Abstract

In this paper, we report a 3.7 kW all fiber narrow linewidth single mode fiber laser. The full width at half-maximum is about 0.30 nm, and the beam quality is Mx2=1.358, My2=1.202 at maximum output power. The laser is achieved by simultaneously suppressing nonlinear effects and mode instability (MI). Different seeds are injected into the main amplifier to study stimulated Raman scattering (SRS) effect. The results show that the phase modulated single frequency seed is benefit to suppress the SRS effect. For the phase modulated single frequency seed, inserting a filter in preamplifier will suppress amplified spontaneous emission (ASE) and decrease the backward power. By optimizing the coiling of active fiber, the MI effect is suppressed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

High power narrow linewidth single mode fiber lasers are required in various advanced applications [1,2], such as gravitational wave detection [3], nonlinear frequency generation [4–7], and beam combination [8–10]. Beam combining of fiber laser is an effective approach to increase the power further while maintaining the benefit of fiber laser. For beam combination application, power scaling of single narrow linewidth fiber sources is critical, which tightly determines the power scaling ability of the beam combining systems. For the narrow linewidth fiber laser based on specially designed fiber, single mode fiber laser has been scaled beyond 3 kW [11–13], and a maximal power of 3.5 kW with 0.17 nm linewidth has been achieved by researchers from Jena, which is limited by the onset of SBS [13]. However, these fibers are difficult to be integrated into a monolithic configurations and are established in free-space structure. For all-fiber narrow linewidth fiber lasers, which has advantage over the free-space counterpart, much work has been carried out to scaling the single mode power in recent years. The single mode power increases rapidly from below 1 kW to about 3 kW [14–21]. In 2018, a 3.5 kW output power all-fiber amplifier with 0.175 nm linewidth is presented, but the beam quality degrades due to the onset of mode instability when the output power exceeds 3.17 kW [22]. One can see that power scaling of such fiber lasers is especially challenging due to the unwanted nonlinear effects, such as stimulated Brillouin scattering (SBS), self-phase modulation (SPM) and stimulated Raman scattering (SRS). Large mode area fibers are generally employed to suppress these unwanted nonlinear effects, which results in multi-modes being supported, and inevitably leads to the sudden onset of mode instability (MI) [23–28]. For narrow linewidth power scaling, amplified spontaneous emission (ASE) can be also a limitation [22,29].

In order to mitigate SBS and SRS effects, the most effective strategy is to scale the effective mode area of the fundamental mode [30]. Moreover, assuming constant material absorption properties and pump core geometry, a larger core leads to a reduced absorption length, which will further reduce the nonlinear interaction length. The physical mechanism of TMI proposed by paper [31, 32] is that the interference of fundamental mode (FM) with high order mode (HOM) causes a periodic intensity pattern in the longitudinal direction. In turn, the mode beating produces a long periodic grating in the fiber core through thermos-optic effect. This thermal induced grating could cause a transfer of power from FM to HOM. Therefore, it gets more difficult to avoid MI, if the fiber core is enlarged and the fiber gets shorter [33]. The MI-threshold seems also to depend on the supported transversal mode content of the fiber core and the propagation loss of higher-order mode [23]. Furthermore, the thermal effects in fiber lasers will determine the efficiency and success of scaling-up efforts [34,35]. Therefore, the new method is need to suppress nonlinear effects and MI simultaneously.

In this paper, a 3.7 kW all fiber narrow linewidth single mode fiber laser has been demonstrated by employing various strategies to suppress the nonlinear effects and mode instability. The full width at half-maximum (FWHM) is about 0.30 nm, and the beam quality is Mx2=1.358, My2=1.202 at maximum output power. The technical details for the high power fiber laser systems are addressed in the paper. To the best of knowledge, this is the highest power in the aspect of narrow linewidth single mode fiber.

2. Experiment setup

The all-fiber laser system based on master oscillator power amplifier (MOPA) configuration is established, as shown in Fig. 1. The system consists of a seed fiber and a main amplifier. The seed laser is coupled through mode field adapter to the main amplifier stage. To suppress SRS and MI [36–40], the main amplifier stage is made up of a counter (6+1)×1 signal/pump combiner, a Nufern 25/400 LMA-YDF, two cladding power strippers(CPSs) and an output quartz block holder (QBH). The pump absorption factor of 25/400 active fiber is 0.6 dB/m at 915 nm, and the length of the gain fiber is optimized to guarantee efficient pump absorption and nonlinear effects suppression. The main amplifier stage is pumped by using six pump modules via a (6+1)×1 signal/pump combiner. Each pump module is made up of a 7×1 pump combiner with 150 W DILAS LD connected to each arm, the central wavelength of LD is 915 nm. The CPSs are utilized to remove the residue pump power and the unwanted cladding light. To strip HOM and obtain good beam quality, the active fiber is coiled with a minimum diameter of 10 cm, and water-cooled on a heat sink.

 figure: Fig. 1

Fig. 1 Experiment setup of the laser system.

