slightest misalignments and thus leads to prevention of power scalability for the Cr2+:CdSe laser. Figure 6(a) and Fig. 6(b) show the modeled divergences between the caustics of the pump and laser beams in the crystal caused by thermal lensing for two different absorbed pump powers of 1.04 W and 6.3 W, respectively. Figure 6(b) shows a catastrophic thermal self-focusing, which should actually break the simple effective lens approximation. We did not focus on precise modeling and calculation of thermal lens influence on the laser beam distortion [26,27]. For adequate description of a CW laser generation regime, we used a simple effective lens approximation [28]. Using the modeling results, the degree of overlap of the pump beam volume and the resonator mode volume in the crystal was obtained, with values of 0.89 for an absorbed pump power of 1 W and 0.24 for an absorbed pump power of 6.3 W indicating a reduction in the pump efficiency with increasing power. Small value of the overlap between the gain region and the resonator mode will lead to additional heating caused by increasing the ratio between nonradiative and radiative processes in the active medium.

 figure: Fig. 6

Fig. 6 (a) Modeled generated and pump beam caustic radii in crystal for absorbed pump power of 1 W (b) Modeled generated and pump beam caustic radii in crystal for absorbed pump power of 6.3 W.

Download Full Size | PPT Slide | PDF

The modeling results show that increasing the pump power leads to divergence between the pump and laser beam caustics in the active medium and causes significant narrowing of the resonator stability zone. These effects complicate the adjustment process and limit further power scalability of the Cr2+:CdSe laser system.

5. Laser slope measurements and internal loss calculations

Measurements of the Cr2+:CdSe laser’s output power dependence on the absorbed pump power were performed using three different output couplers with different transmission coefficients (9.5%, 21.5% and 33.3%). The measurement results and their approximations are shown in Fig. 7(a).

 figure: Fig. 7

Fig. 7 (a) Results of laser output power measure for various output couplers (b) Laser performance at maximum output power.

Download Full Size | PPT Slide | PDF

The threshold pump power and the slope efficiency were calculated for each measurements. An optimal slope efficiency value of 47.6% was achieved using the output coupler with the transmission coefficient of 33.3% that shown in Fig. 7(b). The maximum power of 2.3 W with reference to an absorbed pump power of 6.3 W was attained using the 33.3% output coupler by cooling the active medium to a temperature of 5°C at 30% air humidity. The internal losses were calculated using the values of the slope efficiency η for the three different output couplers. For this purpose, the 1/η dependence on the inverse of the OC transmission coefficient 1/T was determined (as shown in Fig. 8). According to the literature [12,29], the net internal losses in the resonator can be found using the following expression:

1η=1η0+Lη01T,
where η0 = λp/λg · ηp(1 − σESA/σ) is the maximum slope efficiency, ηp is the pump conversion efficiency, σESA is the upper-state absorption cross-section, and σ is the laser transition cross-section. Because absorption from the upper laser level in crystals of the A2B6 group doped with Cr2+ ions is very low, i.e., σESA/σ ≪ 1, we obtain η0 = λp/λg · ηp.

 figure: Fig. 8

Fig. 8 Dependence of inverse slope efficiency on inverted OC transmittance.

Download Full Size | PPT Slide | PDF

The calculated value for the internal losses was L = 5%. Assuming that all losses are caused by the active medium, we can obtain an active medium absorption coefficient of 0.063 cm−1 at the laser wavelength. The maximum laser efficiency was calculated to be η0 = 0.54, which leads to a pump conversion efficiency of ηp = 0.75. Based on these calculations, we conclude that the laser performance was limited by poor overlapping of the pumped volume and the resonator mode volume in the active medium, which leads to additional heating and a decrease of the pump conversion efficiency. A bend of the laser output power in Fig. 7(b) was mostly caused by an increase of the laser threshold due to lifetime reduction because of vigorous heating of the active medium.

6. Conclusion

We have performed a thorough characterization of the quenching and thermal lensing based on simple effective lens approximation in the Cr2+:CdSe active medium, including detailed research into the dependence of the luminescence lifetime on temperature in the 236–391 K range. This allowed us to partially overcome the limitations associated with the thermal effects and build a laser system in which we realized power scalability for the Cr2+:CdSe laser. Using a Cr2+:CdSe single crystal, we demonstrated Tm-doped fiber laser-pumped room temperature diffraction-limited 2.3 W-level pure CW lasing at approximately 2.65 μm with absorbed power slope efficiency of 47.6%, which is the highest output power lasing obtained to date for Cr2+:CdSe lasers. The internal loss value in the active medium was 5%, indicating the good optical quality of the active medium. Laser performance was limited by a small value of the gain region and the resonator mode overlapping in the active medium, which leads to additional heating and a reduction in the pump conversion efficiency. Bend of laser output power dependence on absorbed pump power was substantially caused by increasing the laser threshold due to a lifetime reduction because of powerful heating of the active medium. Compensation of these effects is a challenging task, but further research will be performed to compensate the effect and improve the laser characteristics. In general, these favorable results prove that the Cr2+:CdSe laser is an interesting and powerful solid-state source with potential for applications in biomedicine.

