Abstract

Nanophotonic circuits using group III-nitrides on silicon are still lacking one key component: efficient electrical injection. In this paper we demonstrate an electrical injection scheme using a metal microbridge contact in thin III-nitride on silicon mushroom-type microrings that is compatible with integrated nanophotonic circuits with the goal of achieving electrically injected lasing. Using a central buried n-contact to bypass the insulating buffer layers, we are able to underetch the microring, which is essential for maintaining vertical confinement in a thin disk. We demonstrate direct current room-temperature electroluminescence with 440 mW/cm2 output power density at 20 mA from such microrings with diameters of 30 to 50 μm. The first steps towards achieving an integrated photonic circuit are demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The group III-nitride material system can emit light from the deep ultraviolet (UV) to visible (VIS) spectral range [1], opening an extraordinary realm of possible applications for active photonic devices. Passive devices from the UV to the infra-red (IR) are conceivable thanks to the very large transparency window of III-nitrides. Opto-electronics based on III-nitrides, including blue/violet light emitting diodes (LEDs) and laser diodes (LDs) and white light LEDs are already being mass produced for consumer applications, such as general lighting and multi-color displays [2]. Potential applications for III-nitride nanophotonics, that is photonics utilizing microcavities, waveguides, and other devices interacting with light onthe sub-wavelength scale, range from quantum technologies, such as single photon sources [3], ion trapping [4], and parametric down conversion [5] to bio-sensing, III-nitrides being bio-compatible [6, 7]. Over the past 15 years, there have been numerous demonstrations of III-nitride nanophotonic devices, including high quality factor optical microcavities [8–11], microlasers [12–22], and both passive [23–28] and active [29–31] photonic circuits on sapphire, silicon carbide, or silicon substrates.

Electrical injection was utilized only in very few cases in III-nitride microdisk cavities or photonic circuits [12, 22, 29, 30], yet a main interest in using III-nitrides is to have active emitters, which are much more feasible for applications if electrically driven as opposed to optically pumped. Efficient electrical injection continues to pose a challenge in thin III-nitride layers. However, the advantage of using silicon as a substrate for III-nitride nanophotonics is the possibility of monolithic integration into a well-established photonic platform, extending it to encompass UV-VIS emitters. Major difficulties in achieving low threshold and long lifetime electrically injected lasing are to sufficiently reduce the threading dislocation density (TDD) (usually in the order of 1091010 cm2) in gallium nitride (GaN) grown on silicon which is caused by the large lattice mismatch of 17% and to reduce cracking due to the large difference in thermal expansion coefficient of 116% between GaN and silicon [32, 33]. A significant dislocation density does not prevent to observe lasing as shown by Sun et al. [32] who in 2016 demonstrated the first ever laser diode in the III-nitride on silicon material system with a TDD of 6108 cm2. Lasing has also been achieved with higher TDDs [34]. A standard GaN on silicon epilayer can thus be an appropriate test platform for nanophotonic circuits incorporating active laser devices, even if it has limitations for reliability under continuous wave electrical injection.

 figure: Fig. 1

Fig. 1 Process flow of microrings for electrical injection.

Download Full Size | PPT Slide | PDF

The field of III-nitride on silicon nanophotonics will greatly benefit from an electrical injection scheme compatible with thin epilayers. There have been some attempts at electrical injection in III-nitride photonic circuits for light communication [29, 30], however these have been on impractically large devices. Feng et al. [22] recently demonstrated lasing under electrical injection in III-nitride “sandwich”-type microdisks on silicon, however, they are using 5.8μm thick hetero structures and side contacts that do not allow for fabrication of high quality, efficient nanophotonic circuits. The need for side contacts can be avoided by via etching, which was demonstrated by Hikita et al. for field effect transistors using a lateral device structure [35, 36]. A backside substrate and buffer layer removal approach for all vertical power diodes was proposed by Zhang et al. [37].

2. Fabrication

In this paper, we are proposing a vertical device with an electrical injection scheme that is compatible with thin layers (12μm) and allows for the fabrication of side-coupled bus waveguides with small gaps (less than 100 nm) necessary for efficient coupling in the blue to UV spectral range. We use mushroom-type microrings with a top buried n-contact that bypasses the insulating buffer layers currently required in our epitaxial scheme for growth of high material quality GaN on silicon. A mechanically stable metallic microbridge contact allows for easy probing of a larger p-pad. The back contact is taken from the n-doped silicon, without metalization. This technology is scalable to complex integrated photonic circuits and will provide an asset to the field.

Microrings with 30 to 50μm diameter were fabricated using an 8-step optical and e-beam lithography process depicted schematically in Fig. 1. The dimensions of different layers were varied throughout the mask. First (step 1) alignment marks and 2 to 5μm wide ring Ni/Au p-contacts were deposited and annealed at 500C for 5 min. Next (step 2) the center of the p-ring is etched to the n-side using inductively coupled plasma (ICP) etching with chlorine (Cl2) and boron trichloride (BCl3) gases. Using e-beam lithography with UVIII resist (step 3), the microring is defined leaving 2 to 6μm free between the ring p-contact and the edge of the disk. The pattern is subsequently etched into a plasma-enhanced chemical vapor deposited (PECVD) silicon dioxide (SiO2) hard mask using reactive ion etching (RIE) and into the III-nitride and down to the silicon substrate using ICP etching. Next (step 4) a circular Ti/Al/Ni/Au n-contact is deposited at the center of the ring, connecting the n-GaN to the silicon substrate, bypassing the insulating buffer layers. The distance between the n-contact and the edge of the microring is between 7 and 16μm. Subsequently, (step 5) SiO2 is deposited as an insulating layer and etched away at the edge of the disk and on the p-ring using RIE. A thick circular Ni/Au p-contact is deposited over the center of the disk, covering the ring p-contact and the insulator (step 6). Next (step 7) using a 2-step lithography involving a photoresist temperature gradient reflow step to form the bridge holder, the microbridge contact and p-pad are defined and a thick Ti/Au layer is deposited. As a final step (step 8) the microrings are underetched using xenon difluoride (XeF2) gas. A further reduction in device size could be realized by switching to a full e-beam lithography process. Devices in the 10μm diameter range would be feasible. Finding a way to make the entire heterostructure conductive can also decrease device size, as it would allow for the fabrication of standard mushroom-type microdisks [9].