Download Full Size | PPT Slide | PDF

A narrow linewidth oscillator based on a pair of FBG (seed I) and a phase modulated single frequency distributed feedback (DFB) laser (seed II) are applied as the seed laser, as shown in figure 1. For seed I, the oscillator consists of a high reflector (HR), a 4 m long 10/130 YDF with absorption factor of 4.1 dB/m at 975 nm, and an output coupler (OC), the central wavelength of grating is 1064 nm. The spectral bandwidth of HR and OC FBGs are 2 nm and 0.1 nm, and their reflectivity is 99.9% and 10%, respectively. When 130 W 976 nm LD pump power is injected into the cavity via a (2+1)×1 combiner, the output power is 80 W. The seed II is based on a single-frequency DFB laser with an output power of 10 mW and a central wavelength of 1064 nm. Two external fiber-coupled LiNbO3 electro-optic modulators (EOMs), driven by white noise signal (WNS) generators and radio frequency (RF) amplifiers, are used to broaden the linewidth of seed laser to suppress SBS effectively. For the WNS phase modulation, a WNS is utilized to produce a Gaussian broadened signal, and the spectrum broaden with Lorentz profile is generated. The linewidth and spectrum of the optical signal depend on the frequency distribution and power applied to the EOM. The bandwidths of white noise signals are 5 GHz, with RF input power of 30 dBm, which can increase the SBS threshold to above 3 kW [41]. Then, the linewidth-broadened seed laser is amplified to 100 W by adopting three-stage preamplifiers. At the end ports of the first and second pre-amplifiers, isolators are incorporated into the MOPA structure to prevent damage from high-power backward light, and the port 1 is used to monitor backward light.

3. Experiment study

Due to the simple and compact configuration, we first tried to scale the narrow linewidth power of the seed I. The output power of seed I is 80 W, and the FWHM is 0.1 nm at 80 W output. The beam quality of seed I is measured by 4-sigma method, and the Mx2=1.207, My2=1.218 at 80 W output power.

When the seed I is injected in main amplifier, the output power increases linearly with the pump power. The spectrum with different output power is illustrated in Fig. 2 (a). We can see that the SRS light in the amplifier grows quickly, and the spectrum broadens quickly in the process of amplification. At 1630 W output power, the SRS signal to noise ratio is 17 dB, and the ratio of SRS light power to total output power is 9.94%. The SRS light power is calculated through the spectral integration, which is divided by the total output power to achieve the ratio of SRS light power to total output power. The spectral linewidth broadens to 1.0 nm. The beam quality for laser with seed I at several output powers is illustrated in Fig. 2(b). One can see that the beam quality degrades slightly as the output power increases, which is due to that the injecting seed laser is not strictly single mode and the fraction of high order mode increases during power scaling. After the onset of SRS, the beam quality degrades to Mx2=1.493, My2=1.371 at 1630 W.A filter was used to remove SRS light to determine whether the degradation is the signal light, and the spectrum and beam quality of the filtered signal light is measured at 1630 W, as shown in Figs. 2(c) and 2(d). The beam quality was Mx2=1.490, My2=1.355 for the output signal without SRS. The results revealed that the beam quality of signal with SRS light and without SRS light is almost the same, so it indicates that beam quality of the signal light at 1064 nm degrades. This is due to that the quantum defect between signal light and Raman light will increase the heat deposition in the fiber, so the MI threshold will decrease with the presence of SRS effect [42–44]. Therefore, for seed laser I, the further power scaling is limited by the onset of SRS and SRS-induced MI effect.

 figure: Fig. 2

Fig. 2 The spectrum (a) and beam quality (b)versus output power of laser with seed I. The spectrum (c) and beam quality (d) for laser with a filter to remove SRS light at 1630 W.