Funding

Russian Science Foundation (RSF) (17-79-20431).

Acknowledgments

Vladimir A. Lazarev is a 2018 OSA Ambassador. The authors acknowledge the Russian Science Foundation according to the research project No. 17-79-20431.

References

1. S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018). [CrossRef]  

2. N. Coluccelli, A. Gambetta, M. Cassinerio, P. Laporta, and G. Galzerano, “Mid-IR solid-state lasers for spectroscopy and metrology applications,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, (Optical Society of America, 2013), pp. 1.

3. M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015). [CrossRef]   [PubMed]  

4. M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016). [CrossRef]  

5. S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).

6. A. V. Belikov, A. V. Skrypnik, K. V. Shatilova, and V. V. Tuchin, “Multi-beam laser-induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin,” Lasers Surg. Medicine 47, 723–736 (2015). [CrossRef]  

7. T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016). [CrossRef]  

8. M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018). [CrossRef]  

9. M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018). [CrossRef]   [PubMed]  

10. J. McKay, K. L. Schepler, and G. Catella, “Broadly tuned, all-solid-state Cr2+:CdSe mid-IR laser,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 1999), p. CFJ1.

11. J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24, 1575–1577 (1999). [CrossRef]  

12. V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008). [CrossRef]  

13. O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015). [CrossRef]  

14. T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017). [CrossRef]  

15. M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

16. Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

17. V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015). [CrossRef]  

18. V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

19. V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010). [CrossRef]  

20. M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011). [CrossRef]  

21. O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

22. J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002). [CrossRef]  

23. E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

24. B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University, 2000). [CrossRef]  

25. W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2013).

26. P. Loiko, S. Manjooran, K. Yumashev, and A. Major, “Polarization anisotropy of thermal lens in Yb:KY(WO4)2 laser crystal under high-power diode pumping,” Appl. Opt. 56, 2937–2945 (2017). [CrossRef]   [PubMed]  

27. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006). [CrossRef]  

28. W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2013).

29. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988). [CrossRef]  

References

  • View by:

  1. S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
    [Crossref]
  2. N. Coluccelli, A. Gambetta, M. Cassinerio, P. Laporta, and G. Galzerano, “Mid-IR solid-state lasers for spectroscopy and metrology applications,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, (Optical Society of America, 2013), pp. 1.
  3. M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015).
    [Crossref] [PubMed]
  4. M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
    [Crossref]
  5. S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).
  6. A. V. Belikov, A. V. Skrypnik, K. V. Shatilova, and V. V. Tuchin, “Multi-beam laser-induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin,” Lasers Surg. Medicine 47, 723–736 (2015).
    [Crossref]
  7. T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
    [Crossref]
  8. M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
    [Crossref]
  9. M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018).
    [Crossref] [PubMed]
  10. J. McKay, K. L. Schepler, and G. Catella, “Broadly tuned, all-solid-state Cr2+:CdSe mid-IR laser,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 1999), p. CFJ1.
  11. J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24, 1575–1577 (1999).
    [Crossref]
  12. V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
    [Crossref]
  13. O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
    [Crossref]
  14. T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
    [Crossref]
  15. M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.
  16. Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.
  17. V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
    [Crossref]
  18. V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).
  19. V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
    [Crossref]
  20. M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
    [Crossref]
  21. O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.
  22. J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
    [Crossref]
  23. E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.
  24. B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University, 2000).
    [Crossref]
  25. W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2013).
  26. P. Loiko, S. Manjooran, K. Yumashev, and A. Major, “Polarization anisotropy of thermal lens in Yb:KY(WO4)2 laser crystal under high-power diode pumping,” Appl. Opt. 56, 2937–2945 (2017).
    [Crossref] [PubMed]
  27. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
    [Crossref]
  28. W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2013).
  29. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
    [Crossref]

2018 (4)

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).