 figure: Fig. 2

Fig. 2 a) False color SEM images of a 50 μm diameter microring for electrical injection. b) Same device but from a different angle to emphasize the underetching of the microring. The metal microbridge and p-contact are highlighted in yellow,the insulator in red, and the III-nitride in purple. The rough gray area is the etched silicon.

Download Full Size | PPT Slide | PDF

False color scanning electron microscopy (SEM) images of a tilted 50μm diameter microring are shown in Fig. 2 for two different angles. The undercut of the microring and the bridge suspension are clearly visible. The rough area around the ring is the silicon substrate after isotropic etching by XeF2 gas.

 figure: Fig. 3

Fig. 3 The sample structure: a) Detailed heterostructure, b) Simulated mode confinement of the TE0, TE1, and TE2 modes, the MQW region is highlighted in green, the heterostructure in gray, c) Energy band structure of the sample at 3.4 V bias.

Download Full Size | PPT Slide | PDF

3. Experiment and discussion

The investigated sample was grown on a 2 inch n-type (doping concentration 51018cm3) silicon (111) wafer using metal organic chemical vapor deposition (MOCVD). The heterostructure is illustrated in Fig. 3(a). First an undoped buffer layer of 220 nm aluminum nitride (AlN) and 200 nm GaN was grown, followed by the LED heterostructure consisting of 400 nm GaN:Si (doping level 51018 cm3), 11.5 nm of undoped GaN, 5 pairs of 2.3 nm In0.14Ga0.86N quantum wells (QWs) and 11.5 nm GaN barriers, a 20 nm Mg-doped Al0.15Ga0.85N electron blocking layer (EBL) (doping concentration 41019 cm3), 90 nm of GaN:Mg (doping concentration 41019 cm3), and 15 nm of GaN:Mg (doping concentration 11020 cm3). The TDD estimated from X-ray diffraction (XRD) and atomic force microscopy (AFM) is in the range of 5109 to 21010 cm2 and the root mean square (rms) roughness is 1 nm as determined by an AFM scan of 10μm×10μm. The device scheme proposed in this paper allows for much simpler heterostructures than required for the devices reported on by Feng et al. [22], as no claddinglayers are used.

 figure: Fig. 4

Fig. 4 JV curves of a 40 μm diameter microring and a 180 μm lateral LED for reference.

Download Full Size | PPT Slide | PDF

Simulation of the vertical mode confinement of the TE 0, TE 1, and TE 2 modes are shown in Fig. 3(b) for an underetched disk. The overlap of these modes with the QWs (without barriers) are 0.96 %, 2.4 %, and 2.0 %, respectively. By increasing the thickness of the p-GaN cap layer, for example, we could increase this overlap of the TE 0 mode to a maximum of 1.6 % for a 400 nm cap thickness. Laterally the mode is confined by total internal reflection at the edge of the disk, extending over a few microns. A simulation of the band structure is shown in Fig. 3(c) under a 3.4 V bias, which corresponds to the GaN bandgap. Simulations of the radiative recombination show that the carrier density is higher in the QWs closer to the p-side and thus fewer wells may lead to an enhanced performance [38].

A typical current density over voltage (JV) curve of a 40μm diameter microring is shown in Fig. 4 and is compared to the JV curve of a lateral LED with a 180μm diameter p-contact and top n-contact on the n-GaN. The turn-on voltage is similar in both cases, which shows that the microring process with its multiple etch steps and small device dimensions, as well as taking the n-contact through the silicon substrate, do not have any negative influence on the device performance. The surface area of both p-contacts is very different, and a direct comparison of the current densities at a given voltage is not straightforward. For microrings the current density quickly becomes elevated. The overall high voltage in forward direction is due to the resistive p-GaN. The microring also shows a slightly leaky behavior in reverse bias. It is important to note that for the as-grown sample and when fabricating large mesas of 1 mm diameter, vertical conductivity through the buffer layers is observed even if the buffer is expected to be insulating, while mesas of around 200μm diameter are vertically insulating. This indicates that the vertical conductivity is not simply driven by the dislocation density. We attribute this phenomenon to current flowing through macroscopic defects in the buffer layer and at the AlN/Si interface that might result from dislocation formation, dislocation bundles, inter-diffusion, and possibly cracks in large mesas. It also shows that the approach with the central annular contact is mandatory for micrometer-size devices. Meanwhile the central annular contact connected to the silicon substrate allows current injection through the substrate, which is an important technical option for III-nitride on silicon devices.

 figure: Fig. 5

Fig. 5 Measurement results: a) Top: Cross-sectional view of the device along the red dashed line. Bottom: Photo of a powered 40 μm diameter device emitting blue electroluminescence. b) Spectra of a device with a 40 μm diameter at different injection currents. Maximum current density 4.2 kA/cm2. c) Integrated intensity of the measurements in b).