Download Full Size | PPT Slide | PDF

The narrow linewidth seed achieved by phase modulating method as seed II can suppress SRS effectively [22]. So seed II was utilized in the same amplifier to suppress and achieve high power narrow linewidth fiber laser. For seed II, with three stage preamplifier, the output power of single frequency laser is scaled to 100 W. The FWHM linewidth is 0.22 nm, and the beam quality factor of seed II is Mx2=1.126, My2=1.096 at 100 W output power. Figures 3(a)and 3(b) depicts the output spectrum and beam quality at maximum output power for the amplifier with seed II. For the seed without filter, the laser output power and backward power versus pump power is shown in Fig. 4(a). When the injected pump power is 4.68 kW, the output power is 3.28 kW, and optical-to-optical efficiency is 70%. The backward power at maximum output power is 3.24 W. As shown in figure 3(a), the SRS signal noise ratio is 31 dB for seed II at 3286 W, and the ratio of SRS light power to total output power is 1.48%. Therefore, compared to seed I, SRS are suppressed significantly by the seed II. This is due to that the phase modulated single frequency seed is stable in the time domain, and there is no intensity ripple, so the SRS effect is suppressed in amplifier seeded by seed II [45,46]. One can also see that the ASE is obvious increasing for laser with seed II, and the ratio of ASE light power to total output power is 5.64%. The ASE light power is also calculated through the spectral integration, which is divided by the total output power to achieve the ratio of ASE light power to total output power. It is due to that the output power of the single frequency seed laser is only 10 mW, with the scaling of output power in three preamplifiers, the signal-to-noise (SNR) ratio is decreasing, so the ASE suppression ratio is lower for seed II. It is shown in Fig. 3(b) that the beam quality degrades obviously from 1.15 to 1.23 when the output power increases beyond 3000 W, which indicates the onset of the mode instability.

 figure: Fig. 3

Fig. 3 The spectrum (a) and beam quality (b) versus output power of laser with seed II.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4

Fig. 4 Output power and backward power of laser without filter (a) and with filter (b) as a function of pump power.

Download Full Size | PPT Slide | PDF

For further power scaling, one must find ways to mitigate ASE and MI. In order to suppress ASE, a 30 dB filter is inserted in the end port of the second preamplifier. For the laser with filter, when the injected pump power is 4.62 kW, the output power is 3.20 kW. The backward power is monitored by ISO port P1, and the backward power at maximum output power is 0.24 W for laser with filter, as shown in Fig. 4(b). Comparing to Fig. 4(a), we can see that the backward power decreases significantly by inserting a filter in fiber laser system, which means that the main content of the backward light is ASE light. The output spectrum and beam quality of laser with filter are shown in Figs. 5(a) and 5(b) respectively, and the inserting figures in Fig. 5(b) are the beam profiles at light waist. The ASE suppression ratios is 42 dB at 3196 W output power, the ratio of ASE power to output power is reduced to 0.13%. Comparing to Fig. 3(a), we can see the filter in laser system can suppress ASE effectively. The beam quality degrades beyond 3 kW output power, and the optical-to-optical efficiency decreases when the output power exceeds 3 kW, shown in Fig. 4, which is due to the onset of MI [47], and means the MI threshold is also about 3 kW. Compared with the previous results, one can conclude that the ASE has little effect on MI threshold, which is due to that the ASE has broadband spectrum [48].

 figure: Fig. 5

Fig. 5 The spectrum (a) and beam quality (b) of laser with filter.

Download Full Size | PPT Slide | PDF

The remain limitation is the MI, optimizing the coiling of active fiber is an effective method to suppress MI [49–51], so we decrease the coiling diameter of active fiber in the experiment. When the fiber is coiled with minimum diameter of 8 cm, the experiment results are shown in Fig. 6. The output power and backward power with pump power is shown in Fig. 6(a). As shown in Fig. 6(a), the maximum output power of laser is 3.7 kW, and with the scaling of output power, the optical to optical efficiency remains 76%. The spectral linewidth is 0.30 nm at maximum output power. The beam quality with different output powers is illustrated in Fig. 6(b). It can be seen that the laser has a near diffraction limited beam quality, and at maximum output power, the Mx2=1.358, My2=1.202. The reason for the difference between the Mx2 and My2 is the asymmetry of spot caused by the presence of high order mode [52], which is excited inevitably through imperfect splice point or twist of fiber [53]. It can be concluded that the MI effect is suppressed effectively by optimizing the coiling of active fiber. However, the coiling diameter of the LMA gain fiber should not be decreased further in order to ensure the long term mechanical stability of the fiber, so with the optimization, the fiber minimum coiling diameter is 8 cm in the experiment. The results show that the MI is suppressed, and further power scaling is only limited by the available pump power.

 figure: Fig. 6

Fig. 6 (a) The output power and backward power versus pump power, and (b) the beam quality at several output power.

Download Full Size | PPT Slide | PDF

4. Conclusion

In this paper, we present an all fiber laser based on MOPA scheme with LMA-YDF-25/400 fiber. The different seeds are injected into the main amplifier, the results show a phase modulated seed is more benefit to suppress SRS comparing to oscillator seed, and by inserting a filter in phase modulated seed, ASE effect can be suppressed effectively. Furthermore, by decreasing the coiling diameter of the active fiber, the MI effect is suppressed. Finally, we obtained a 3.7 kW narrow linewidth single mode fiber laser, the linewidth is 0.30 nm, and the beam quality is Mx2=1.358, My2=1.202 at maximum output power.

