Abstract

We study an unusual effect of spectral-band replication in the optical spectra of dimers, consisting of spherical nanoparticles or nanodisks with a silver core and a J-aggregate shell of TDBC-dye. It consists in the emergence of a doubled number of plexcitonic spectral bands compared to the case of a plasmonic dimer and in narrow peaks associated with the resonances of the J-aggregate shell. The plexcitonic bands can be divided into two groups: the “original” bands, accurately reproducing plasmonic peaks, and their “replicas,” with a specific mutual arrangement and intensity distributions. The effect is interpreted using the multi-state effective Hamiltonian model describing a strong coupling between the quasi-degenerate Frenkel excitonic modes in the organic shells and multiple plasmonic modes in the pair of Ag-cores. We quantitatively explain some available experimental data on the optical properties of nanodisks and suggest a way for the observation of the replication effect. Our results extend the understanding of the nature of plexcitonic coupling to more complex systems compared to individual metal/J-aggregate nanoparticles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The intensive development of a number of fundamental and applied directions of nanophotonics and optoelectronics proceeds together with the studies of the optical properties of various hybrid organic/inorganic nanostructures and materials. A promising approach toward high performance photonic devices is to utilize the excitonic supramolecular structures as an organic component and various plasmonic nanostructures as an inorganic component of composite systems [1–3]. Over the past decade, studies of hybrid systems consisting of metallic nanostructures of various shapes and sizes and J- or H-aggregates of cyanine dyes attracted significant interest. Optical properties of such hybrid systems are determined by both the metallic and molecular subsystems and strong coupling between them [4, 5]. This allows us to combine the unique properties of metallic nanostructures, associated with the excitation of localized or guided surface plasmons [6–8], with the remarkable properties of J-aggregates of cyanine dyes. The narrow and intense absorption features of J-aggregates are highly desirable for many photonic applications [9–11] and can be successfully described in terms of the Frenkel exciton model [12].

A number of works was devoted to the investigations of the effects associated with the interaction of Frenkel excitons with surface plasmons in metal-organic nanostructures of planar geometry (e.g., in thin metal films coated by ordered molecular J-aggregates [13]). In this case, Frenkel excitons are electromagnetically coupled with surface plasmons propagating along the planar metal–insulator or metal–semiconductor interface. There is a series of experimental and theoretical studies of spectral characteristics of hybrid nanoparticles of different shapes and composition consisting of a metallic core and an outer J-aggregate shell of cyanine dyes. This includes a series of studies of two-layer and three-layer spherical nanoparticles [14–22] as well as metal-organic nanorods [23–26], nanodisks [27,28], nanostars [29], and nanoplatelets [30]. In general, the spectra of such nanoparticles cannot be described as a simple superposition of the spectra of individual components. They are determined by the effects of electromagnetic coupling of molecular exciton in the outer J-aggregate shell with localized plasmon in a metallic core. The most remarkable phenomena appear in the regimes of strong and ultra-strong plexcitonic coupling [31–33]. In such regimes, hybrid states of the entire nanosystem are formed with qualitatively new properties as compared to those of each individual components [4]. We note that similar effects of strong plexcitonic coupling were studied [34] for three-layer spherical nanoparticles consisting of a metallic nanoshell coated with an outer layer of the dye J-aggregate. Ultrafast optical dynamics of excitons in nanoshell/J-aggregate complexes were investigated in [35]. It was shown that such hybrid nanostructures might possess enhanced, tunable, on- and off-resonance nonlinear optical properties. The strength of plexcitonic coupling and properties of such hybrid systems strongly depend on their shape and geometrical parameters as well as on the optical constants of metallic and organic components including the oscillator strength of the J-aggregate shell layer and spectral positions of plasmonic and excitonic peaks [18,22,25,32].

There is also a series of papers devoted to the study of the optical properties and the effects of near-field electromagnetic coupling in systems of several plasmonic nanoparticles (dimers, trimers, quadrumers and more complex clusters) as well as in one-dimensional and two-dimensional arrays of plasmonic and plexcitonic nanoparticles. Until recently, these studies were most intensively carried out for pure metallic plasmonic systems [36–39]. However, some interesting results have been obtained on the plexcitonic coupling of a monomer dye molecule or a molecular J-aggregate with a metallic nanoparticle [40] or individual nanoparticle dimers or clusters [41–44] as well as on the plexcitonic coupling in metal-organic nanoparticle arrays [45–48]. Nevertheless, on the whole the nature of the electromagnetic coupling of closely spaced particles in metal/J-aggregate plexcitonic nanosystems and the effects resulting from this coupling in light absorption and scattering remain unexplored in contrast to the case of the individual plexcitonic nanoparticles.

All results obtained in the aforementioned works stimulate further interest in studies of nanoengineered plexcitonic systems with controllable spectral and nonlinear-optical properties that can be used for the fabrication of novel functional nanomaterials. It should be noted that available works on plexcitonic effects are not limited to their studies in various metal-organic systems. So, the effects of the plasmon-exciton interaction have been intensively studied in hybrid systems consisting of metallic nanoparticles, thin metallic films or metallic nanowires and colloidal quantum-confined structures such as quantum dots or quantum wells (see review articles [2–4]). Recent advances in this field are also related to studies of the strong interaction effects of individual quantum emitters with resonant cavities. They are of fundamental interest for understanding light–matter interactions including cavity quantum-electrodynamics research, quantum optics and quantum information applications. For example, the authors of [49] have investigated vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots. It was also recently demonstrated the light-emitting plexcitons from the coupling between the neutral excitons in monolayer of tungsten diselenide and highly-confined nanocavity plasmons in nanocube-over-mirror system [50]. All-solid-state, room temperature, and actively controllable strong coupling in WSe2 monolayer coupled to a single plasmonic (Au or Ag) nanorod was realized and studied in [51,52]. The results obtained in these works clearly indicate a possibility to modify the properties of plexcitons that can be used in many nanophotonic and optoelectronic applications.

In this work we perform a theoretical study and a computer simulation of the optical properties of single pairs of closely spaced and partially merging two-layer plexcitonic nanoparticles. The nanoparticles under study consist of a silver core and an outer shell of the TDBC cyanine dye [5,5′,6,6′-tetrachloro-1-1′-diethyl-3,3′-di(4-sulfobutyl)-benzimidazolo-carbocyanine] in J-aggregated state. First, we consider a single pair of such hybrid nanoparticles of spherical shape located in a homogeneous surrounding medium (see Figs. 1(a)–1(c)). Our main goal here is to demonstrate a new effect in the behavior of the absorption spectra of hybrid nanoparticle dimers. It consists in an unusual “replication” of the plasmonic spectral bands as a result of strong coupling of Frenkel excitons of the organic shells with surface plasmons of electromagnetically interacting metallic cores. Particular attention in the work is paid to the discussion of two available experiments [27] and [36] dealing with isolated core-shell Ag/TDBC nanodisks and pairs of silver disks with small interparticle separation (see Figs. 1(d)–1(f)). We demonstrate that the effect of “replication” of spectral bands can be observed in hybrid silver/J-aggregate dimers, fabricated on the basis of available techniques.

 

Fig. 1 Schematic view of plexcitonic dimers under study. (a)–(c) dimers consisting of spherical metal/J-aggregate nanoparticles; R is the radius of the silver core, s is the thickness of J-aggregate shell, and L is the distance between the centers of particles. (d)–(f) the illumination schemes used in calculations of the absorption (d) and the dark-field scattering (e, f) spectra of metal/J-aggregate nanodisk dimers placed onto the substrate.

Download Full Size | PPT Slide | PDF

The plexcitonic phenomenon under study is inherent to hybrid nanoparticle dimers consisting of metal-organic concentric spheres or to metal-organic nanodisk pairs (see Figs. 1(a)–1(f)). It is of particular importance not only for the fundamental studies of light interaction with complex composite nanostructures but also for a number of potential applications in hybrid organo-inorganic photonics and optoelectronics including novel nanosensors, light-emitting devices, optical switches and nanowaveguides. By its physical nature and manifestation in the absorption and scattering spectra, it is qualitatively different from all known plexcitonic effects discussed previously. In particular, it is radically different from the famous phenomenon of a dip in the absorption and scattering spectra of light by individual metal/dye core-shell nanoparticles appearing in the strong plexcitonic coupling regime [15,22,25,26,32] as well as from the effect of induced transparency in plasmon–exciton nanostructures discussed in [25,53].