Download Full Size | PPT Slide | PDF

We performed direct current room-temperature electroluminescence (EL) measurements on these devices, using probe tips placed on the large p-pad and near the sample on the copper block for the n-contact through the silicon substrate. The emission is collected from the side of the sample with a microscope objective and the light is guided through air into a grating monochromator with a liquid nitrogen cooled charge-coupled device (CCD) as detector. Figure 5 (a) shows a photo of a 40μm microring emitting blue EL. A cross-sectional view of the device along the red dashed line is shown at the top of the figure. The microring is at the center of a black 3/4 circle, which is etched to the Si substrate by ICP and is otropically etched by theXeF2 gas. On the right side of this circle is a 140 x 140 μm2 p-pad that connects to the microring via a microbridge. Figure 5 (b) shows spectra of a 40μm diameter ring for currents from 3 to 15 mA measured using a 600 grooves/mm grating, an 80μm slit width, and 0.01 s integration time. A slight blue shift is observed with increasing current. The maximum current of 15 mA corresponds to a current density of 4.2 kA/cm2, which is not sufficient to achieve lasing. Device degradation and breakdown are observed at currents between 15 and 30 mA, likely due to the not optimized insulator between the p- and n-contacts at the center of the microdisk. By using silicon nitride (SiN) insteadof SiO 2 better device performance should be attained. Feng et al. reported a lasing threshold of 25 kA/cm2 for devices with 40μm diameter, while Kneissl et al. observed lasing at 7.8 kA/cm2 for 500μm diameter devices on sapphire [12, 22]. Under optical pumping we have observed rather high thresholds of around 3 mJ/cm2 per pulse for 5μm diameter disks [20] fabricated on similar material. No whispering gallery modes (WGMs) are observed using a 3600 grooves/mm grating with a spectral resolution of 0.02 nm. The free spectral range (FSR) of first-order modes in such a 40μm diameter ring is expected to be around 0.4 nm, as extrapolated from finite-difference time-domain (FDTD) simulations for smaller devices. However, there are many competing families of modes, and it is not evident that the large spectral density of modes allows for an observation of WGMs below threshold. Both Kneissl et al. and Feng et al., who used devices in a similar diameter range do not observe any modes below threshold [12, 22]. Hole diffusion is an issue in such devices due to the distance from the p-ring to the edge of the microdisk and tunnel junctions will be investigated as a potential solution. Figure 5 (c) shows a double logarithmic plot of the integrated intensity over current, depicting a slope of around 1 at high current injection, suggesting dominant radiative recombination, while non-radiative processes dominate at low current. This implies a good material quality, which could be further improved by combining a 3D growth mode during the buffer layer growth to reduce the TDD with growth on mesa patterned templates to reduce the tensile stress in the GaN layers to prevent their cracking [39, 40]. We performed polarization measurements (not shown) at 0, 45, and 90°, indicating that the microring emission is mainly of transverse electric (TE) polarization, as expected for InGaN/GaN QWs [41]. Using an integrating sphere we determined the output power of a 40μm diameter microring corresponding to the IV response in Fig. 4 to be 2μW at 20 mA, giving an output power density of 440 mW/cm2 at a current density of 5.7 kA/cm2. This power density is below the one reported for microLEDs grown on sapphire [42], but in the latter case a full optimization of collection efficiency is performed. Here the microring radiates preferentially in the layer plane, which is detrimental for collection efficiency, but an asset for in-plane coupling and nanophotonic circuits, as described below.

 figure: Fig. 6

Fig. 6 Microring under electrical injection with bus waveguide side coupling: a) False color SEM image of device with a 50 μm diameter ring and a 100 μm long bus waveguide after several processing steps. b) Side-view sketch of a full device.

Download Full Size | PPT Slide | PDF

4. Perspectives

In order to achieve lasing in such microring structures next steps will include a) replacing the SiO2 insulating layer with SiN to delay electrical breakdown, b) improving the lateral current spreading through the use of tunnel junctions, c) improving the vertical confinement and mode overlap by replacing the n-GaN layer with n-AlGaN, and d) lowering the dislocation density through selective area growth.

Furthermore, we envision to demonstrate a photonic circuit consisting of an electrically injected microring, a side-coupled bus waveguide with a small gap in the order of 100 nm, and grating out-couplers terminating the waveguide, as illustrated in Fig. 6, and as previously demonstrated under optical pumping [31]. This process is very challenging, as alignment precision between 20 nm for the e-beam lithography steps and 1μm for the optical lithography steps are required, and proximity effect correction is needed when defining the microring and bus waveguide. Note that the etching of small gaps and narrow waveguides, which is essential for efficient evanescent coupling in the blue, requires the total heterostructure thickness to be less than 2μm. Such devices will allow to demonstrate the viability of the III-nitride on silicon nanophotonic platform for real-world applications.

5. Conclusion

In conclusion, we have demonstrated a scheme for electrical injection in microrings in thin III-nitride epilayers on silicon that is compatible with microlaser diodes coupled to integrated photonic circuits as it allows for device underetching and the possibility of fabricating side-waveguides with small gaps of less than 100 nm, necessary for efficient coupling in the blue-UV spectral range. We have demonstrated EL of such microrings contacted with a metallic microbridge with 440 mW/cm2 output power density at 20 mA.