M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
[Crossref]

M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (3)

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

2015 (4)

A. V. Belikov, A. V. Skrypnik, K. V. Shatilova, and V. V. Tuchin, “Multi-beam laser-induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin,” Lasers Surg. Medicine 47, 723–736 (2015).
[Crossref]

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015).
[Crossref] [PubMed]

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

2011 (1)

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

2010 (1)

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
[Crossref]

2008 (1)

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

2006 (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

2002 (1)

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

1999 (1)

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Adetunji, O. O.

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

Akimov, V. A.

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

Antipov, O. L.

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

Aoki, A.

M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018).
[Crossref] [PubMed]

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Augello, M.

M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
[Crossref]

Baetscher, C.

M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
[Crossref]

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Bartram, R. H.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University, 2000).
[Crossref]

Belikov, A. V.

A. V. Belikov, A. V. Skrypnik, K. V. Shatilova, and V. V. Tuchin, “Multi-beam laser-induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin,” Lasers Surg. Medicine 47, 723–736 (2015).
[Crossref]

Burger, A.

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Cassinerio, M.

N. Coluccelli, A. Gambetta, M. Cassinerio, P. Laporta, and G. Galzerano, “Mid-IR solid-state lasers for spectroscopy and metrology applications,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, (Optical Society of America, 2013), pp. 1.

Catella, G.

J. McKay, K. L. Schepler, and G. Catella, “Broadly tuned, all-solid-state Cr2+:CdSe mid-IR laser,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 1999), p. CFJ1.

Catella, G. C.

Cattin, P.

M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Chattopadhyay, K.

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Coluccelli, N.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

N. Coluccelli, A. Gambetta, M. Cassinerio, P. Laporta, and G. Galzerano, “Mid-IR solid-state lasers for spectroscopy and metrology applications,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, (Optical Society of America, 2013), pp. 1.

Dergachev, A.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Druon, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Eranov, I. D.

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

Fedorov, V. V.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Fernandez, T. T.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

Filipchuk, M. Y.

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Frolov, M. P.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
[Crossref]

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

Galzerano, G.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

N. Coluccelli, A. Gambetta, M. Cassinerio, P. Laporta, and G. Galzerano, “Mid-IR solid-state lasers for spectroscopy and metrology applications,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, (Optical Society of America, 2013), pp. 1.

Gambetta, A.

N. Coluccelli, A. Gambetta, M. Cassinerio, P. Laporta, and G. Galzerano, “Mid-IR solid-state lasers for spectroscopy and metrology applications,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, (Optical Society of America, 2013), pp. 1.

Gapontsev, V.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Georges, P.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Gubin, M. A.

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

Henderson, B.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University, 2000).
[Crossref]

Ichinose, S.

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Izumi, Y.

M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018).
[Crossref] [PubMed]

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Johnson, V. A.

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

Juergens, P.

M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
[Crossref]

Kalyanov, D. O.

O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

Karasik, V. E.

S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Kawamura, R.

Kireev, A. N.

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

Klimentov, D.

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

Koechner, W.

W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2013).

W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2013).

Korostelin, Y. V.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
[Crossref]

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

Kovtun, A. A.

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

Kozlovskii, V. I.

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
[Crossref]

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

Kozlovsky, V. I.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Landman, A. I.

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
[Crossref]

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

Laporta, P.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

N. Coluccelli, A. Gambetta, M. Cassinerio, P. Laporta, and G. Galzerano, “Mid-IR solid-state lasers for spectroscopy and metrology applications,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, (Optical Society of America, 2013), pp. 1.

Lazarev, V.

S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).

Lazarev, V. A.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Leonov, S. O.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Lin, T.

M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018).
[Crossref] [PubMed]

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Loiko, P.

Maddaloni, P.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

Major, A.

Manjooran, S.

Martyshkin, D.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

McKay, J.

J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24, 1575–1577 (1999).
[Crossref]

J. McKay, K. L. Schepler, and G. Catella, “Broadly tuned, all-solid-state Cr2+:CdSe mid-IR laser,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 1999), p. CFJ1.

Mirov, M.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Mirov, S. B.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Mizutani, K.

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Morrow, K.

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

Moskalev, I. S.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Nagasaka, K.

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Nakajima, S.

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Ndap, J. O.

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

Novikov, A. A.

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

Page, R. H.

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Peppers, J.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Podmar’kov, Y. P.

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
[Crossref]

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

Podmarkov, Y. P.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

Podmarov, Y. P.

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

Rablau, C. I.

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Saito, N.

M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018).
[Crossref] [PubMed]

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Schepler, K. L.

J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24, 1575–1577 (1999).
[Crossref]

J. McKay, K. L. Schepler, and G. Catella, “Broadly tuned, all-solid-state Cr2+:CdSe mid-IR laser,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 1999), p. CFJ1.