2. Theoretical approach and simulation method

We perform numerical simulation of light absorption and scattering processes by the plexcitonic nanoparticle dimers using the finite-difference time-domain (FDTD) method implemented in a software package MIT Electromagnetic Equation Propagation (MEEP). The optical properties of the materials composing the nanostructures under study are determined by their dielectric functions. The dielectric function of silver core of hybrid nanoparticles is described here similarly to our previous works [18, 26, 32] by taking into account the contributions of free and bound electrons and the size effect caused by electron scattering at the metal-organic interface. The dielectric function of J-aggregate is expressed through the central frequency of the J-band, ωJ; its full width, γJ; the reduced oscillator strength, fJ; and the permittivity outside the J-band, εJ:

εJ(ω)=εJ+fJωJ2ωJ2ω2iωγJ.
For J-aggregates of TDBC dye we use the parameters: εJ=2.56, ħωJ = 2.11 eV (λJ = 587.6 nm), γJ = 0.03 eV, and fJ = 0.41 from [27].

Our goal is to determine three types of quantities for the plexcitonic nanoparticle dimers: total absorption (extinction) cross section, extinction coefficient and dark-field scattering spectra. To calculate the first two quantities we suppose that the incident plane wave propagates normally to the sample surface (see Fig. 1(d)). Then, we run simulations for two directions of polarization: along the axis connecting the centers of the particles (X-axis in Fig. 1(d)) and perpendicular to it (i.e. along the Y-axis in Fig. 1(d)). In the case of equally probable orientations of the dimer on the substrate (or naturally polarized light), the absorption (extinction) cross sections, σx and σy, are obtained for two polarizations, X and Y, and further are averaged as 〈σ〉 = (σx + σy) /2. To determine the dark-field scattering spectra we calculate the scattering cross sections for two incidence directions: along the XZ plane, σXZ, and along YZ plane, σYZ(see Figs. 1(e)–1(f)) by choosing the angle of α = 60° to reproduce the experimental conditions [36]. The final result is given by 〈σDF〉 = (σXZ + σYZ) /2.

The main features in spectral behavior of plexcitonic dimers were obtained in this work by using the FDTD simulations. However, to clarify the mechanism of spectral band formation caused by the electromagnetic coupling of Frenkel excitons with the localized surface plasmons we employ the approach based on the suitable choice of the Hamiltonian of a pair of Ag/J-aggregate nanoparticles. Such an approach is equivalent to the coupled oscillator model [4]. In the simplest case, when a single plasmonic mode interacts with a single excitonic mode, the Hamiltonian, describing the plexcitonic coupling effects in two-component system, is given by:

H=(E(pl)VVE(ex)),E(pl)=(ω(pl)iγ(pl)2),E(ex)=(ω(ex)iγ(ex)2),V=Ω2.
Here E(pl) and E(ex) are complex energies of plasmonic, E(pl), and excitonic, E(ex), modes, while ω(pl), ω(ex) and γ(pl), γ(ex) are the corresponding frequencies and full widths. The plexcitonic coupling strength, V, can be expressed through the Rabi frequency, Ω. Diagonalization of the Hamiltonian gives complex energies of the plexcitonic states, E±, and, hence, the frequencies and widths of the plexcitonic bands in the spectra of hybrid nanostructures. For a system under study, this approach has its own features, associated with a large number of plasmonic modes of the hybrid dimer involved in the electromagnetic interaction with the excitonic subsystem. Since the total number of such plasmonic and excitonic modes as well as the character of coupling between them cannot be predicted in advance, the particular form of the Hamiltonian will be chosen in Sect. 3.2 on the basis of the results of the FDTD simulations.

3. Results and discussions

3.1. Demonstration of the spectral band replication effect for plexcitonic dimers consisting of spherical Ag/J-aggregate nanoparticles

First, we discuss the optical properties of a pair of plexcitonic nanoparticles (NPs) caused by their electromagnetic coupling. We consider the particles of spherical shape and sufficiently small sizes to suppress the contribution from the multipole plasmonic resonances in the spectra of individual particles. Our calculations of the absorption spectra of the hybrid dimer (Ag/TDBC NP dimer) were performed for a pair of two concentric spheres with a silver core with a diameter of 20 nm and a J-aggregate shell of TDBC-dye with a thickness s = 3 nm. In Figs. 1(a)–1(c) we display the configurations of such dimer for several values of the distance, L, between the centers of the spheres. It is seen that at L < 20 nm the Ag-cores of the nanoparticles partially overlap, while at L < 26 nm a partial overlap of their shells occurs. We compare spectral properties of the plexcitonic Ag/TDBC NP dimer and the plasmonic Ag NP dimer with the same size as that of the silver core of hybrid dimer. In real experimental conditions, pairs of closely spaced nanoparticles are placed on the surface of a substrate. To simplify the analysis, the substrate effect is modeled using an effective medium approximation [36, 54]. In our calculations, we consider homogeneous host medium with a permittivity of water ɛh = 1.78 in the visible range.

Figures 2(a)–2(h) shows the results of calculations of the absorption cross sections by a plasmonic Ag NP dimer and by a plexcitonic Ag/TDBC NP dimer as functions of light wavelength in vacuum. The cross sections are averaged over the polarizations of the incident light as described in Sect. 2. In Figs. 3(a)–3(d) we additionally represent the absorption spectra of the Ag/TDBC NP dimer calculated separately for two mutually perpendicular polarizations of the incident light: along the axis of rotation of the system (the X axis in Figs. 1(a)) and perpendicular to it (the Y axis in Fig. 1(a)). This figure helps to reveal the contributions of the “longitudinal”, σx, and “transverse”, σy, electromagnetic modes to the resulting absorption cross sections averaged over the orientations. In contrast to Figs. 2(a)–2(h), the spectra in Figs. 3(a)–3(d) are given as functions of the photon energy. This makes it possible to more clearly compare not only the positions, but also the widths of the absorption bands. To clarify the nature of the plexcitonic coupling in a pair of Ag/TDBC nanoparticles as well as to identify the similarities and differences in the behavior of shifts of various bands we display in Figs. 4(a) and 4(b) the dependences of the peak frequencies in their absorption spectra on the distance, L, between the particle centers.

 

Fig. 2 Wavelength dependences of light absorption cross sections by a plasmonic Agnanoparticle dimer and by a plexcitonic dimer consisting of silver nanospheres coated with TDBC-dye J-aggregate. The cross sections are averaged over the polarizations of the incident light. Results are presented for interparticle distances, L, ranging from 14 nm to 26 nm (see Figs. 2(a)–2(g)), and for LR (see Fig. 2(h)). Full blue curves (A) – data for Ag NP dimer. Full black curves (B) – data for Ag/TDBC NP dimer. Dashed red curves (C) – data for Ag/TDBC NP dimer reconstructed using the coupled oscillator model (see Sect. 3.2). Vertical dashed green line marks the position of the absorption maximum of the TDBC J-aggregate (λJ = 587.6 nm). Label of pi – indicates the ith-peak of the “plasmonic” resonance of Ag NP dimer; oi and ri – show the positions of the plexcitonic peaks, associated with the “original” and “replica” bands of the Ag/TDBC NP dimer; and si – refers to its J-aggregate “shell” resonance.

Download Full Size | PPT Slide | PDF

 

Fig. 3 Absorption cross sections of a plexcitonic Ag/TDBC NP dimer as functions of the photon energy, , for two different polarizations of light along its X and Y axis, see Fig. 1(a). The interparticle distances are L = 18 nm (left column) and L = 22 nm (right column). Figures 3(a), 3(c) and 3(b), 3(d) – results obtained for light polarization parallel and perpendicular to the line connecting the nanoparticle centers, respectively. Full black curves – calculations using the FDTD-method. Dashed red curves – data reconstructed using the coupled oscillator model. Vertical dashed green line marks the position of the absorption maximum of the TDBC J-aggregate (J = 2.11 eV). Notations oi, ri, and si are the same as in Figs. 2(a)–2(h). They are supplemented by indices X and Y to distinguish different directions of light polarization.

Download Full Size | PPT Slide | PDF

The absorption spectra of Ag/TDBC NP dimers contain three groups of plexcitonic peaks, designated as s1, s2; o1, ..., o4; and r1, ..., r4. The narrow s1 and s2 peaks lie near the wavelength of the J-band absorption of the TDBC-dye aggregate (λJ = 587.6 nm). Unlike other o1, ..., o4, and r1, ..., r4 bands, the spectral positions of s1 and s2 peaks vary little with the change of the interparticle distance, L (see Figs. 4(a)–4(b)). To clarify the nature of the s1 and s2 peaks we calculated the absorption spectra of dimers, in which silver cores of nanoparticles have been replaced by the optically passive medium with a dielectric constant equal to εJ. The results are presented in Figs. 4(e)–4(f). We obtained two narrow bands with absorption maxima located near the peak wavelengths of s1 and s2 bands in the spectra of Ag/TDBC NP dimers of same sizes. Therefore, s1 and s2 peaks can be attributed to the excitonic resonances of the J-aggregate shell of a pair of hybrid nanoparticles. Further we call these peaks “shell resonances”.