Funding

Agence Nationale de la Recherche (ANR-17-CE08-0043-02, ANR-11-LABX-0014, ANR-10-LABX-0035).

Acknowledgments

We acknowledge the support of W.Y. Fu, K.H. Li, Y.F. Cheung, and H.W. Choi at Hong Kong University (HKU) with the power measurement with an integrating sphere. This work was supported by Agence Nationale de la Recherche under the MILAGAN convention (ANR-17-CE08-0043-02). This work was also partly supported by the RENATECH network. We acknowledge support by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program: Labex GANEX (Grant No. ANR-11-LABX-0014) and Labex NanoSaclay (reference: ANR-10-LABX-0035).

References

1. S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B 10, 1237–1266 (1992). [CrossRef]  

2. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story(Springer Science & Business Media, 2013).

3. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013). [CrossRef]  

4. D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004). [CrossRef]  

5. D. Javůrek, J. J. Perina, and J. Svozilìk, “Spontaneous parametric down conversion in nonlinear metallo-dielectric layered media,” Proc. of SPIE 9441, 94410V (2014). [CrossRef]  

6. G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003). [CrossRef]  

7. M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012). [CrossRef]   [PubMed]  

8. D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008). [CrossRef]  

9. M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011). [CrossRef]   [PubMed]  

10. N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014). [CrossRef]  

11. I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018). [CrossRef]  

12. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004). [CrossRef]  

13. H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006). [CrossRef]  

14. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007). [CrossRef]  

15. D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007). [CrossRef]  

16. M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4, 7250 (2014). [CrossRef]   [PubMed]  

17. Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015). [CrossRef]  

18. N. VicoTriviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015). [CrossRef]  

19. J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016). [CrossRef]   [PubMed]  

20. J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016). [CrossRef]  

21. M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017). [CrossRef]   [PubMed]  

22. M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018). [CrossRef]   [PubMed]  

23. W. H. Pernice, C. Xiong, and H. X. Tang, “High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics,” Opt. Express 20, 12261–12269 (2012). [CrossRef]   [PubMed]  

24. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. W. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013). [CrossRef]   [PubMed]  

25. M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014). [CrossRef]  

26. A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015). [CrossRef]  

27. T.-J. Lu, M. Fanto, H. Choi, P. Thomas, J. Steidle, S. Mouradian, W. Kong, D. Zhu, H. Moon, K. Berggren, J. Kim, M. Soltani, S. Preble, and D. Englund, “Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum,” Opt. Express 26, 11147–11160 (2018). [CrossRef]   [PubMed]  

28. X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018). [CrossRef]  

29. Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017). [CrossRef]  

30. X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017). [CrossRef]  

31. F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018). [CrossRef]  

32. Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016). [CrossRef]  

33. K. S. Jeon, S.-W. Kim, D.-H. Ko, and H. Y. Ryu, “Relationship between threading dislocations and the optical properties in GaN-based LEDs on Si substrates,” J. Korean Phys. Soc. 67, 1085–1088 (2015). [CrossRef]  

34. S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998). [CrossRef]  

35. M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005). [CrossRef]  

36. M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June 17, 2007). US Patent 7291872B2.

37. Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩcm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018). [CrossRef]  

38. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008). [CrossRef]  

39. T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012). [CrossRef]  

40. A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, “Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si,” Adv. Mater. 29, 1702557 (2017). [CrossRef]  

41. G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996). [CrossRef]  

42. C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B 10, 1237–1266 (1992).
    [Crossref]
  2. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story(Springer Science & Business Media, 2013).
  3. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013).
    [Crossref]
  4. D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
    [Crossref]
  5. D. Javůrek, J. J. Perina, and J. Svozilìk, “Spontaneous parametric down conversion in nonlinear metallo-dielectric layered media,” Proc. of SPIE 9441, 94410V (2014).
    [Crossref]
  6. G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1−xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003).
    [Crossref]
  7. M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
    [Crossref] [PubMed]
  8. D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
    [Crossref]
  9. M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
    [Crossref] [PubMed]
  10. N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
    [Crossref]
  11. I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
    [Crossref]
  12. M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
    [Crossref]
  13. H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
    [Crossref]
  14. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
    [Crossref]
  15. D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
    [Crossref]
  16. M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4, 7250 (2014).
    [Crossref] [PubMed]
  17. Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
    [Crossref]
  18. N. VicoTriviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
    [Crossref]
  19. J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
    [Crossref] [PubMed]
  20. J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
    [Crossref]
  21. M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
    [Crossref] [PubMed]
  22. M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
    [Crossref] [PubMed]
  23. W. H. Pernice, C. Xiong, and H. X. Tang, “High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics,” Opt. Express 20, 12261–12269 (2012).
    [Crossref] [PubMed]
  24. H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. W. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
    [Crossref] [PubMed]
  25. M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
    [Crossref]
  26. A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
    [Crossref]
  27. T.-J. Lu, M. Fanto, H. Choi, P. Thomas, J. Steidle, S. Mouradian, W. Kong, D. Zhu, H. Moon, K. Berggren, J. Kim, M. Soltani, S. Preble, and D. Englund, “Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum,” Opt. Express 26, 11147–11160 (2018).
    [Crossref] [PubMed]
  28. X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
    [Crossref]
  29. Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
    [Crossref]
  30. X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
    [Crossref]
  31. F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
    [Crossref]
  32. Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
    [Crossref]
  33. K. S. Jeon, S.-W. Kim, D.-H. Ko, and H. Y. Ryu, “Relationship between threading dislocations and the optical properties in GaN-based LEDs on Si substrates,” J. Korean Phys. Soc. 67, 1085–1088 (2015).
    [Crossref]
  34. S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
    [Crossref]
  35. M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
    [Crossref]
  36. M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June17, 2007). US Patent7291872B2.
  37. Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩ⋅cm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018).
    [Crossref]
  38. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
    [Crossref]
  39. T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
    [Crossref]
  40. A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, “Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si,” Adv. Mater. 29, 1702557 (2017).
    [Crossref]
  41. G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996).
    [Crossref]
  42. C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
    [Crossref]

