Abstract

The performance of an interband cascade laser based laser heterodyne radiometer (LHR) is demonstrated in ground-based solar occultation mode. High-resolution (0.0033 cm−1) transmission spectra near 3.53 μm were obtained for simultaneous atmospheric observations of H2O and CH4. Combined with the preprocessed measurement data (acquired at Hefei, China, on June 21th 2016), an optimal estimation method based retrieval algorithm is developed for data retrieval and error analysis. By considering the corrected atmospheric parameters, vertical profiles of H2O and CH4 are retrieved. Finally, the measured total column abundance and XCH4 were calculated to be 1.87 ± 0.02 ppm and 1.88 ± 0.02 ppm, respectively. The interband cascade laser-based laser heterodyne radiometer that is demonstrated in this manuscript has high potential for use in the development of compact, robust, and unattended LHR for spacecraft, airborne or ground-based atmospheric sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Laser heterodyne radiometer (LHR), as a radio receiver (using the Sun or interstellar medium as light source and a laser as local oscillator), has already been successfully used for remote sensing of earth atmosphere and astronomy since the 1970s [1–4]. Initial LHRs, employed carbon dioxide (CO2) gas lasers as local oscillators, focused in the 8-12 μm atmospheric window, where numerous important atmospheric species exhibit fundamental rotational-vibrational absorptions. However, the CO2 lasers suffered from line-tuned spectral tunability. As an alternative, lead-salt diode lasers offered better frequency choice and frequency tuning ability, but lacking reliability and optical powers, and suffering from the requirement of LN2 temperature cooling [5,6]. The quick development of quantum-cascade lasers (QCLs) offers an ideal alternative to the traditional local oscillators in the mid-infrared region with the merits of room temperature operation, wide spectral tuning range, compactness, and robustness. Over the last decade, the QC-LHR applications for atmospheric observation have been successfully developed [7–12]. At the same period, the application of LHR for passive sensing of atmospheric CO2 and CH4 in the shortwave infrared band (around 1.6 μm) is also investigated, where telecommunication distributed feedback lasers are employed as the local oscillators. Combined with single-mode optical fibers, couplers and attenuators, the system can be made small, low-power consumption, compact and robust [13–16].

The atmospheric window of 3-5 μm is another attractive spectral region for mid-infrared atmospheric sounding, however commercially available QCLs operate generally in the 4-12 μm spectral region, which led to a “mid-infrared gap” in the QC-LHR applications. Since the first demonstration in 2008 [17], interband cascade lasers (ICLs), lasing in continuous wave (cw) mode at room temperature at the spectral region between 3 and 6 μm, open a new spectral window for mid-infrared sensing. ICLs offer room temperature operation, compactness, high spectral purity with much lower electrical power consumption compared with QCLs.

In this paper, an ICL based LHR (IC-LHR) for atmospheric sounding is demonstrated for the first time (for our best knowledge). Simultaneous heterodyne detection of atmospheric water vapor (H2O) and methane (CH4) near 3.53 μm has been performed in ground-based solar occultation mode. The experimental details, as well as data retrieval and result analysis will be presented and discussed.2. Experimental details

The experimental LHR setup is schematically shown in Fig. 1. Solar radiation containing atmospheric absorption information was captured with the help of a home-made solar tracker, then chopped at 2 kHz for lock-in amplification of the LHR signal. After a 50T/50R beam splitter (BS1), the reflected solar beam was directed to detector #3 for monitoring solar intensity fluctuation during the measurement. Beam splitter BS2 was employed as a mixing device to combine the transmitted solar radiance with the light beam from an ICL used as local oscillator (LO). The combined beams were imaged on a high-speed mercury cadmium telluride detector (detector #1, Vigo PV-2TE-4 with a custom preamplifier), which had both DC (0-1 MHz, for monitoring the ICL power) and AC (1 kHz −100 MHz, for LHR detection at radio-frequency (RF)). A small fraction of the ICL beam transmitted through BS2 was used for frequency calibration: a flip mirror directed the ICL beam either to a wavemeter (Bristol Instruments, 621) for absolute frequency measurements or to a 50.8 mm germanium etalon (with a free spectral range of ~0.0246 cm−1) followed by detector #2 recording etalon fringe signal for relative frequency metrology.

 figure: Fig. 1

Fig. 1 Schematic diagram of the IC-LHR setup and photo of the optical module. ICL: interband cascade laser; BS: beam splitter; LIA: lock-in amplifier; BP Filter: band-pass filter; USB: Universal Serial Bus.