 

Fig. 4 Frequencies (a)–(c) of the absorption peaks of plexcitonic bands of the Ag/TDBC NP dimer and the corresponding Rabi frequencies (d) of the coupled plexcitonic bands as functions of the interparticle distance, L. Curves in Figs. 4(a) and 4(b) were calculated for light polarization along the line connecting the nanoparticle centers (the X-axis in Fig. 1(a)), while curves in Fig. 4(c) – for light polarization perpendicular to this line (the Y-axis in Fig. 1(a)). The band notations oi, ri, and si are the same as in Figs. 3(a)–3(d). Notations of curves in Fig. 4(d) indicate those spectral bands, oi − ri, that are coupled by the plexcitonic interaction. Figures 4(e) and 4(f) represent the absorption spectra of dimers, in which silver cores of nanoparticles have been replaced by the optically passive medium with a dielectric constant equal to εJ.

Download Full Size | PPT Slide | PDF

The s1-peak is sufficiently strong in the absorption spectrum of light polarized along the X-axis of a dimer. However, it is practically suppressed for the polarization of light along the Y-axis (see Fig. 1(a)). With increasing L its position shifts toward large wavelengths approaching to the frequency of the absorption maximum, ωJ, of the TDBC J-aggregate, whereas its intensity decreases. The s2-peak dominates in the absorption spectra of light polarized along both X and Y directions. It is also present in the absorption spectrum of the isolated Ag/J-aggregate nanoparticles as well as in spectra of their single pairs for all magnitudes of L. The frequencies of the s1 and s2 peaks slightly differ from each other for different polarizations.

The peak positions of the o1, ..., o4 bands in the absorption spectra of Ag/TDBC NP dimers are close to those of spectral p1, ..., p4 bands of plasmonic Ag NP dimers (see Fig. 2(a)–2(h)). However, the plexcitonic dimers have an additional group of spectral r1, ..., r4 peaks. These peaks are always located at the opposite side of the “shell resonance” s1 and s2 peaks. The mutual arrangement, relative widths and intensities of plasmonic p1, ..., p4 bands in spectra of Ag NP dimers are accurately reproduced by the o1, ..., o4 bands and are mimicked by the r1, ..., r4 bands of Ag/TDBC NP dimers in quite distant spectral region. This is most evident when the plasmonic spectra of a pair of silver particles are particularly diverse and saturated (see Figs. 2(c)–2(d)). With the variation of the interparticle distance L, the changes in the configuration of plexcitonic o1, ..., o4 and r1, ..., r4 bands of hybrid dimer follow the corresponding changes in plasmonic p1, ..., p4 spectral bands of Ag NP dimer. This is clearly seen from Figs. 4(a)–4(c). The shapes of curves, representing dependences of the absorption peak frequencies on L, are similar to each other for pairs o1x − r1x, o2x − r2x, o3x − r3x, o4x − r4x and o4y − r4y. Thus, the near-field electromagnetic coupling of plasmons with Frenkel excitons leads to the replication of plasmonic peaks, i.e. to the duplication and frequency conversion of plasmonic spectral bands. Further we call the “original” bands those absorption o1, ..., o4 bands of the Ag/J-aggregate dimer, the spectral positions of which are close to the positions of plasmonic p1, ..., p4 peaks of bare Ag dimer. At the same time, the additional r1, ..., r4 peaks, which mimic the relative intensities and positions of the “originals” but are located on the other side of the “shell resonance” bands, are called “replicas” in the present work. Of course, such notations are conditional, and are used only for the convenience of identifying peaks in the absorption spectra. Figures 3(a)–3(d) demonstrate that the “original” bands of o1, o2, o3 and their replicas of r1, r2, r3 in the absorption spectra of hybrid dimers, belong to longitudinal modes o1x, o2x, o3x and r1x, r2x, r3x. The o4 and r4 bands appear for two different polarizations of light (X and Y, see Fig. 1(a)) as o4x, r4x and o4y, r4y, whereas their frequencies slightly differ from each other for different polarizations.

The main pair of plexcitonic o4 and r4 peaks are the “original” and “replica” bands of the dipole plasmon resonance of the Ag-core of an isolated particle. Their intensities and spectral positions depend weakly on the interparticle distance. The pairs of o1 − r1 and o2 − r2 bands are “originals” and “replicas” of two longitudinal plasmonic modes of the elongated structure, formed by partially merging Ag-cores. These peaks vanish when the electric contact between the cores disappears. Essential feature of the pair of o1 − r1 bands is that the original peak, o1, is located at the long-wavelength side from the “shell resonance” bands, s1 and s2, while its replica, r1, is at the short-wavelength side. This is an opposite configuration to the rest of the peaks in the spectra of the plexcitonic dimer. They cannot be observed in the case of fully separated particles, when the “original” peaks are located at the short-wavelength side and “replicas” are at the long-wavelength side from the excitonic peaks. As the distance between the particle centers increases, the o1 peak rapidly shifts to the IR range, vanishing when the electric contact between the cores disappears. Under such conditions, its “replica”, r1, also turns out to be shifted toward longer wavelengths, clinging to the “shell resonance” s1 peak, and rapidly decreases in intensity.

At L = 16 nm and larger, another pair o3 − r3 of longitudinal plexcitonic bands begins to segregate from the corresponding bands of o4 − r4 pair. This segregation is due to the near-field electromagnetic coupling between the Ag-cores and remains after the electric contact between them vanishes. For both small and large values of L, the “originals” o3 and o4 as well as their “replicas” r3 and r4 merge. This is because at small distances of L the nanoparticle cores overlap too match, so that the shape of the dimer is close to nanorod (see Fig. 1(a)). At large distances of L, the electromagnetic coupling between the nanoparticles is weakened and disappears. For all plexcitonic bands mentioned above, the shapes of curves, which show the dependences of the frequencies of the absorption peaks on the interparticle distance, are similar for corresponding “original” and “replica” bands (see Figs. 4(a)–4(c)).

The analysis of spectra presented above makes it possible to interpret, in terms of replication, the absorption bands and the spectra of individual metal/J-aggregate nanoparticles (see Fig. 2(h)). Actually, the band with a maximum of 396 nm is formed by the merged o3 and o4 bands, while the band with a maximum of 596 nm is formed by the merged replicas of these bands. The confluence of these bands is caused by the degeneracy of the electromagnetic modes in the system due to spherical symmetry. The deformation of the shape of the silver core or a sufficiently strong near-field electromagnetic interaction with another system can remove this degeneracy, demonstrating the described effect of the appearance of plexcitonic replicas of plasmonic bands of metallic cores. It is important to stress, that the positions and shapes of merged o3 and o4 bands almost coincide with positions and shapes of the plasmonic 3 and 4 bands of Ag NP dimers, while replicas are shifted quite far away from the originals.

In Fig. 5 we show the spatial distributions of the electromagnetic energy densities of light fields inside and outside the dimer consisting of hybrid Ag/J-aggregate nanoparticles. Each panel represents the energy distributions for the wavelengths corresponding to absorption maxima of the respective spectral bands marked in Fig. 3(a) with arrows. The spatial structures of the field distribution inside the Ag NP dimer for certain plasmonic bands are the same as for the corresponding plexcitonic modes associated with the “originals” and “replicas” of the absorption bands of Ag/TDBC NP dimer. It is important to stress that in most cases the energy distributions at the maxima of the plasmonic bands of bare silver dimer and of the “original” bands of hybrid dimer almost coincide. Figure 5 confirms that at the wavelengths of the plexcitonic bands of “originals”, the presence of the external J-aggregate shell practically does not change the spatial structures of the electromagnetic modes. At the same time, the spatial structures of the electromagnetic modes associated with the bands of “replicas” of Ag/TDBC NP dimer differ from the “originals” mainly by the appearance of additional regions of the concentration of electromagnetic energy near the outer boundary of the J-aggregate shell.

 

Fig. 5 Electromagnetic energy density distributions in the XZ plane passing through the centers of Ag/J-aggregate nanoparticle dimer (see Fig. 1(a)). Calculations were performed for wavelengths corresponding to the centers of the absorption spectral bands presented in Figs. 2(c) and 3(a)–3(b) for the interparticle distance L = 18 nm. Light polarization is parallel to the X-axis. The color maps represent electromagnetic energy density in the logarithmic scale.