2018 (6)

I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
[Crossref]

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

T.-J. Lu, M. Fanto, H. Choi, P. Thomas, J. Steidle, S. Mouradian, W. Kong, D. Zhu, H. Moon, K. Berggren, J. Kim, M. Soltani, S. Preble, and D. Englund, “Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum,” Opt. Express 26, 11147–11160 (2018).
[Crossref] [PubMed]

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩ⋅cm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018).
[Crossref]

2017 (4)

A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, “Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si,” Adv. Mater. 29, 1702557 (2017).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
[Crossref] [PubMed]

2016 (3)

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

2015 (4)

K. S. Jeon, S.-W. Kim, D.-H. Ko, and H. Y. Ryu, “Relationship between threading dislocations and the optical properties in GaN-based LEDs on Si substrates,” J. Korean Phys. Soc. 67, 1085–1088 (2015).
[Crossref]

Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
[Crossref]

N. VicoTriviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

2014 (5)

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

D. Javůrek, J. J. Perina, and J. Svozilìk, “Spontaneous parametric down conversion in nonlinear metallo-dielectric layered media,” Proc. of SPIE 9441, 94410V (2014).
[Crossref]

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4, 7250 (2014).
[Crossref] [PubMed]

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
[Crossref]

2013 (2)

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. W. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
[Crossref] [PubMed]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013).
[Crossref]

2012 (3)

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

W. H. Pernice, C. Xiong, and H. X. Tang, “High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics,” Opt. Express 20, 12261–12269 (2012).
[Crossref] [PubMed]

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

2011 (1)

2008 (2)

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
[Crossref]

2007 (2)

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
[Crossref]

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

2006 (1)

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

2005 (1)

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

2004 (2)

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
[Crossref]

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

2003 (1)

G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1−xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003).
[Crossref]

1998 (1)

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

1996 (1)

G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996).
[Crossref]

1992 (1)

S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B 10, 1237–1266 (1992).
[Crossref]

Adigúzel, D.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Altoukhov, A.

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

Arakawa, Y.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013).
[Crossref]

Arita, M.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013).
[Crossref]

Athanasiou, M.

M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
[Crossref] [PubMed]

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4, 7250 (2014).
[Crossref] [PubMed]

Berggren, K.

Bierbrauer, C.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Boucaud, P.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Bretagnon, T.

Brimont, C.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Bruch, A. W.

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Bühlmann, H.-J.

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Butté, R.

I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
[Crossref]

N. VicoTriviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Callsen, G.

I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
[Crossref]

Carlin, J.-F.

I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
[Crossref]

N. VicoTriviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Cassabois, G.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Castiglia, A.

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Chang, R. K.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
[Crossref]

Checoury, X.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Chécoury, X.

Chen, P.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Chen, R.

A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, “Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si,” Adv. Mater. 29, 1702557 (2017).
[Crossref]

Cheng, K.

Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩ⋅cm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018).
[Crossref]

Chenot, S.

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Chern, G. D.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
[Crossref]

Cheung, Y. F.

Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
[Crossref]

Chocho, K.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Choi, H.

Choi, H. W.

Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
[Crossref]

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Choi, K.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013).
[Crossref]

Choi, W.

A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, “Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si,” Adv. Mater. 29, 1702557 (2017).
[Crossref]

Chowdhury, N.

Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩ⋅cm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018).
[Crossref]

Chua, S. J.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Cordier, Y.

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Crepel, V.

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

Cryan, M. J.

M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
[Crossref] [PubMed]

Damilano, B.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

David, A.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
[Crossref]

David, S.

Dayeh, S. A.

A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, “Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si,” Adv. Mater. 29, 1702557 (2017).
[Crossref]

Demangeot, F.

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Doyennette, L.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

Duboz, J.-Y.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

Durand, L.

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Ebert, J.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
[Crossref]

Egawa, T.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

Eickhoff, M.

G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1−xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003).
[Crossref]

ElKurdi, M.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

Englund, D.

Fanto, M.

Fasol, G.

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story(Springer Science & Business Media, 2013).

Feltin, E.

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Feng, C.

Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
[Crossref]

Feng, M.

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Fong, K. Y.

Frankowsky, G.

G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996).
[Crossref]

Frayssinet, E.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Galli, M.

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Gao, H.

Gao, X.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Gardner, N. F.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
[Crossref]

Gayral, B.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Gil, B.

Gong, Y.

M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
[Crossref] [PubMed]

Gong, Z.

Gossler, C.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Grandjean, N.

I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
[Crossref]

N. VicoTriviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Grundmann, M. J.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
[Crossref]

Guillet, T.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Haberer, E. D.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
[Crossref]

Han, J.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Hangleiter, A.

G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996).
[Crossref]

Härle, V.

G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996).
[Crossref]

He, J.