Funding

National KeyR&D Program of China 2017YFB1104401.

References

1. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014). [CrossRef]  

2. S. Wei, F. Qiang, Z. Xiushan, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014). [CrossRef]  

3. J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016). [CrossRef]  

4. M. K. Shukla, P. S. Maji, and R. Das, “Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator,” Opt. Lett. 41, 3033 (2016). [CrossRef]   [PubMed]  

5. E. A. Zlobina, S. A. Babin, and S. I. Kablukov, “Tunable cw all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21, 6777–6782 (2013). [CrossRef]   [PubMed]  

6. A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

7. Z. Zhi, S. Brian, and M. Michiko, “Generation of 180 w average green power from a frequency-doubled picosecond rod fiber amplifier,” Opt. Express 25, 8138 (2017).

8. A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

9. M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011). [CrossRef]  

10. Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013). [CrossRef]  

11. C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized yb fiber amplifier,” Opt. Lett. 41, 5202 (2016). [CrossRef]   [PubMed]  

12. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016). [CrossRef]   [PubMed]  

13. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017). [CrossRef]   [PubMed]  

14. G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

15. C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

16. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016). [CrossRef]   [PubMed]  

17. X. Yang, F. Qiang, Q. Yuguo, M. Xiangjie, and S. Wei, “2 kw narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser,” Appl. Opt. 54, 9419–9421 (2015). [CrossRef]  

18. J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

19. R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017). [CrossRef]  

20. Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

21. N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

22. L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018). [CrossRef]  

23. M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” in Society of Photo-optical Instrumentation Engineers, (2017).

24. A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011). [CrossRef]   [PubMed]  

25. J. Cesar, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013). [CrossRef]  

26. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20, 11407 (2012). [CrossRef]   [PubMed]  

27. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014). [CrossRef]  

28. K. Fanting, X. Junwen, R. H. Stolen, and D. Liang, “Direct experimental observation of stimulated thermal rayleigh scattering with polarization modes in a fiber amplifier,” Optica 3, 975 (2016). [CrossRef]  

29. F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

30. G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009). [CrossRef]  

31. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012). [CrossRef]   [PubMed]  

32. J. Cesar, E. Tino, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20, 440–451 (2012). [CrossRef]  

33. C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015). [CrossRef]  

34. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001). [CrossRef]  

35. A. B. Mobini Esmaeil, Peysokhan Mostafa, and M. Arash, “Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers,” J. Opt. Soc. Am. B 35, 2484 (2018). [CrossRef]  

36. L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017). [CrossRef]  

37. T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

38. R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017). [CrossRef]  

39. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015). [CrossRef]  

40. L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016). [CrossRef]  

41. Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018). [CrossRef]  

42. Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

43. S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016). [CrossRef]   [PubMed]  

44. K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017). [CrossRef]   [PubMed]  

45. J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015). [CrossRef]  

46. L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018). [CrossRef]  

47. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

48. D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

49. R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

50. M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

51. R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017). [CrossRef]  

52. W. Stephan, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007). [CrossRef]  

53. P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013). [CrossRef]  

References

  • View by:

  1. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
    [Crossref]
  2. S. Wei, F. Qiang, Z. Xiushan, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014).
    [Crossref]
  3. J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
    [Crossref]
  4. M. K. Shukla, P. S. Maji, and R. Das, “Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator,” Opt. Lett. 41, 3033 (2016).
    [Crossref] [PubMed]
  5. E. A. Zlobina, S. A. Babin, and S. I. Kablukov, “Tunable cw all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21, 6777–6782 (2013).
    [Crossref] [PubMed]
  6. A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).
  7. Z. Zhi, S. Brian, and M. Michiko, “Generation of 180 w average green power from a frequency-doubled picosecond rod fiber amplifier,” Opt. Express 25, 8138 (2017).
  8. A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).
  9. M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
    [Crossref]
  10. Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
    [Crossref]
  11. C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized yb fiber amplifier,” Opt. Lett. 41, 5202 (2016).
    [Crossref] [PubMed]
  12. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
    [Crossref] [PubMed]
  13. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017).
    [Crossref] [PubMed]
  14. G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).
  15. C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).
  16. P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
    [Crossref] [PubMed]
  17. X. Yang, F. Qiang, Q. Yuguo, M. Xiangjie, and S. Wei, “2 kw narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser,” Appl. Opt. 54, 9419–9421 (2015).
    [Crossref]
  18. J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).
  19. R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
    [Crossref]
  20. Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.
  21. N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).
  22. L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
    [Crossref]
  23. M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” in Society of Photo-optical Instrumentation Engineers, (2017).
  24. A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
    [Crossref] [PubMed]
  25. J. Cesar, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013).
    [Crossref]
  26. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20, 11407 (2012).
    [Crossref] [PubMed]
  27. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
    [Crossref]
  28. K. Fanting, X. Junwen, R. H. Stolen, and D. Liang, “Direct experimental observation of stimulated thermal rayleigh scattering with polarization modes in a fiber amplifier,” Optica 3, 975 (2016).
    [Crossref]
  29. F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.
  30. G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
    [Crossref]
  31. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012).
    [Crossref] [PubMed]
  32. J. Cesar, E. Tino, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20, 440–451 (2012).
    [Crossref]
  33. C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
    [Crossref]
  34. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
    [Crossref]
  35. A. B. Mobini Esmaeil, Peysokhan Mostafa, and M. Arash, “Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers,” J. Opt. Soc. Am. B 35, 2484 (2018).
    [Crossref]
  36. L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
    [Crossref]
  37. T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).
  38. R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
    [Crossref]
  39. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
    [Crossref]
  40. L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
    [Crossref]
  41. Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
    [Crossref]
  42. Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).
  43. S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016).
    [Crossref] [PubMed]
  44. K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017).
    [Crossref] [PubMed]
  45. J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015).
    [Crossref]
  46. L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
    [Crossref]
  47. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).
  48. D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).
  49. R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).
  50. M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).
  51. R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
    [Crossref]
  52. W. Stephan, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007).
    [Crossref]
  53. P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
    [Crossref]

2018 (7)

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

A. B. Mobini Esmaeil, Peysokhan Mostafa, and M. Arash, “Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers,” J. Opt. Soc. Am. B 35, 2484 (2018).
[Crossref]

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
[Crossref]

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

2017 (7)

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017).
[Crossref] [PubMed]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017).
[Crossref] [PubMed]

Z. Zhi, S. Brian, and M. Michiko, “Generation of 180 w average green power from a frequency-doubled picosecond rod fiber amplifier,” Opt. Express 25, 8138 (2017).

2016 (9)

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

M. K. Shukla, P. S. Maji, and R. Das, “Yb-fiber laser pumped high-power, broadly tunable, single-frequency red source based on a singly resonant optical parametric oscillator,” Opt. Lett. 41, 3033 (2016).
[Crossref] [PubMed]

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

C. X. Yu, O. Shatrovoy, T. Y. Fan, and T. F. Taunay, “Diode-pumped narrow linewidth multi-kilowatt metalized yb fiber amplifier,” Opt. Lett. 41, 5202 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
[Crossref] [PubMed]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

K. Fanting, X. Junwen, R. H. Stolen, and D. Liang, “Direct experimental observation of stimulated thermal rayleigh scattering with polarization modes in a fiber amplifier,” Optica 3, 975 (2016).
[Crossref]

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016).
[Crossref] [PubMed]

L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
[Crossref]

2015 (4)

J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015).
[Crossref]

C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

X. Yang, F. Qiang, Q. Yuguo, M. Xiangjie, and S. Wei, “2 kw narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser,” Appl. Opt. 54, 9419–9421 (2015).
[Crossref]

2014 (4)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

S. Wei, F. Qiang, Z. Xiushan, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53, 6554–6568 (2014).
[Crossref]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

2013 (4)

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

J. Cesar, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013).
[Crossref]

E. A. Zlobina, S. A. Babin, and S. I. Kablukov, “Tunable cw all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21, 6777–6782 (2013).
[Crossref] [PubMed]

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

2012 (3)

2011 (2)

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
[Crossref] [PubMed]

2009 (1)

G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[Crossref]

2007 (1)

2004 (1)

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[Crossref]

Abedinajafi, A.

Afzal, R.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Alekseev, D.

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

Andreas, T.

Antipov, O.

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

Arash, M.

Avdokhin, A.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Azizi, S.

Babazadeh, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Babin, S. A.

Bai, J.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Beier, F.

Bo, G.

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Bock, V.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Brar, K.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Brian, S.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[Crossref]

Cesar, J.

Chen, H.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Chen, S.

Chen, X. Long

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Choi, yuKhong

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Chu, Q.

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

Congwen, Z.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Courtney, S.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Cruz, J. D. L.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

Dajani, I.

Das, R.

Dilley, C.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Eberhardt, R.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
[Crossref] [PubMed]

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Eidam, T.

Fabian, S.