Download Full Size | PPT Slide | PDF

3.2. Analysis of the results obtained in terms of the effective multi-state Hamiltonian and evaluation of the plexcitonic coupling strengths

To clarify the mechanism of spectral band replication, we employ the coupled oscillator model [4]. Within the framework of this model, the formation of pairs of plexcitonic spectral bands are treated in terms of plasmonic and excitonic modes mixing, caused by the near-field electromagnetic interaction. The particular form of the equivalent Hamiltonian should take into account three main features, extracted from the analysis given in Sect. 3.1. First, the absorption spectrum of a hybrid dimer contains 2N plexcitonic bands provided that the absorption spectrum of metallic cores of a dimer consists of N plasmonic bands. This means that in addition to N plasmonic modes the Hamiltonian should contain at least N excitonic modes, to keep the required matrix dimension defined by the number of plexcitonic spectral peaks. Second, the changes in frequency and width of each plasmonic band affect only one pair of coupled “original” and “replica” plexcitonic bands. Thus, for each plasmonic mode the corresponding row (and the column) in the Hamiltonian matrix contains only one non-zero off-diagonal element, which describes the coupling of this plasmonic mode with a single excitonic mode. Finally, the absorption spectrum of hybrid dimer additionally contains P narrow “shell resonance” bands, the parameters of which are not coupled with other bands. We attribute these modes to the excitonic modes of the organic shell. Hence, the Hamiltonian matrix contains at least P excitonic modes, which are uncoupled with any other modes in the system. As a result, the total number of excitonic modes is N + P, where N modes are coupled with the plasmonic modes and the rest P are uncoupled. We suppose that N excitonic modes, coupled with plasmonic modes, belong to the degenerate (or quasidegenerate) manifold of excitonic bands of the “shell resonances”. So, their frequencies and widths can be close (or even coincide) with the parameters of some of the P excitonic bands observed in the spectra of hybrid metal-organic dimer. The simplest equivalent form of the Hamiltonian, which satisfy all the requirements given above, is as follows:

H=(E1(pl)00V100000E2(pl)00V200000EN(pl)00VN00V100E1(ex)00000V200E2(ex)00000VN00EN(ex)00000000EN+1(ex)000000000EN+P(ex)).
Here En(pl), Ek(ex) are the complex energies and Vn is the plexcitonic coupling strength:
En(pl)=(ωn(pl)iγn(pl)/2),Ek(ex)=(ωk(ex)iγk(ex)/2),Vn=Ωn/2,
ωn(pl)and γn(pl) are the frequencies and full widths of the n-absorption band, associated with plasmonic oscillations of silver cores of a dimer n = {1, ..., N}. The frequencies, ωk(ex), and full widths, γn(ex), correspond to the excitonic modes k = {1, ..., N + P}. According to the results of Sect. 3.1, in our particular case N = 5 (four longitudinal, p1x,...,p4x, and one transverse, p4y, plasmonic bands) and P = 4 (two longitudinal, s1x, s2x, and two transverse s1y, s2y, shell resonances). The first N excitonic modes are electromagnetically coupled to N-plasmonic modes through the plexcitonic coupling strengths, V1, ..., VN, which are expressed through the Rabi frequencies, Ωn. Diagonalization of matrix Eq. (3) actually reduces to the diagonalization of N matrices of 2 × 2 dimension. The pairs of eigenvalues of these matrices determine the frequencies and widths of the pairs of “original” and “replica” plexcitonic bands in the absorption spectra.

Using this approach, which is equivalent to the coupled oscillator model, we are able to reconstruct the spectra calculated in Sect. 3.1 by using the FDTD-method. Such reconstruction is performed separately for each of the polarizations of the incident light (along the X and Y-axes in Fig. 1(a)). To obtain the correct results for the frequencies, ωnx/y(pl), and widths, γnx/y(pl), of the plasmonic modes, we evaluate the absorption spectra of pairs of two-layer nanoparticles with an optically passive organic shell, which does not have the absorption J-band but possesses a permittivity equal to the value of εJ for the dye (see Eq. (1) at fJ = 0). Hence, the cross sections of light absorption by these specific type of two-layer dimers are fitted by a set of Lorentz shapes:

σ(ω)=nAnπ(γn/2)(ωωn)2+(γn/2)2.
To obtain the frequencies and widths of “shell resonances” we employ the same Lorentz shape fitting procedure applied to the cross sections of light absorption computed for realistic Ag/TDBC dimers. Further, we assume that five excitonic modes, which are coupled with five plasmonic p1x, ..., p4x, p4y modes of the silver cores are degenerated modes forming the “shell resonances” in the absorption spectra of the plexcitonic Ag/TDBC NP dimers. For each pair of coupled plexcitonic bands, the Rabi frequencies, Ωn, were calculated such that the real parts of the eigenvalues of Eq. (3) would be closest to the maxima of these absorption bands. For each polarization of the incident light we perform this procedure for two sets of the frequencies, ωkx/y(ex)and widths, γkx/y(ex), of the “shell resonances” s1 x/y, s2 x/y and take the best result. As follows from our calculations and detailed analysis, in most cases the s1 x/y “shell resonance” is predominantly coupled with the plasmonic modes under study. It should be noted that the assumption that each plasmonic mode is coupled with only one quasi-degenerate excitonic mode of the organic shell well describes even the rather complicated structure of plexcitonic spectra observed in the case of elongated nanostructures with partially merging metallic cores.

The results of such reconstruction are shown in Figs. 2(a)–2(h) and Figs. 3(a)–3(d) by red dashed curves. Since the intensities of the absorption bands cannot be obtained solely using the coupled oscillator model, they were chosen for the best agreement with the results of the FDTD simulations. The frequencies and widths of the plexcitonic absorption bands were calculated using the effective multi-state Hamiltonian approach. One should note that this allows us to obtain accurate estimations both for the frequencies and for the widths of the absorption bands. This is evident from Figs. 3(a)–3(d), where the absorption cross sections are presented as functions of the photon energy. For a single pair of Ag/TDBC nanoparticles of spherical shape up to 10 plexcitonic bands form the resulting absorption spectrum. Using this approach frequencies and widths of the absorption bands of Ag/TDBC NP dimers (i.e. 20 parameters) are well reconstructed by adjusting only five values of the Rabi frequencies, Ωn, that determine the plexcitonic coupling strength parameters. The dependences of the ħΩn magnitudes on the interparticle separation L are represented in Fig. 4(c). As is seen from this figure, the values of ħΩn vary in the range of 500 ÷ 700 meV, so that the coupling matrix elements, Vn = ħΩn/2, are around 250 ÷ 350 meV.

3.3. Calculation of the extinction coefficient and its comparison with the experimental data for a plexcitonic nanodisk

We have demonstrated above the effect of replication of the absorption bands in the hybrid metal-organic dimer made of a pair of spherical nanoparticles. It is interesting to find out whether is it possible to observe this phenomenon in dimers consisting of nanoparticles of other shapes. Our theoretical analysis shows that the replication effect is convenient for observing in dimers where the absorption band associated with Frenkel exciton in the organic shell (the s1 band in Figs. 2(a)–2(h)) is located on the long-wavelength side of the main (transverse) plasmonic resonance (the p4 band in Figs. 2(a)–2(h)) at a considerable distance on the frequency scale. Thus, it is most favorable to consider hybrid dimers, in which the transverse plasmonic resonances of the metallic core lie in the blue and violet regions of the spectrum. From this point of view, silver dimers and hybrid silver/J-aggregate dimers are of particular interest.

The experimental studies of arrays of silver nanodisks located on a glass substrate and coated with a J-aggregate of TDBC-dye were carried out in [27,28]. In these works the distance between adjacent disks was chosen sufficiently large to exclude the near-field electromagnetic interaction between neighboring nanostructures so that the resulting spectral properties of the entire ensemble are determined by the spectra of individual plexcitonic nanoparticles. We performed the computer simulations of the optical properties of bare Ag-disk and Ag-disk coated with J-aggregate of the TDBC dye and made the comparison of the results obtained with available experimental data.

Figures 6(c) and 6(d) shows the spectral dependences of light extinction coefficient by silver nanoparticle placed on a glass substrate without and with a J-aggregate coating. The diameter of the disk is D = 2R = 111 nm, its height is h = 60 nm. The thickness of the TDBC-dye J-aggregate coating is s = 12 nm. We specifically chose the diameter of the disk equal to 111 nm among the entire set of D values studied in [27] since at this value of D the plasmonic band is most distant from the absorption band of the J-aggregate of the TDBC-dye. In Figs. 6(b) and 6(c) we present a comparison of our calculations with experimental data. It is seen that our results are in good agreement with the experimental data. The two plexcitonic o1 and r1 bands are observed in Fig. 6(c). Similar to the case of an isolated hybrid spherical particle (see Fig. 2(h)) the spectrum of the Ag/TDBC nanodisk can also be interpreted in terms of replication of the absorption bands. In this case, the o1-band is interpreted as the “original”, and the r1-band as its “replica”. Again, the plasmonic resonance (the p1 band) in the spectrum of the bare silver disk (see Fig. 6(b)) practically coincides with the “original” plexcitonic o1-band in the spectrum of Ag/TDBC nanodisk (see Fig. 6(c)), while the “replica” lies in quite distant spectral region.