Hikita, M.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June17, 2007). US Patent7291872B2.

Hirose, Y.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June17, 2007). US Patent7291872B2.

Hoch, G.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Hofstetter, M.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Holc, K.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Holmes, M. J.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013).
[Crossref]

Home, J. P.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Hossain, T.

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Howgate, J.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Hu, E. L.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
[Crossref]

Hui, K. N.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Ikeda, M.

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Ilin, K.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Jacopin, G.

I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
[Crossref]

Javurek, D.

D. Javůrek, J. J. Perina, and J. Svozilìk, “Spontaneous parametric down conversion in nonlinear metallo-dielectric layered media,” Proc. of SPIE 9441, 94410V (2014).
[Crossref]

Jeon, K. S.

K. S. Jeon, S.-W. Kim, D.-H. Ko, and H. Y. Ryu, “Relationship between threading dislocations and the optical properties in GaN-based LEDs on Si substrates,” J. Korean Phys. Soc. 67, 1085–1088 (2015).
[Crossref]

Jiang, Y.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Johnson, N. M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
[Crossref]

Jung, H.

Kaeding, J. F.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
[Crossref]

Kako, S.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013).
[Crossref]

Keppeler, D.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Kim, J.

Kim, S.-W.

K. S. Jeon, S.-W. Kim, D.-H. Ko, and H. Y. Ryu, “Relationship between threading dislocations and the optical properties in GaN-based LEDs on Si substrates,” J. Korean Phys. Soc. 67, 1085–1088 (2015).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Kneissl, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
[Crossref]

Ko, D.-H.

K. S. Jeon, S.-W. Kim, D.-H. Ko, and H. Y. Ryu, “Relationship between threading dislocations and the optical properties in GaN-based LEDs on Si substrates,” J. Korean Phys. Soc. 67, 1085–1088 (2015).
[Crossref]

Köhler, K.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Kong, W.

Kozaki, T.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Krames, M. R.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
[Crossref]

Kunzer, M.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Lai, P. T.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Lee, K. H.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
[Crossref]

Leroux, M.

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Leung, B.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Li, D.

Li, K. H.

Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
[Crossref]

Li, Y.

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Li, Z.

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Liu, B.

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4, 7250 (2014).
[Crossref] [PubMed]

Liu, J.

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Liu, S.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Liu, X.

Liu, Y.

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Lu, J.

Lu, T.-J.

Lucas, D. M.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

McDonnell, M. J.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Meckbach, J. M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
[Crossref]

Mexis, M.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Mihopoulos, T. G.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
[Crossref]

Minkov, M.

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Miyashita, N.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
[Crossref]

Moon, H.

Morkoç, H.

S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B 10, 1237–1266 (1992).
[Crossref]

Mosca, M.

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Moser, R.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Moser, T.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Mouradian, S.

Nagahama, S. ichi

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Nakamura, S.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
[Crossref]

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story(Springer Science & Business Media, 2013).

Nakayama, S.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Nakazawa, K.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

Neef, J.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Néel, D.

Palacios, T.

Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩ⋅cm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018).
[Crossref]

Paul, O.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Pearton, S.

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story(Springer Science & Business Media, 2013).

Perina, J. J.

D. Javůrek, J. J. Perina, and J. Svozilìk, “Spontaneous parametric down conversion in nonlinear metallo-dielectric layered media,” Proc. of SPIE 9441, 94410V (2014).
[Crossref]

Pernice, W. H.

Pernice, W. H. P.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
[Crossref]

Pletschen, W.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Ponchet, A.

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Poot, M.

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Preble, S.

Pugh, J.

M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
[Crossref] [PubMed]

Purrucker, O.

G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1−xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003).
[Crossref]

Ramos, A.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Rashid, M.

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Rennesson, S.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

Roland, I.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Rousseau, I.

I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
[Crossref]

Ruther, P.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Ryu, H. Y.

K. S. Jeon, S.-W. Kim, D.-H. Ko, and H. Y. Ryu, “Relationship between threading dislocations and the optical properties in GaN-based LEDs on Si substrates,” J. Korean Phys. Soc. 67, 1085–1088 (2015).
[Crossref]

Sachsenhauser, M.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Sano, M.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Sauvage, S.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

Savona, V.

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Schmid, M.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Schoell, S.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Scholz, F.

G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996).
[Crossref]

Schwaerzle, M.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Schwarz, U. T.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Sellés, J.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

Semond, F.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, X. Chécoury, and P. Boucaud, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots,” Opt. Lett. 36, 2203–2205 (2011).
[Crossref] [PubMed]

Senoh, M.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Sergent, S.

Sharma, R.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
[Crossref]

Sharp, I. D.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Shi, Z.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Siegel, M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
[Crossref]

Simeonov, D.

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Smith, R.

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4, 7250 (2014).
[Crossref] [PubMed]

Smith, R. M.

M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
[Crossref] [PubMed]

Soltani, M.

Stacey, D. N.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Stacey, J.-P.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Steane, A. M.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Stegmaier, M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
[Crossref]

Steidle, J.

Steinhoff, G.

G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1−xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003).
[Crossref]

Steuber, F.

G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996).
[Crossref]

Strite, S.

S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B 10, 1237–1266 (1992).
[Crossref]

Stutzmann, M.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1−xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Sun, Q.

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Sun, X.

Sun, Y.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Surya, J. B.

Svozilìk, J.