Fan, T. Y.

Fanting, K.

Feng, J.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Feng, X.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Florian, J.

Freier, E.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Fu, P.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Gapontsev, V.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

Golshan, A. H.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Gong, M. L.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

Grosek, J.

Haarlammert, N.

Hans-Jürgen, O.

Hao, J. P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

He, B.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

Heidariazar, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Hein, S.

Hejaz, K.

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017).
[Crossref] [PubMed]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Henderson, A.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Henrie, J.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[Crossref]

Honea, E.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Hu, X.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Huang, Z.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Hupel, C.

Ihring, J.

Jafari, N. T.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Jansen, F.

Jauregui, C.

Jens, L.

Jiajian, Z.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Jiang, M.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Jiang, Z.

Jinyong, L.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Jun, C.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Jung, M.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Junwen, X.

Kablukov, S. I.

Kadwani, P.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Kang, J.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Krämer, R. G.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Kuhn, S.

Kuznetsov, M. S.

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

Lafouti, M.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Lei, M.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Lei, S.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Leng, J.

J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015).
[Crossref]

Li, C.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Li, Z.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Liang, D.

Liang, X.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Liem, A.

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017).
[Crossref] [PubMed]

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Limpert, J.

Lin, H.

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Liu, A.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Liu, C.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Liu, D.

G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[Crossref]

Liu, G.

G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[Crossref]

Liu, Z.

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Liu, Z. J.

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Lu, B.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Luo, Q.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Lv, H.

Ma, P.

L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Madden, T.

Maji, P. S.

Matzdorf, C.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Mead, R.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Michiko, M.

Mobini Esmaeil, A. B.

Möller, F.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Mostafa, Peysokhan

Myasnikov, D.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Naderi, S.

Nasirabad, R. R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Nold, J.

Nolte, S.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Norouzey, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Norwood, R. A.

Otto, H.

Otto, H. J.

Otto, H.-J.

Park, Y.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Peyghambarian, N.

Platonov, N.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

Plötner, M.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Poozesh, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Proske, F.

Pu, Z.

L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Qi, X.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Qi, Y.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Qiang, F.

Rezaei-Nasirabad, R.

Robin, C.

Roohforouz, A.

K. Hejaz, M. Shayganmanesh, R. Rezaei-Nasirabad, A. Roohforouz, S. Azizi, A. Abedinajafi, and V. Vatani, “Modal instability induced by stimulated raman scattering in high-power yb-doped fiber amplifiers,” Opt. Lett. 42, 5274 (2017).
[Crossref] [PubMed]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Samartsev, I.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Sattler, B.

Savage-Leuchs, M.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Schmidt, O.

Schreiber, T.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
[Crossref] [PubMed]

A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
[Crossref] [PubMed]

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Shanhui, X. U.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Shatrovoy, O.

Shayganmanesh, M.

Shin, W.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Shukla, M. K.

Stafford, R.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Stephan, W.

Stolen, R. H.

Strecker, M.

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

Stutzki, F.

Su, R.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

Tang, C.

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Tao, R.

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Taunay, T. F.

Tenglong, L.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Tino, E.

Tunnermann, A.

Tünnermann, A.

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012).
[Crossref] [PubMed]

A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
[Crossref] [PubMed]

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

Tyrtyshnyy, V.

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

Vatani, V.

Vatter, T.

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Vaupel, A.

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Wang, J.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Wang, J. Hua

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Wang, X.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Wang, X. L.

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Wang, Y.

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

Wang, Y. P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

Wanjing, P.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Ward, B.

Wei, L.

Wei, S.

Weiwei, K.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Wenbo, D.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Wirth, C.

Xiang, X.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Xiangjie, M.

Xiao, Q. R.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

Xiaojun, X.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Xiaojun, X. U.

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Xiaolin, D.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Xiaolin, W.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Xiushan, Z.

Xu, J.

Xu, X.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

Xuan, T.

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Yagodkin, R.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

Yan, P.

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

Yang, X.

Yang, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Yang, Y. Feng

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Yang, Z.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Yanxing, M.

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Yanxing, M. A.

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Yi, M.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Yinhong, S.

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

Yoon, Y. S.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Yu, B. A.

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

Yu, C. X.

Yu, L.

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

Yuguo, Q.

Yusim, A.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

Zebiao, L. I.

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” in Society of Photo-optical Instrumentation Engineers, (2017).

Zhang, H.

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

Zhao, Chun

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Zheng,

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

Zheng, Y.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Zhi, Z.

Zhou, J.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

Zhou, P.

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

Zlobina, E. A.