 

Fig. 6 (a) – Schematic view of hybrid disk-like nanoparticle placed onto a glass substrate; R and h are the radius and height of a silver core; s is the thickness of J-aggregate shell of TDBC-dye. (b) – Extinction coefficient of bare silver nanodisk located on a glass substrate: dashed-dotted green curve – experimental data from [27]; full black curve – results of calculations obtained using the FDTD-method. (c) – Extinction coefficient of Ag/J-aggregate nanodisk located on a glass substrate: dashed-dotted green curve (A) – experimental data from [27]; full yellow curve (B) – results of calculations obtained using the FDTD-method; dotted blue curve (C) – absorption coefficient of the TDBC-dye J-aggregate; full black curve (D) – sum of the extinction coefficients from the nanodisk on the substrate and from the TDBC-dye J-aggregate (curves (B) and (C), respectively); dashed red curve (E) – results of FDTD calculations reconstructed using the coupled oscillator model.

Download Full Size | PPT Slide | PDF

3.4. Analysis of the dark-field scattering spectra of plexcitonic and plasmonic nanodisk dimers

The authors of the work [36] have fabricated samples of compact silver nanodisk dimers by using the available lithography technique and have experimentally studied their dark-field scattering spectra. We have performed computer simulations of such scattering spectra as well as the dark-field scattering spectra of silver nanodisk dimers coated with the J-aggregate of TDBC-dye. This will allow us to demonstrate the possibility of observing the effect of band replication for a single pair of hybrid silver/J-aggregate nanodisks by using the dark-field scattering method. Such hybrid dimers can be made using a technique similar to that used in the works [27,28].

We consider two pairs of silver nanodisks (Ag ND dimers) placed onto the glass substrate: (i) one dimer is fabricated from the nanodisks, which are in contact because of the metallic waist, and (ii) another one is made of nanodisks, which are fully separated. To compare our theoretical results with the experimental data we chose those sizes of the plasmonic dimers, which reproduce the sizes of the dimers used in measurements [36] of the dark-field scattering spectra (see curves (C) and (D) in Fig. 9 of [36]). For each dimer we perform a series of three calculations. First, we evaluate the dark-field scattering spectra for the plasmonic Ag ND dimers. A comparison of our results with the measured spectra allows us to confirm the reliability of the simulation method and to adjust the sizes of the nanodisk dimers more accurately. Second, we calculate the dark-field scattering spectra of the same nanodisk dimers coated by the J-aggregate of TDBC dye (Ag/TDBC ND dimers). Finally, we determine the total extinction cross section of the same Ag/TDBC ND dimers for the case of the plane wave incident normally to the sample.

Figures 7(a) and 8(a) represent the schematic views of hybrid nanodisk dimers for two different cases: (i) with a contact between its Ag-cores and (ii) with a gap between the disks, respectively. The radii of the nanodisks R = 40 nm and their heights h = 40 nm are the same for both dimers studied. For the dimer shown in Fig. 7(a) the interparticle distance is L = 83 nm, while the width of the metallic waist is 2w = 60 nm. For the dimer shown in Fig. 8(a), the interparticle distance is equal to L = 110 nm. These sizes are close to those of silver nanostructures studied in [36]. The organic shell thickness is set to be s = 12 nm for both Ag/TDBC ND dimers following [27]. In Figs. 7(b) and 8(b) we demonstrate a comparison of the calculated dark-field scattering spectra of the Ag ND dimers with those measured in [36] (see curves (C) and (D) in Fig. 9 of that work, respectively). Here and further the results are calculated for the incident light polarization parallel to the axis connecting the centers of the nanodisks in the dimers (X-axis in Figs. 7(a) and 8(a)), following the experiment [36]. It is seen that there is good agreement between our theoretical results and the experimental data.

 

Fig. 7 (a) – Schematic view of a plexcitonic dimer, consisting of Ag/J-aggregate nanodisks, in the presence of a contact between silver cores. (b) – Comparison of the computed dark-field scattering spectra of the bare Ag nanodisk dimer with the experimental data: dashed-dotted green curve is the experimental curve C from Fig. 9 of [36]; full black curve – the computed dark-field scattering spectra. (c) – Present calculations of the dark-field scattering spectra of the silver nanodisk dimer coated with the J-aggregate of TDBC-dye. (d) – Total extinction cross sections of the Ag/TDBC nanodisk dimer. In Figs. 7(c) and 7(d) full blue curve (A) – computed spectra for plasmonic (Ag ND) dimer; full black curve (B) – spectra for Ag/TDBC ND dimer obtained using the FDTD-method; dashed red curve (C) – spectra reconstruction on the basis of the coupled oscillator model (see Sect. 3.2).

Download Full Size | PPT Slide | PDF

 

Fig. 8 Same as in Figs. 7(a)–7(d) for the nanodisk dimers with fully separated silver cores. Dashed-dotted green curve in Fig. 8(b) is the experimental curve D from Fig. 9 of [36].

Download Full Size | PPT Slide | PDF

The dark-field scattering spectra and the total extinction cross sections of the Ag/TDBC ND dimers are shown by full black curves in Figs. 7(c), 8(c) and 7(d), 8(d), respectively. Dashed red curve represents the results of spectra reconstruction, performed using the coupled oscillator model. During the spectra reconstruction we have confirmed the spectral positions of “original” and “replica” bands. They are marked with arrows following the notations used throughout this paper. “Shell resonance” spectral bands are denoted by s1 and s2. To perform the spectra reconstruction, as described in Sect. 3.2, we used the frequency, ωs1, and full width, γs1, of the “shell resonance” band, s1, as parameters ωk(ex) and γk(ex) of that excitonic mode in Eq. (3) which is coupled with the plasmonic modes of the silver cores. According to the results of calculations presented in Figs. 7(c)–7(d) and Figs. 8(c) and 8(d), the values of the Rabi frequencies (see Eq. (3)) vary in the ranges: 400 ÷ 600 meV and 600 ÷ 700 meV for the hybrid dimers shown in Figs. 7(a) and 8(a), respectively. This means that the characteristic values of coupling matrix elements, Vn = ħΩn/2, lie in the ranges of 200 ÷ 300 meV and 300 ÷ 400 meV in both cases. Figures 7(c), 8(c) and 7(d), 8(d) indicate that the effect of spectral band replication can be observed in the extinction and dark-field scattering spectra.

4. Conclusions

We have demonstrated the spectral-band replication effect in the absorption and scattering spectra of plexcitonic dimers consisting of both nanospheres and nanodisks with an Ag-core and a J-aggregate shell. In the spectra of Ag-dimers there are up to five plasmonic absorption bands instead of only one band for an isolated Ag-nanoparticle. Some of these bands refer to the longitudinal plasmonic mode of a nanoparticle pair with contacting Ag-cores, so that they disappear when the electric contact between the cores vanishes. Other bands are formed by the splitting of the plasmonic bands of the isolated nanoparticles caused by the near-field electromagnetic interaction between the Ag-cores. The number of plexcitonic bands in the absorption and scattering spectra of the Ag/J-aggregate dimers is doubled number of the plasmonic bands of bare silver dimers of the same sizes. There are also several narrow spectral peaks, associated with resonances in the J-aggregate coating of hybrid dimer (“shell resonance” bands).

The plexcitonic bands in the spectrum of metal-organic dimer could be separated into two groups, which we called the “original” bands and their “replicas”. Spectral positions of the “original” bands are close to the corresponding positions of plasmonic bands of silver dimer of the same size. The “replicas” always lie at the opposite side of the “shell resonance” bands, which are located in close vicinity to the J-band absorption of the TDBC-dye aggregate. Configuration of plasmonic peaks in the spectra of silver dimer is accurately reproduced in the spectra of Ag/TDBC dimer by the “original” bands and mimicked by the “replica” bands in quite distant spectral region. With varying the interparticle distance, the changes in mutual arrangement, relative widths and intensities of “original” and “replica” plexcitonic bands in the spectra of hybrid dimer follow the changes in plasmonic bands in the spectra of a bare silver dimer. The effect results from the coupling of Frenkel excitons in the J-aggregate shells of hybrid Ag/TDBC nanoparticles with surface plasmons generated in a pair of silver cores.

We have introduced the multi-state Hamiltonian, which describes the observed replication effect in terms of plexcitonic coupling. The strengths of this coupling (or Rabi frequencies) have been determined from the differences in frequencies of the absorption maxima of the “original” and “replica” spectral bands of hybrid dimer. The proposed model accurately reproduces the shapes of these spectral bands for all interparticle distances. The Rabi frequencies are about 400 ÷ 700 meV. This indicates that formation of the pairs of “original” and “replica” spectral bands is caused by the strong plexcitonic coupling. However, by its physical nature and by the manifestation in the light absorption and scattering spectra, the new effect is drastically different from the well-known phenomenon consisting in the appearance of a dip in the spectra of individual core-shell nanoparticles in the strong plexcitonic coupling regime (see, e.g., [15,26,31–34]). The dip is formed when the plasmonic and excitonic bands overlap. On the contrary, the effect of band replication appears when the plexcitonic coupling regime is strong but the excitonic band of J-aggregate lies at some distance from the plasmonic band at the long-wavelength side.