D. Javůrek, J. J. Perina, and J. Svozilìk, “Spontaneous parametric down conversion in nonlinear metallo-dielectric layered media,” Proc. of SPIE 9441, 94410V (2014).
[Crossref]

Tabataba-Vakili, F.

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

Tamboli, A. C.

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
[Crossref]

Tanaka, A.

A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, “Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si,” Adv. Mater. 29, 1702557 (2017).
[Crossref]

Tanaka, M.

G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1−xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003).
[Crossref]

Tanaka, T.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June17, 2007). US Patent7291872B2.

Tang, H. W.

Tang, H. X.

Teepe, M.

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
[Crossref]

Teng, J. H.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Thalhammer, S.

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

Thomas, P.

Tripathy, S.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Ueda, D.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

Ueda, T.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

Uemoto, Y.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June17, 2007). US Patent7291872B2.

Ueno, H.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June17, 2007). US Patent7291872B2.

Umemoto, H.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Urbinati, G.

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Valvin, P.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

VicoTriviño, N.

N. VicoTriviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

Wagner, J.

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

Wang, H.

Wang, J.

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5, 1279–1282 (2018).
[Crossref]

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Wang, R.

Wang, T.

M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
[Crossref] [PubMed]

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4, 7250 (2014).
[Crossref] [PubMed]

Wang, Y.

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Webster, S. C.

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Xiong, C.

Yamada, T.

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

Yan, J.

Yanagihara, M.

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June17, 2007). US Patent7291872B2.

Yang, H.

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Yang, Y.

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Yuan, J.

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Yuan, M.

Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩ⋅cm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018).
[Crossref]

Yuan, W.

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Zeng, Y.

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

Zhang, F.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Zhang, L.

Zhang, S.

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Zhang, X.

Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
[Crossref]

H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. W. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).
[Crossref] [PubMed]

Zhang, X. H.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Zhang, Y.

Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩ⋅cm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018).
[Crossref]

Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
[Crossref]

Zhou, K.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Zhou, Y.

M. Feng, J. He, Q. Sun, H. Gao, Z. Li, Y. Zhou, J. Liu, S. Zhang, D. Li, L. Zhang, X. Sun, D. Li, H. Wang, M. Ikeda, R. Wang, and H. Yang, “Room-temperature electrically pumped InGaN based microdisk laser grown on Si,” Opt. Express 26, 5043–5051 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Zhu, D.

Zhu, G.

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Zhu, H.

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Zhu, T.

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

ACS Photonics (1)

F. Tabataba-Vakili, L. Doyennette, C. Brimont, T. Guillet, S. Rennesson, E. Frayssinet, B. Damilano, J.-Y. Duboz, F. Semond, I. Roland, M. ElKurdi, X. Checoury, S. Sauvage, B. Gayral, and P. Boucaud, “Blue microlasers integrated on a photonic platform on silicon,” ACS Photonics 5, 3643–3648 (2018).
[Crossref]

Adv. Funct. Mater. (1)

G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, “Al xGa 1−xN - A new material system for biosensors,” Adv. Funct. Mater. 13, 841–846 (2003).
[Crossref]

Adv. Mater. (1)

A. Tanaka, W. Choi, R. Chen, and S. A. Dayeh, “Si complies with GaN to overcome thermal mismatches for the heteroepitaxy of thick GaN on Si,” Adv. Mater. 29, 1702557 (2017).
[Crossref]

Appl. Phys. Lett. (11)

G. Frankowsky, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, “Optical gain in GaInN/GaN heterostructures,” Appl. Phys. Lett. 68, 3746 (1996).
[Crossref]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in 0001 InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92, 053502 (2008).
[Crossref]

D. Simeonov, E. Feltin, A. Altoukhov, A. Castiglia, J.-F. Carlin, R. Butté, and N. Grandjean, “High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers,” Appl. Phys. Lett. tbf92, 171102 (2008).
[Crossref]

N. VicoTriviño, M. Minkov, G. Urbinati, M. Galli, J.-F. Carlin, R. Butté, V. Savona, and N. Grandjean, “Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared,” Appl. Phys. Lett. 105, 231119 (2014).
[Crossref]

M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485 (2004).
[Crossref]

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

D. Simeonov, E. Feltin, H.-J. Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells,” Appl. Phys. Lett. 90, 061106 (2007).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

J. Sellés, V. Crepel, I. Roland, M. ElKurdi, X. Checoury, P. Boucaud, M. Mexis, M. Leroux, B. Damilano, S. Rennesson, F. Semond, B. Gayral, C. Brimont, and T. Guillet, “III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet,” Appl. Phys. Lett. 109, 231101 (2016).
[Crossref]

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104, 091108 (2014).
[Crossref]

A. W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H. X. Tang, “Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films,” Appl. Phys. Lett. 107, 141113 (2015).
[Crossref]

Biochem. Biophys. Res. Commun. (1)

M. Hofstetter, J. Howgate, M. Schmid, S. Schoell, M. Sachsenhauser, D. Adigúzel, M. Stutzmann, I. D. Sharp, and S. Thalhammer, “In vitro bio-functionality of gallium nitride sensors for radiation biophysics,” Biochem. Biophys. Res. Commun. 424, 348–353 (2012).
[Crossref] [PubMed]

IEEE Electron Device Lett. (1)

Y. Zhang, M. Yuan, N. Chowdhury, K. Cheng, and T. Palacios, “720 V/0.35 mΩ⋅cm2 fully-vertical GaN-on-Si power diodes by selective removal of Si substrates and buffer layers,” IEEE Electron Device Lett. 9, 715–718 (2018).
[Crossref]