Appl. Opt. (2)

Chin. Phys. Lett. (2)

G. Bo, Y. Feng Yang, J. Hua Wang, Zheng, X. Long Chen, and Chun Zhao, “Stimulated brillouin scattering enhancement factor improvement in a 11.6 ghz linewidth 1.5 kw yb-doped fiber amplifier,” Chin. Phys. Lett. 33, 94–97 (2016).

J. Kang, B. Lu, X. Qi, X. Feng, H. Chen, M. Jiang, Y. Wang, P. Fu, and J. Bai, “An efficient single-frequency yb-doped all-fiber mopa laser at 1064.3 nm,” Chin. Phys. Lett. 33, 54–57 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37, 207–217 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).
[Crossref]

D. Alekseev, V. Tyrtyshnyy, M. S. Kuznetsov, and O. Antipov, “Transverse mode instability in high-gain few-mode yb3+-doped fiber amplifiers with 10 um core diameter with or without backward reflection,” IEEE J. Sel. Top. Quantum Electron. 24, 1 (2018).

IEEE Photonics J. (1)

Z. Li, C. Li, L. Yu, Q. Luo, and J. Feng, “Impact of stimulated raman scattering on the transverse mode instability threshold,” IEEE Photonics J. 10, 1–9 (2018).

J. Opt. (1)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17, 045504 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Commun. (1)

Q. Chu, H. Lin, C. Tang, J. Feng, and T. Xuan, “Spectral evolution and stimulated brillouin scattering suppression in phase-modulated fiber amplifier,” J. Phys. Commun. 2, 045022 (2018).
[Crossref]

Laser Phys. (4)

P. Yan, J. P. Hao, Q. R. Xiao, Y. P. Wang, and M. L. Gong, “The influence of fusion splicing on the beam quality of a ytterbium-doped fiber laser,” Laser Phys. 23, 045109 (2013).
[Crossref]

J. Leng, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25, 035101 (2015).
[Crossref]

L. Tenglong, Z. Congwen, S. Yinhong, M. Yi, K. Weiwei, and P. Wanjing, “3.5 kw bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser,” Laser Phys. 28, 105101 (2018).
[Crossref]

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 w ytterbium-doped fiber laser,” Laser Phys. 24, 162–166 (2014).
[Crossref]

Laser Phys. Lett. (4)

R. Su, R. Tao, X. Wang, H. Zhang, P. Ma, Z. Pu, and X. Xu, “2.43 kw narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression,” Laser Phys. Lett. 14, 085102 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers,” Laser Phys. Lett. 14, 025002 (2017).
[Crossref]

C. Jun, M. Jung, W. Shin, B. A. Yu, Y. S. Yoon, Y. Park, and yuKhong Choi, “818 w yb-doped amplifier with <7 ghz linewidth based on pseudo-random phase modulation in polarization maintained all-fiber configuration,” Laser Phys. Lett. 16, 015102 (2018).

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14, 025101 (2017).
[Crossref]

Opt. & Lasers Eng. (1)

M. Yanxing, W. Xiaolin, L. Jinyong, X. Hu, D. Xiaolin, Z. Jiajian, D. Wenbo, Z. Pu, X. Xiaojun, and S. Lei, “Coherent beam combination of 1.08 kw fiber amplifier array using single frequency dithering technique,” Opt. & Lasers Eng. 49, 1089–1092 (2011).
[Crossref]

Opt. Express (15)

Z. Zhi, S. Brian, and M. Michiko, “Generation of 180 w average green power from a frequency-doubled picosecond rod fiber amplifier,” Opt. Express 25, 8138 (2017).

E. A. Zlobina, S. A. Babin, and S. I. Kablukov, “Tunable cw all-fiber optical parametric oscillator operating below 1 μm,” Opt. Express 21, 6777–6782 (2013).
[Crossref] [PubMed]

P. Ma, R. Tao, R. Su, X. Wang, P. Zhou, and Z. Liu, “1.89 kw all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality,” Opt. Express 24, 4187 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kw average power from a directly diode pumped ytterbium-doped low na fiber amplifier,” Opt. Express 24, 6011 (2016).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kw output power from a diode-pumped yb-doped fiber amplifier,” Opt. Express 25, 14892–14899 (2017).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20, 12912–12925 (2012).
[Crossref] [PubMed]

J. Cesar, E. Tino, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20, 440–451 (2012).
[Crossref]

C. Jauregui, H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
[Crossref]

A. Tünnermann, C. Jauregui, C. Wirth, F. Stutzki, F. Jansen, H. Otto, J. Limpert, O. Schmidt, T. Schreiber, and T. Eidam, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218 (2011).
[Crossref] [PubMed]