We have confirmed the reliability of our theoretical approach by a direct comparison of the calculated scattering spectra with experimental data obtained in two works dealing with isolated core-shell Ag/TDBC nanodisks [27] and pairs of silver disks with small interparticle separations [36]. We have performed a computer simulation of the spectra of the hybrid silver/J-aggregate nanodisk dimers under conditions mimicking the experimental ones and predict that the replication effect could be experimentally observed by spectroscopic studies of the metal-organic dimer samples. Such samples can be fabricated by using the available lithography technique [36] and then by coating Ag-nanodisks with J-aggregates of the TDBC dye using methods of [27,28].

The results of the work have demonstrated qualitatively new manifestations of the effects of a strong plasmon-exciton coupling in optics and spectroscopy of hybrid metal-organic nanostructures. Systems consisting of several plexcitonic nanoparticles and their arrays are promising for the development of some photonic and optoelectronic devices of next generation. This particularly concerns highly sensitive optical nanosensors, hybrid nanowaveguides and nanophotonic integrated circuits functioning on the basis of plexcitonic effects.

Funding

Russian Science Foundation (14-22-00273).

Acknowledgments

We acknowledge funding support listed above. The authors are grateful to A.A. Narits for the valuable discussions.

References

1. S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016). [CrossRef]  

2. M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017). [CrossRef]  

3. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018). [CrossRef]  

4. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015). [CrossRef]  

5. K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018). [CrossRef]  

6. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017). [CrossRef]   [PubMed]  

7. N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018). [CrossRef]  

8. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018). [CrossRef]   [PubMed]  

9. F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011). [CrossRef]   [PubMed]  

10. J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017). [CrossRef]   [PubMed]  

11. B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018). [CrossRef]   [PubMed]  

12. N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018). [CrossRef]   [PubMed]  

13. J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014). [CrossRef]  

14. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004). [CrossRef]  

15. G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008). [CrossRef]  

16. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010). [CrossRef]  

17. A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010). [CrossRef]  

18. V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012). [CrossRef]  

19. A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012). [CrossRef]  

20. A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013). [CrossRef]  

21. B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013). [CrossRef]  

22. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014). [CrossRef]  

23. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007). [CrossRef]   [PubMed]  

24. A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009). [CrossRef]   [PubMed]  

25. H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012). [CrossRef]  

26. B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015). [CrossRef]  

27. J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009). [CrossRef]  

28. F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015). [CrossRef]   [PubMed]  

29. D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013). [CrossRef]  

30. B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015). [CrossRef]  

31. S. Balci, “Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates,” Opt. Lett. 38, 4498–4501 (2013). [CrossRef]   [PubMed]  

32. V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013). [CrossRef]  

33. G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013). [CrossRef]   [PubMed]  

34. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008). [CrossRef]   [PubMed]  

35. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011). [CrossRef]   [PubMed]  

36. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005). [CrossRef]  

37. A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013). [CrossRef]   [PubMed]  

38. B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018). [CrossRef]   [PubMed]  

39. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018). [CrossRef]  

40. A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017). [CrossRef]  

41. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013). [CrossRef]   [PubMed]  

42. A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018). [CrossRef]  

43. E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015). [CrossRef]   [PubMed]  

44. U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018). [CrossRef]  

45. X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018). [CrossRef]  

46. B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017). [CrossRef]   [PubMed]  

47. F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018). [CrossRef]  

48. G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018). [CrossRef]   [PubMed]  

49. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016). [CrossRef]  

50. J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano , 12, 10393–10402 (2018). [CrossRef]   [PubMed]  

51. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017). [CrossRef]   [PubMed]  

52. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017). [CrossRef]   [PubMed]  

53. V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019). [CrossRef]  

54. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
    [Crossref]
  2. M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
    [Crossref]
  3. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
    [Crossref]
  4. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
    [Crossref]
  5. K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
    [Crossref]
  6. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
    [Crossref] [PubMed]
  7. N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
    [Crossref]
  8. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
    [Crossref] [PubMed]
  9. F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
    [Crossref] [PubMed]
  10. J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
    [Crossref] [PubMed]
  11. B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
    [Crossref] [PubMed]
  12. N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
    [Crossref] [PubMed]
  13. J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
    [Crossref]
  14. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
    [Crossref]
  15. G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
    [Crossref]
  16. V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
    [Crossref]
  17. A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
    [Crossref]
  18. V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
    [Crossref]
  19. A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
    [Crossref]
  20. A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
    [Crossref]
  21. B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
    [Crossref]
  22. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
    [Crossref]
  23. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
    [Crossref] [PubMed]
  24. A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
    [Crossref] [PubMed]
  25. H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
    [Crossref]
  26. B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
    [Crossref]
  27. J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
    [Crossref]
  28. F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
    [Crossref] [PubMed]
  29. D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
    [Crossref]
  30. B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
    [Crossref]
  31. S. Balci, “Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates,” Opt. Lett. 38, 4498–4501 (2013).
    [Crossref] [PubMed]
  32. V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
    [Crossref]
  33. G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
    [Crossref] [PubMed]
  34. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
    [Crossref] [PubMed]
  35. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
    [Crossref] [PubMed]
  36. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
    [Crossref]
  37. A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
    [Crossref] [PubMed]
  38. B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
    [Crossref] [PubMed]
  39. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
    [Crossref]
  40. A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
    [Crossref]
  41. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
    [Crossref] [PubMed]
  42. A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
    [Crossref]
  43. E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
    [Crossref] [PubMed]
  44. U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
    [Crossref]
  45. X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
    [Crossref]
  46. B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
    [Crossref] [PubMed]
  47. F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
    [Crossref]
  48. G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
    [Crossref] [PubMed]
  49. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
    [Crossref]
  50. J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
    [Crossref] [PubMed]
  51. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
    [Crossref] [PubMed]
  52. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
    [Crossref] [PubMed]
  53. V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
    [Crossref]
  54. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
    [Crossref]

2019 (1)

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

2018 (14)

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
[Crossref] [PubMed]

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
[Crossref]

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
[Crossref] [PubMed]

N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
[Crossref] [PubMed]

2017 (7)

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
[Crossref]

A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
[Crossref]

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

2016 (2)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

2015 (5)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

2014 (2)

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

2013 (8)

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

S. Balci, “Ultrastrong plasmon–exciton coupling in metal nanoprisms with J-aggregates,” Opt. Lett. 38, 4498–4501 (2013).
[Crossref] [PubMed]

V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
[Crossref]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

2012 (3)

V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

2011 (2)

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

2010 (2)

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
[Crossref]

2009 (2)

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

2008 (2)

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

2007 (1)

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

2005 (1)

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

2004 (1)

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

2001 (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Amendola, V.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Anicijevic, D. V.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Anquillare, E.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Antosiewicz, T. J.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

Arima, V.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

Atkinson, R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Avayu, O.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Bakin, A.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Balci, S.

Ballarini, D.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Barnes, W. L.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Beaur, L.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Bellessa, J.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Benoit, J. M.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

Benoit, J.-M.

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

Bianco, M.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

Bibic, N.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Bitton, O.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Bogdanovic, U.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Bouhelier, A.

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

Bower, C.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Bricks, J. L.

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Brioude, A.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Bröring, M.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Cambril, E.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Cao, E.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Carlos, L. D.

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Chen, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Chen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Chevrier, K.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

Chubich, D. A.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Chuntonov, L.

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
[Crossref] [PubMed]

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Cohn, B.

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

Cuscuná, M.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

D’Agostino, S.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

De Giorgi, M.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

De Marco, L.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

DeLacy, B. G.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Demchenko, A. P.

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Deng, Q.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Deng, S.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Deng, Z.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Dickson, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Ditcovski, R.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Dominici, L.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Dramicanin, M.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Eizner, E.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Ellenbogen, T.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Engelman, B.

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

Esposito, M.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Evans, P. R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Fan, Z.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Felbacq, D.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Fernández-Domínguez, A. I.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Fofang, N. T.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Fountain, A. W.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Frasconi, M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Gajic, R.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Gallinet, B.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

Gigli, G.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Goldner, A.

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

Goncharov, S.

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

Govorov, A. O.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Grady, N. K.

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Hao, Z.

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Haran, G.

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
[Crossref] [PubMed]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Harrison, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Hendren, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Hestand, N. J.

N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
[Crossref] [PubMed]

Hranisavljevic, J.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Hsu, C. W.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Hu, H.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

Iatì, M. A.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Isic, G.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Jiang, N.

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

Joannopoulos, J. D.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Johansson, G.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Johansson, P.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Johnson, S. G.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Julián-López, B.

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Kabashin, A. V.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

Kaiser, T. E.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

Käll, M.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Kang, M.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Kometani, N.

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
[Crossref]

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

Kondorskiy, A. D.

A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
[Crossref]

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

Kravets, V. G.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

Krivenkov, V.

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

Krivobok, V. S.

Laban, B.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Lacey, S.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Laverdant, J.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

Lazovic, V. M.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Lebedev, V. S.