Segesser, M.

M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
[Crossref]

Shatilova, K. V.

A. V. Belikov, A. V. Skrypnik, K. V. Shatilova, and V. V. Tuchin, “Multi-beam laser-induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin,” Lasers Surg. Medicine 47, 723–736 (2015).
[Crossref]

Shelkovnikov, A. I.

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

Shelkovnikov, A. S.

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

Sigrist, M. W.

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015).
[Crossref] [PubMed]

Skasyrskii, Y. K.

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

Skasyrsky, Y. K.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

Skrypnik, A. V.

A. V. Belikov, A. V. Skrypnik, K. V. Shatilova, and V. V. Tuchin, “Multi-beam laser-induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin,” Lasers Surg. Medicine 47, 723–736 (2015).
[Crossref]

Smolski, V.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Sorokin, E.

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

Sorokina, I. T.

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Svelto, C.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

Tarabrin, M.

S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).

Tarabrin, M. K.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Tomilov, S.

S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).

Tuchin, V.

S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).

Tuchin, V. V.

A. V. Belikov, A. V. Skrypnik, K. V. Shatilova, and V. V. Tuchin, “Multi-beam laser-induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin,” Lasers Surg. Medicine 47, 723–736 (2015).
[Crossref]

Tuyrikov, D. A.

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

Vasilyev, S.

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

Wada, S.

M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018).
[Crossref] [PubMed]

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Wang, Y.

T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7, 3815–3825 (2017).
[Crossref]

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

Yumashev, K.

Yumoto, M.

M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25–3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9, 5645–5653 (2018).
[Crossref] [PubMed]

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Zeilhofer, H.-F.

M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Bull. Lebedev Phys. Inst. (1)

M. A. Gubin, A. N. Kireev, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, M. Y. Filipchuk, M. P. Frolov, and A. I. Shelkovnikov, “Tunable single-frequency CW Cr2+:CdSe laser,” Bull. Lebedev Phys. Inst. 38, 205 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24, 1–29 (2018).
[Crossref]

J. Adv. Res. (1)

M. W. Sigrist, “Mid-infrared laser-spectroscopic sensing of chemical species,” J. Adv. Res. 6, 529–533 (2015).
[Crossref] [PubMed]

J. Cranio-Maxillofacial Surg. (1)

M. Augello, C. Baetscher, M. Segesser, H.-F. Zeilhofer, P. Cattin, and P. Juergens, “Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er:YAG laser osteotome (CARLO®) − A study on applicability and effectiveness in human cadavers,” J. Cranio-Maxillofacial Surg. 46, 1850–1855 (2018).
[Crossref]

J. Electron. Mater. (1)

J. O. Ndap, C. I. Rablau, K. Morrow, O. O. Adetunji, V. A. Johnson, K. Chattopadhyay, R. H. Page, and A. Burger, “Infrared spectroscopy of chromium-doped cadmium selenide,” J. Electron. Mater. 31, 802–805 (2002).
[Crossref]

J. Physics: Conf. Ser. (1)

V. A. Lazarev, M. K. Tarabrin, S. O. Leonov, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Diode array-pumped mid-infrared CW Cr2+:CdSe laser,” J. Physics: Conf. Ser. 673, 012015 (2016).

J. Quant. Spectrosc. Radiat. Transf. (1)

M. K. Tarabrin, V. A. Lazarev, V. E. Karasik, A. N. Kireev, Y. V. Korostelin, A. S. Shelkovnikov, D. A. Tuyrikov, V. I. Kozlovsky, Y. P. Podmarov, M. P. Frolov, and M. A. Gubin, “Application of the methane saturated dispersion resonance near 2.36 μm over the temperature range of 77–300 K for optical frequency standards,” J. Quant. Spectrosc. Radiat. Transf. 177, 241–247 (2016).
[Crossref]

Laser Phys. Lett. (2)

V. A. Lazarev, M. K. Tarabrin, A. A. Kovtun, V. E. Karasik, A. N. Kireev, V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmarkov, M. P. Frolov, and M. A. Gubin, “Continuous-wave broadly tunable diode laser array-pumped mid-infrared Cr2+:CdSe laser,” Laser Phys. Lett. 12, 125003 (2015).
[Crossref]

O. L. Antipov, I. D. Eranov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. A. Novikov, Y. P. Podmarkov, and Y. K. Skasyrsky, “2.92 μm Cr2+:CdSe single crystal laser pumped by a repetitively pulsed Tm3+:Lu2O3 ceramics laser at 2.066 μm,” Laser Phys. Lett. 12, 045801 (2015).
[Crossref]