J. Cesar, O. Hans-Jürgen, S. Fabian, J. Florian, L. Jens, and T. Andreas, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013).
[Crossref]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20, 11407 (2012).
[Crossref] [PubMed]

W. Stephan, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007).
[Crossref]

L. Wei, P. Ma, S. Chen, Z. Pu, and Z. Jiang, “Theoretical analysis of the srs-induced mode distortion in large-mode area fiber amplifiers,” Opt. Express 26, 15793 (2018).
[Crossref]

L. Wei, P. Ma, H. Lv, J. Xu, Z. Pu, and Z. Jiang, “General analysis of srs-limited high-power fiber lasers and design strategy,” Opt. Express 24, 26715 (2016).
[Crossref]

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Optik (1)

G. Liu and D. Liu, “Numerical analysis of stimulated brillouin scattering in high-power double-clad fiber lasers,” Optik 120, 24–28 (2009).
[Crossref]

Photonics Res. (1)

L. I. Zebiao, Z. Huang, X. Xiang, X. Liang, H. Lin, X. U. Shanhui, Z. Yang, J. Wang, and J. Feng, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kw all-fiberized laser,” Photonics Res. 5, 77 (2017).
[Crossref]

Physics (1)

R. Tao, P. Ma, X. Wang, Z. Pu, and Z. Liu, “1.3 kw monolithic linearly-polarized single-mode mopa and strategies for mitigating mode instabilities,” Physics 3, 86 (2014).

Proc. SPIE - The Int. Soc. for Opt. Eng. (1)

A. Liu, R. Mead, T. Vatter, A. Henderson, and R. Stafford, “Spectral beam combining of high-power fiber lasers,” Proc. SPIE - The Int. Soc. for Opt. Eng. 5335, 81–88 (2004).

Sci. China Technol. Sci. (1)

Z. J. Liu, Z. Pu, X. U. Xiaojun, X. L. Wang, and M. A. Yanxing, “Coherent beam combining of high powerfiber lasers: Progress and prospect,” Sci. China Technol. Sci. 56, 1597–1606 (2013).
[Crossref]

Other (9)

A. Avdokhin, V. Gapontsev, P. Kadwani, A. Vaupel, I. Samartsev, N. Platonov, A. Yusim, and D. Myasnikov, “High average power quasi-cw single-mode green and uv fiber lasers,” in Photonics West-proc Spie, (2015).

J. Nold, M. Strecker, A. Liem, R. Eberhardt, T. Schreiber, and A. Tünnermann, “Narrow linewidth single mode fiber amplifier with 2.3 kw average power,” Cspg Special Publ. (2015).

T. Schreiber, A. Liem, E. Freier, C. Matzdorf, R. Eberhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Analysis of stimulated raman scattering in cw kw fiber oscillators,” in Spie Lase, (2014).

F. Möller, R. G. Krämer, C. Matzdorf, S. Nolte, M. Strecker, F. Stutzki, M. Plötner, V. Bock, T. Schreiber, and A. Tünnermann, “Comparison between bidirectional pumped yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kw,” (2018), p. AM2A.3.

Y. Qi, M. Lei, C. Liu, B. He, and J. Zhou, “1.75 kw cw narrow linewidth yb-doped all-fiber amplifiers for beam combining application,” in CLEO: 2015, (Optical Society of America, 2015), p. ATu4M.4.

N. Platonov, R. Yagodkin, J. D. L. Cruz, A. Yusim, and V. Gapontsev, “1.5 kw linear polarized on pm fiber and 2 kw on non-pm fiber narrow linewidth cw diffraction-limited fiber amplifier,” in Spie Lase, (2017).

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” in Society of Photo-optical Instrumentation Engineers, (2017).

M. Lei, Y. Qi, C. Liu, Y. Yang, Y. Zheng, and J. Zhou, “Mode controlling study on narrow-linewidth and high power all-fiber amplifier,” in International Symposium on Laser Interaction with Matter, (2015).

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” in Fiber Lasers Xi: Technology, Systems, & Applications, (2014).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experiment setup of the laser system.
Fig. 2
Fig. 2 The spectrum (a) and beam quality (b)versus output power of laser with seed I. The spectrum (c) and beam quality (d) for laser with a filter to remove SRS light at 1630 W.
Fig. 3
Fig. 3 The spectrum (a) and beam quality (b) versus output power of laser with seed II.
Fig. 4
Fig. 4 Output power and backward power of laser without filter (a) and with filter (b) as a function of pump power.
Fig. 5
Fig. 5 The spectrum (a) and beam quality (b) of laser with filter.
Fig. 6
Fig. 6 (a) The output power and backward power versus pump power, and (b) the beam quality at several output power.

Metrics