A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
[Crossref]

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
[Crossref] [PubMed]

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
[Crossref]

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Lemaitre, A.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Lemmens, P.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Li, X.

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Liang, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Lin, H.-Q.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Lin, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Liu, B.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Liu, F.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Lovera, A.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Maragò, O. M.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Martin, O. J. F.

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

Medvedev, A. S.

V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
[Crossref]

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Melnikau, D.

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Miller, O. D.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Milonjic, S.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

Mirin, N. A.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Nabiev, I.

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

Nekrasov, A. D.

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Nitzan, A.

M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
[Crossref]

Nordlander, P.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Odom, T. W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Panas, I. D.

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Paparone, J.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

Parola, S.

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Pilot, R.

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

Plenet, J. C.

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Pollard, R. J.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Qiu, W.

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Rakovich, Y. P.

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Ralevic, U.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Ramezani, M.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

Rivas, J. G.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Rodarte, A. L.

A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
[Crossref]

Rogach, A. L.

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Saha-Möller, C. R.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

Sala, F. D.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Sanchez, C.

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Santhosh, K.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Sanvitto, D.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Savateeva, D.

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Schatz, G. C.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Schilling, M.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Shao, L.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Shapiro, B. I.

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
[Crossref] [PubMed]

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

She, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Shegai, T.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Slominskii, Y. L.

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Soljacic, M.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

Song, Y.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Sovilj, S. P.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Spano, F. C.

N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
[Crossref] [PubMed]

Stosch, R.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Sukharev, M.

M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
[Crossref]

Sun, J.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

Sun, M.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Susha, A.

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Symonds, C.

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Tao, A. R.

A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
[Crossref]

Tarantini, I.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Todisco, F.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

Törmä, P.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Tyshkunova, E. S.

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

Uchida, N.

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Väkeväinen, A. I.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Valdes, E.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Valvin, P.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Van Duyne, R. P.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

Vasic, V.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Vasil’ev, D. N.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Vignoli, S.

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

Viste, P.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Vitukhnovsky, A. G.

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

Vodnik, V.

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

Vujacic, A.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

Vynck, K.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Wang, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Wang, J.

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Wang, Q.-Q.

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Wang, W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Wen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Wiederrecht, G. P.

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Wolfram, B.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Woo, K. C.

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

Würthner, F.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

Wurtz, G. A.

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

Xu, H.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Xu, N.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Yagloski, R.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Yan, H.

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Yoshida, A.

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
[Crossref]

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

Zander, Z.

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Zayats, A. V.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

Zengin, G.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Zhang, D.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

Zhang, S.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Zhang, Y.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Zheng, D.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

Zhou, L.

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Zhuang, C.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Zhuo, X.

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

Zizzari, A.

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

Zou, S.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

ACS Nano (3)

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. D. Sala, G. Gigli, and D. Sanvitto, “Exciton–plasmon coupling enhancement via metal oxidation,” ACS Nano 9, 9691–9699 (2015).
[Crossref] [PubMed]

A. Lovera, B. Gallinet, P. Nordlander, and O. J. F. Martin, “Mechanisms of Fano resonances in coupled plasmonic systems,” ACS Nano 7, 4527–4536 (2013).
[Crossref] [PubMed]

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime,” ACS Nano,  12, 10393–10402 (2018).
[Crossref] [PubMed]

ACS Photonics (3)

F. Todisco, M. De Giorgi, M. Esposito, L. De Marco, A. Zizzari, M. Bianco, L. Dominici, D. Ballarini, V. Arima, G. Gigli, and D. Sanvitto, “Ultrastrong plasmon-exciton coupling by dynamic molecular aggregation,” ACS Photonics 5, 143–150 (2018).
[Crossref]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core–shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1, 454–463 (2014).
[Crossref]

K. Chevrier, J. M. Benoit, C. Symonds, J. Paparone, J. Laverdant, and J. Bellessa, “Organic exciton in strong coupling with long-range surface plasmons and waveguided modes,” ACS Photonics 5, 80–84 (2018).
[Crossref]

Adv. Funct. Mater. (1)

S. Parola, B. Julián-López, L. D. Carlos, and C. Sanchez, “Optical properties of hybrid organic-inorganic materials and their applications,” Adv. Funct. Mater. 26, 6506–6544 (2016).
[Crossref]

Adv. Opt. Mater. (1)

X. Li, L. Zhou, Z. Hao, and Q.-Q. Wang, “Plasmon-exciton coupling in complex systems,” Adv. Opt. Mater. 6, 1800275 (2018).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl. 50, 3376–3410 (2011).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

U. Ralević, G. Isić, D. V. Anicijević, B. Laban, U. Bogdanović, V. M. Lazović, V. Vodnik, and R. Gajić, “Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters,” Appl. Surf. Sci. 434, 540–548 (2018).
[Crossref]

Chem. Phys. Lett. (1)

G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008).
[Crossref]

Chem. Rev. (4)

N. J. Hestand and F. C. Spano, “Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118, 7069–7163 (2018).
[Crossref] [PubMed]

N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2018).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: a review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

G. Haran and L. Chuntonov, “Artificial plasmonic molecules and their interaction with real molecules,” Chem. Rev. 118, 5539–5580 (2018).
[Crossref] [PubMed]

Electronics (1)

J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, “Strong coupling between plasmons and organic semiconductors,” Electronics 3, 303–313 (2014).
[Crossref]

J. Phys. Chem. B (2)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
[Crossref]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005).
[Crossref]

J. Phys. Chem. C (5)

A. L. Rodarte and A. R. Tao, “Plasmon–exciton coupling between metallic nanoparticles and dye monomers,” J. Phys. Chem. C 121, 3496–3502 (2017).
[Crossref]

A. Yoshida and N. Kometani, “Effect of the interaction between molecular exciton and localized surface plasmon on the spectroscopic properties of silver nanoparticles coated with cyanine dye J-Aggregates,” J. Phys. Chem. C 114, 2867–2872 (2010).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, J. Hranisavljevic, and G. P. Wiederrecht, “Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids,” J. Phys. Chem. C 116, 4655–4661 (2012).
[Crossref]

A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, “Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles,” J. Phys. Chem. C 117, 6567–6577 (2013).
[Crossref]

H. Chen, L. Shao, K. C. Woo, J. Wang, and H.-Q. Lin, “Plasmonic–molecular resonance coupling: plasmonic splitting versus energy transfer,” J. Phys. Chem. C 116, 14088–14095 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

B. Cohn, B. Engelman, A. Goldner, and L. Chuntonov, “Two-dimensional infrared spectroscopy with local plasmonic fields of a trimer gap-antenna array,” J. Phys. Chem. Lett. 9, 4596–4601 (2018).
[Crossref] [PubMed]

J. Phys. Condens. Matter (2)

V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter 29, 203002 (2017).
[Crossref] [PubMed]

M. Sukharev and A. Nitzan, “Optics of exciton–plasmon nanomaterials,” J. Phys. Condens. Matter 29, 443003 (2017).
[Crossref]

Langmuir (1)

A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25, 11802–11807 (2009).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

V. Krivenkov, S. Goncharov, I. Nabiev, and Y. P. Rakovich, “Induced transparency in plasmon–exciton nanostructures for sensing applications,” Laser Photonics Rev. 13, 1800176 (2019).
[Crossref]

Materials Today (1)

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Materials Today 21, 303–313 (2018).
[Crossref]

Methods Appl. Fluoresc. (1)

J. L. Bricks, Y. L. Slominskii, I. D. Panas, and A. P. Demchenko, “Fluorescent J-aggregates of cyanine dyes: basic research and applications review,” Methods Appl. Fluoresc. 6, 012001 (2017).
[Crossref] [PubMed]

Nano Lett. (8)

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121–2125 (2004).
[Crossref]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett. 7, 1297–1303 (2007).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[Crossref] [PubMed]

N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton–plasmon coupling in a J-Aggregate–Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett. 11, 1556–1560 (2011).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17, 3809–3814 (2017).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17, 4689–4697 (2017).
[Crossref] [PubMed]

Nanocomposites, Nano Lett. (1)

B. G. DeLacy, O. D. Miller, C. W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A. W. Fountain, E. Valdes, E. Anquillare, M. Soljačić, S. G. Johnson, and J. D. Joannopoulos, “Coherent plasmon–exciton coupling in silver platelet-J-aggregate,” Nanocomposites, Nano Lett. 15, 2588–2593 (2015).
[Crossref]

Nanophotonics (1)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, “Exciton–plasmon coupling interactions: from principle to applications,” Nanophotonics 7, 145–167 (2018).
[Crossref]

Nanoscale Res. Lett. (1)

D. Melnikau, D. Savateeva, A. Susha, A. L. Rogach, and Y. P. Rakovich, “Strong plasmon–exciton coupling in a hybrid system of gold nanostars and J-aggregates,” Nanoscale Res. Lett. 8, 134 (2013).
[Crossref]