Lasers Surg. Medicine (2)

A. V. Belikov, A. V. Skrypnik, K. V. Shatilova, and V. V. Tuchin, “Multi-beam laser-induced hydrodynamic shock waves used for delivery of microparticles and liquids in skin,” Lasers Surg. Medicine 47, 723–736 (2015).
[Crossref]

T. Lin, A. Aoki, N. Saito, M. Yumoto, S. Nakajima, K. Nagasaka, S. Ichinose, K. Mizutani, S. Wada, and Y. Izumi, “Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser,” Lasers Surg. Medicine 48, 965–977 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Proc. SPIE (1)

S. Tomilov, M. Tarabrin, V. Lazarev, V. E. Karasik, and V. Tuchin, “Broadband tunable Mid-IR Cr2+:CdSe lasers for medical applications,” Proc. SPIE 10717, 1071707 (2018).

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[Crossref]

Quantum Electron. (2)

V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Continuous wave Cr2+:CdS laser,” Quantum Electron. 40, 7 (2010).
[Crossref]

V. A. Akimov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, Y. K. Skasyrskii, and M. P. Frolov, “Efficient pulsed Cr2+:CdSe laser continuously tunable in the spectral range from 2.26 to 3.61 μm,” Quantum Electron. 38, 205 (2008).
[Crossref]

Other (9)

M. K. Tarabrin, T. T. Fernandez, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, Y. K. Skasyrsky, M. P. Frolov, Y. P. Podmarkov, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Laser performance of Cr2+:CdSe crystal with anti-reflection coating,” in 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (Optical Society of America, 2017), pp. 1–2.

Y. Wang, M. K. Tarabrin, T. T. Fernandez, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “1 Watt, 59 % slope efficiency, 2.65 μm Cr2+:CdSe laser with tunability of 560 nm,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), pp. CA–10–3.

N. Coluccelli, A. Gambetta, M. Cassinerio, P. Laporta, and G. Galzerano, “Mid-IR solid-state lasers for spectroscopy and metrology applications,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference, (Optical Society of America, 2013), pp. 1.

J. McKay, K. L. Schepler, and G. Catella, “Broadly tuned, all-solid-state Cr2+:CdSe mid-IR laser,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 1999), p. CFJ1.

O. L. Antipov, I. D. Eranov, M. P. Frolov, D. O. Kalyanov, Y. V. Korostelin, V. I. Kozlovsky, and Y. K. Skasyrsky, “Efficient gain-switched operation around 3 μm in Cr2+:CdSe single-crystal laser pumped by repetitively pulsed Ho3+:YAG lasers,” in 2018 International Conference Laser Optics (ICLO), (Optical Society of America, 2018), pp. 2.

E. Sorokin, D. Klimentov, I. T. Sorokina, V. I. Kozlovsky, Y. V. Korostelin, A. I. Landman, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Broadly tunable high-power continuous-wave Cr2+:CdS laser,” in Advances in Optical Materials, (Optical Society of America, 2011), p. ATuA2.

B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials (Cambridge University, 2000).
[Crossref]

W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2013).

W. Koechner, Solid-state laser engineering, vol. 1 (Springer, 2013).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of experimental setup used for luminescence lifetime measurements. BS: beam splitter; PD-24, PD-36: photodiodes (b) Luminescence lifetime dependence on temperature of Cr2+:CdSe crystal.
Fig. 2
Fig. 2 Schematic of the Cr2+:CdSe laser.
Fig. 3
Fig. 3 (a) Transmission spectrum of the HR mirror (b) Transmission spectra of the output couplers.
Fig. 4
Fig. 4 (a) Pump beam caustics for two pump power values (b) Focused pump beam caustics for two power values.
Fig. 5
Fig. 5 (a) Dependence of focal length of thermal lens on absorbed pump power (b) Stability zone of laser resonator with thermal lens.
Fig. 6
Fig. 6 (a) Modeled generated and pump beam caustic radii in crystal for absorbed pump power of 1 W (b) Modeled generated and pump beam caustic radii in crystal for absorbed pump power of 6.3 W.
Fig. 7
Fig. 7 (a) Results of laser output power measure for various output couplers (b) Laser performance at maximum output power.
Fig. 8
Fig. 8 Dependence of inverse slope efficiency on inverted OC transmittance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ 1 = τ r 1 + W nr ,
W nr = W 0 exp ( E a / k T ) ,
f ( P heat ) = π K ω 0 2 P heat d n d T ,
P heat = ( 1 λ p λ g ) P abs ,
1 η = 1 η 0 + L η 0 1 T ,

Metrics