IEEE Trans. Electron Devices (1)

M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa, “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. Electron Devices 52, 1963–1968 (2005).
[Crossref]

J. Appl. Phys. (1)

I. Rousseau, G. Callsen, G. Jacopin, J.-F. Carlin, R. Butté, and N. Grandjean, “Optical absorption and oxygen passivation of surface states in III-nitride photonic devices,” J. Appl. Phys. 123, 113103 (2018).
[Crossref]

J. Cryst. Growth (1)

S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. Cryst. Growth 189-190, 820–825 (1998).
[Crossref]

J. Korean Phys. Soc. (1)

K. S. Jeon, S.-W. Kim, D.-H. Ko, and H. Y. Ryu, “Relationship between threading dislocations and the optical properties in GaN-based LEDs on Si substrates,” J. Korean Phys. Soc. 67, 1085–1088 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

C. Gossler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D: Appl. Phys. 47, 205401 (2014).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Strite and H. Morkoç, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol. B 10, 1237–1266 (1992).
[Crossref]

Nano Lett. (2)

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14, 982–986 (2013).
[Crossref]

N. VicoTriviño, R. Butté, J.-F. Carlin, and N. Grandjean, “Continuous wave blue lasing in III-nitride nanobeam cavity on silicon,” Nano Lett. 15, 1259–1263 (2015).
[Crossref]

Nat. Photon. (2)

A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photon. 1, 61–64 (2007).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photon. 10, 595–599 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (1)

D. M. Lucas, A. Ramos, J. P. Home, M. J. McDonnell, S. Nakayama, J.-P. Stacey, S. C. Webster, D. N. Stacey, and A. M. Steane, “Isotope-selective photoionization for calcium ion trapping,” Phys. Rev. A 69, 012711 (2004).
[Crossref]

Phys. Status Solidi A (1)

Y. Zhang, X. Zhang, K. H. Li, Y. F. Cheung, C. Feng, and H. W. Choi, “Advances in III-nitride semiconductor microdisk lasers,” Phys. Status Solidi A 212, 960–973 (2015).
[Crossref]

Phys. Status Solidi C (1)

T. Hossain, J. Wang, E. Frayssinet, S. Chenot, M. Leroux, B. Damilano, F. Demangeot, L. Durand, A. Ponchet, M. Rashid, F. Semond, and Y. Cordier, “Stress distribution of 12 μm thick crack free continuous GaN on patterned Si (110) substrate,” Phys. Status Solidi C 10, 425–428 (2012).
[Crossref]

Proc. of SPIE (1)

D. Javůrek, J. J. Perina, and J. Svozilìk, “Spontaneous parametric down conversion in nonlinear metallo-dielectric layered media,” Proc. of SPIE 9441, 94410V (2014).
[Crossref]

Sci. Rep. (3)

J. Sellés, C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, M. Mexis, F. Semond, and B. Gayral, “Deep-UV nitride-on-silicon microdisk lasers,” Sci. Rep. 6, 21650 (2016).
[Crossref] [PubMed]

M. Athanasiou, R. Smith, B. Liu, and T. Wang, “Room temperature continuous-wave green lasing from an InGaN microdisk on silicon,” Sci. Rep. 4, 7250 (2014).
[Crossref] [PubMed]

M. Athanasiou, R. M. Smith, J. Pugh, Y. Gong, M. J. Cryan, and T. Wang, “Monolithically multi-color lasing from an InGaN microdisk on a Si substrate,” Sci. Rep. 7, 10086 (2017).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

X. Gao, J. Yuan, Y. Yang, Y. Li, W. Yuan, G. Zhu, H. Zhu, M. Feng, Q. Sun, Y. Liu, and Y. Wang, “A 30mbps in-plane full-duplex light communication using a monolithic GaN photonic circuit,” Semicond. Sci. Technol. 32, 075002 (2017).
[Crossref]

Other (2)

M. Hikita, H. Ueno, Y. Hirose, M. Yanagihara, Y. Uemoto, and T. Tanaka, “Semiconductor device and method for fabricating the same,” (June17, 2007). US Patent7291872B2.

S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story(Springer Science & Business Media, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Process flow of microrings for electrical injection.
Fig. 2
Fig. 2 a) False color SEM images of a 50 μm diameter microring for electrical injection. b) Same device but from a different angle to emphasize the underetching of the microring. The metal microbridge and p-contact are highlighted in yellow,the insulator in red, and the III-nitride in purple. The rough gray area is the etched silicon.
Fig. 3
Fig. 3 The sample structure: a) Detailed heterostructure, b) Simulated mode confinement of the TE0, TE1, and TE2 modes, the MQW region is highlighted in green, the heterostructure in gray, c) Energy band structure of the sample at 3.4 V bias.
Fig. 4
Fig. 4 JV curves of a 40 μm diameter microring and a 180 μm lateral LED for reference.
Fig. 5
Fig. 5 Measurement results: a) Top: Cross-sectional view of the device along the red dashed line. Bottom: Photo of a powered 40 μm diameter device emitting blue electroluminescence. b) Spectra of a device with a 40 μm diameter at different injection currents. Maximum current density 4.2 kA/cm2. c) Integrated intensity of the measurements in b).
Fig. 6
Fig. 6 Microring under electrical injection with bus waveguide side coupling: a) False color SEM image of device with a 50 μm diameter ring and a 100 μm long bus waveguide after several processing steps. b) Side-view sketch of a full device.

Metrics