Nanotechnology (1)

B. Liu, H. Yan, R. Stosch, B. Wolfram, M. Bröring, A. Bakin, M. Schilling, and P. Lemmens, “Modelling plexcitons of periodic gold nanorod arrays with molecular components,” Nanotechnology 28, 195201 (2017).
[Crossref] [PubMed]

Nature Commun. (1)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Opt. Express (2)

B. G. DeLacy, W. Qiu, M. Soljačić, C. W. Hsu, O. D. Miller, S. G. Johnson, and J. D. Joannopoulos, “Layer-by-layer self-assembly of plexcitonic nanoparticles,” Opt. Express 21, 019103 (2013).
[Crossref]

B. I. Shapiro, A. D. Nekrasov, V. S. Krivobok, and V. S. Lebedev, “Optical properties of molecular nanocrystals consisting of J-aggregates of anionic and cationic cyanine dyes,” Opt. Express 26, 30324–30337 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Quantum Electron. (5)

B. I. Shapiro, E. S. Tyshkunova, A. D. Kondorskiy, and V. S. Lebedev, “Light absorption and plasmon-exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes,” Quantum Electron. 45, 1153–1160 (2015).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell,” Quantum Electron. 43, 1065–1077 (2013).
[Crossref]

V. S. Lebedev and A. S. Medvedev, “Plasmon–exciton coupling effects in light absorption and scattering by metal/J-aggregate bilayer nanoparticles,” Quantum Electron. 42, 701–713 (2012).
[Crossref]

V. S. Lebedev, A. S. Medvedev, D. N. Vasil’ev, D. A. Chubich, and A. G. Vitukhnovsky, “Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer,” Quantum Electron. 40, 246–253 (2010).
[Crossref]

A. D. Kondorskiy and V. S. Lebedev, “Effects of near-field electromagnetic coupling in dimers of nanoparticles with a silver core and a J-aggregate dye shell,” Quantum Electron. 48, 1035–1042 (2018).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Sci. Rep. (1)

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic view of plexcitonic dimers under study. (a)–(c) dimers consisting of spherical metal/J-aggregate nanoparticles; R is the radius of the silver core, s is the thickness of J-aggregate shell, and L is the distance between the centers of particles. (d)–(f) the illumination schemes used in calculations of the absorption (d) and the dark-field scattering (e, f) spectra of metal/J-aggregate nanodisk dimers placed onto the substrate.
Fig. 2
Fig. 2 Wavelength dependences of light absorption cross sections by a plasmonic Agnanoparticle dimer and by a plexcitonic dimer consisting of silver nanospheres coated with TDBC-dye J-aggregate. The cross sections are averaged over the polarizations of the incident light. Results are presented for interparticle distances, L, ranging from 14 nm to 26 nm (see Figs. 2(a)–2(g)), and for LR (see Fig. 2(h)). Full blue curves (A) – data for Ag NP dimer. Full black curves (B) – data for Ag/TDBC NP dimer. Dashed red curves (C) – data for Ag/TDBC NP dimer reconstructed using the coupled oscillator model (see Sect. 3.2). Vertical dashed green line marks the position of the absorption maximum of the TDBC J-aggregate (λJ = 587.6 nm). Label of pi – indicates the ith-peak of the “plasmonic” resonance of Ag NP dimer; oi and ri – show the positions of the plexcitonic peaks, associated with the “original” and “replica” bands of the Ag/TDBC NP dimer; and si – refers to its J-aggregate “shell” resonance.
Fig. 3
Fig. 3 Absorption cross sections of a plexcitonic Ag/TDBC NP dimer as functions of the photon energy, , for two different polarizations of light along its X and Y axis, see Fig. 1(a). The interparticle distances are L = 18 nm (left column) and L = 22 nm (right column). Figures 3(a), 3(c) and 3(b), 3(d) – results obtained for light polarization parallel and perpendicular to the line connecting the nanoparticle centers, respectively. Full black curves – calculations using the FDTD-method. Dashed red curves – data reconstructed using the coupled oscillator model. Vertical dashed green line marks the position of the absorption maximum of the TDBC J-aggregate (J = 2.11 eV). Notations oi, ri, and si are the same as in Figs. 2(a)–2(h). They are supplemented by indices X and Y to distinguish different directions of light polarization.
Fig. 4
Fig. 4 Frequencies (a)–(c) of the absorption peaks of plexcitonic bands of the Ag/TDBC NP dimer and the corresponding Rabi frequencies (d) of the coupled plexcitonic bands as functions of the interparticle distance, L. Curves in Figs. 4(a) and 4(b) were calculated for light polarization along the line connecting the nanoparticle centers (the X-axis in Fig. 1(a)), while curves in Fig. 4(c) – for light polarization perpendicular to this line (the Y-axis in Fig. 1(a)). The band notations oi, ri, and si are the same as in Figs. 3(a)–3(d). Notations of curves in Fig. 4(d) indicate those spectral bands, oi − ri, that are coupled by the plexcitonic interaction. Figures 4(e) and 4(f) represent the absorption spectra of dimers, in which silver cores of nanoparticles have been replaced by the optically passive medium with a dielectric constant equal to ε J .
Fig. 5
Fig. 5 Electromagnetic energy density distributions in the XZ plane passing through the centers of Ag/J-aggregate nanoparticle dimer (see Fig. 1(a)). Calculations were performed for wavelengths corresponding to the centers of the absorption spectral bands presented in Figs. 2(c) and 3(a)–3(b) for the interparticle distance L = 18 nm. Light polarization is parallel to the X-axis. The color maps represent electromagnetic energy density in the logarithmic scale.
Fig. 6
Fig. 6 (a) – Schematic view of hybrid disk-like nanoparticle placed onto a glass substrate; R and h are the radius and height of a silver core; s is the thickness of J-aggregate shell of TDBC-dye. (b) – Extinction coefficient of bare silver nanodisk located on a glass substrate: dashed-dotted green curve – experimental data from [27]; full black curve – results of calculations obtained using the FDTD-method. (c) – Extinction coefficient of Ag/J-aggregate nanodisk located on a glass substrate: dashed-dotted green curve (A) – experimental data from [27]; full yellow curve (B) – results of calculations obtained using the FDTD-method; dotted blue curve (C) – absorption coefficient of the TDBC-dye J-aggregate; full black curve (D) – sum of the extinction coefficients from the nanodisk on the substrate and from the TDBC-dye J-aggregate (curves (B) and (C), respectively); dashed red curve (E) – results of FDTD calculations reconstructed using the coupled oscillator model.
Fig. 7
Fig. 7 (a) – Schematic view of a plexcitonic dimer, consisting of Ag/J-aggregate nanodisks, in the presence of a contact between silver cores. (b) – Comparison of the computed dark-field scattering spectra of the bare Ag nanodisk dimer with the experimental data: dashed-dotted green curve is the experimental curve C from Fig. 9 of [36]; full black curve – the computed dark-field scattering spectra. (c) – Present calculations of the dark-field scattering spectra of the silver nanodisk dimer coated with the J-aggregate of TDBC-dye. (d) – Total extinction cross sections of the Ag/TDBC nanodisk dimer. In Figs. 7(c) and 7(d) full blue curve (A) – computed spectra for plasmonic (Ag ND) dimer; full black curve (B) – spectra for Ag/TDBC ND dimer obtained using the FDTD-method; dashed red curve (C) – spectra reconstruction on the basis of the coupled oscillator model (see Sect. 3.2).
Fig. 8
Fig. 8 Same as in Figs. 7(a)–7(d) for the nanodisk dimers with fully separated silver cores. Dashed-dotted green curve in Fig. 8(b) is the experimental curve D from Fig. 9 of [36].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε J ( ω ) = ε J + f J ω J 2 ω J 2 ω 2 i ω γ J .
H = ( E ( pl ) V V E ( ex ) ) , E ( pl ) = ( ω ( pl ) i γ ( pl ) 2 ) , E ( ex ) = ( ω ( ex ) i γ ( ex ) 2 ) , V = Ω 2 .
H = ( E 1 ( pl ) 0 0 V 1 0 0 0 0 0 E 2 ( pl ) 0 0 V 2 0 0 0 0 0 E N ( pl ) 0 0 V N 0 0 V 1 0 0 E 1 ( ex ) 0 0 0 0 0 V 2 0 0 E 2 ( ex ) 0 0 0 0 0 V N 0 0 E N ( ex ) 0 0 0 0 0 0 0 0 E N + 1 ( ex ) 0 0 0 0 0 0 0 0 0 E N + P ( ex ) ) .
E n ( pl ) = ( ω n ( pl ) i γ n ( pl ) / 2 ) , E k ( ex ) = ( ω k ( ex ) i γ k ( ex ) / 2 ) , V n = Ω n / 2 ,
σ ( ω ) = n A n π ( γ n / 2 ) ( ω ω n ) 2 + ( γ n / 2 ) 2 .

Metrics