Download Full Size | PPT Slide | PDF

The used local oscillator was a TO-66 mounted distributed feedback (DFB) ICL operating around 3.53 μm (nanoplus). The used ICL was coarsely tuned ~10 cm−1 by tuning the temperature at a constant current or precisely tuned over ~1 cm−1 by tuning the injection current at a constant temperature. The relationships between laser wavenumber, laser power and laser injection current are shown in Fig. 2. During LHR measurement, the laser temperature and current were set at 14°C and 30mA (ILX Lightwave, LDC-3724) to probe the CH4 and HDO absorption lines located around 2831.92 cm−1. The frequency tuning of the laser could be performed by changing the laser current point-by-point via laser controller or scanning the injection current with a common function waveform (such as sinusoidal or triangle waveform).

 figure: Fig. 2

Fig. 2 Relationships between laser wavenumber (red solid symbols), power (blue hollow symbols) and laser injection current.

Download Full Size | PPT Slide | PDF

The solar radiation containing atmospheric absorption information was down-converted to the RF domain via detector #1, followed by a band-pass filter employed to determine RF detection bandwidth which defines the instrument lineshape (ILS) of the LHR system. In order to choose an appropriate band-pass filter, frequency spectrum analysis of the heterodyne, laser and background (without laser and solar) signals were performed by using a RF signal analyzer (Agilent Technologies, N9000A).

As shown in Fig. 3, the heterodyne signal form is dominated by the LO (ICL) signal, and the detector can extract LHR signal from the background baseline below 150 MHz. However, there were several unwanted peaks between 70 and 120 MHz, which might introduce additional noise to the LHR signal. Therefore, a 10–60 MHz band-pass filter was chosen in the experiment, which resulted in a ~100 MHz (0.0033 cm−1) double-sideband spectral resolution of the system. The inset of Fig. 3 shows the actually used ILS for data retrieval. Subsequently, the RF signal after the band-pass filter was converted to a DC signal by a Schottky diode (HEROTE, DHM020BB) and demodulated at first harmonic using lock-in amplifier (Stanford Research Systems, SR830) with the chopping frequency as reference. LHR signal can be ultimately obtained by tuning the laser frequency across the target molecular absorption lines.

 figure: Fig. 3

Fig. 3 Band–pass filter used in the experiment and frequency spectrum analysis of the heterodyne, laser and background signals, the inset: the actually used instrument lineshape for data retrieval.

Download Full Size | PPT Slide | PDF

A personal laptop equipped with a DAQ card (National Instruments, USB-6366) and LabVIEW software was employed for data acquisition and instrument control (solar tracker controlling, frequency tuning and wavenumber reading). Signals from 5 channels were recoded: the in-phase (X) and quadrature (Y) outputs of the lock-in amplifier for phase compensation of the LHR signal by using the angle sum and difference identities (trigonometric identities), the DC output of detector #1 for tracking the ICL power, the signal from detector #2 for the relative frequency calibration, and the signal from detector #3 for tracking the solar power variation.

The experimental result, measured from our institute (Hefei, China, 31.9°N 117.166°E) on June 21th 2016, is shown in Fig. 4(b), where the LHR data has been processed by the phase compensation. In addition, transmittance of atmospheric H2O vapor and CH4 in the considered spectral region are calculated by using a forward model (introduced in detail in section 3). It should be noted that, when tuning the laser frequency in “point-by-point” mode, an acquisition interval longer than 3 times of the lock-in integration time was used to avoid deformation of lineshape of the LHR signal. Otherwise, the ILS of the LHR system would no longer be determined by the band-pass filter but by the lock-in amplifier. A typical scan time is at an order of minutes, which depends on the current intervals, acquisition time and acquisition intervals. While the scan time is determined, a corresponding “function waveform scan” mode can be employed as an alternative to the “point-by-point” mode, where no obvious difference is found between the two scan methods. It should be noted that, the results shown in Fig. 4(b) are acquired at a sampling rate of 50 Hz by driving the laser current with a sinusoidal wave (0.0125 Hz, 0.5 Vpp).

 figure: Fig. 4

Fig. 4 (a) Calculated transmittance of atmospheric H2O vapor (black) and CH4 (red dots) based on the forward model; (b) Acquired IC-LHR (black), DC (DC output of detector #1, gray dots) and etalon signals (blue).

Download Full Size | PPT Slide | PDF

Before the data retrieval, the raw LHR data needs to be pre-processed. Firstly, the offset of the LHR signal, where the injection current to the ICL equals zero, was subtracted. Then the LHR signal is divided by the ICL intensity signal (DC signal) for normalization of the LHR signal, When large solar power fluctuations (more than 10% of the average of the solar power intensity) occurred during the scan, the LHR data would not be considered for further analysis. Thirdly, a frequency calibration of the LHR signal was performed with the help of relative frequencies (germanium etalon signal), and absolute frequencies from a wavemeter or the positions of the absorption lines (from the HITRAN database) [18]. In the present work, peaks of the etalon signal were fitted to a 5th order polynomial function to determine relative frequency of the data points, and the CH4 line position (2831.92 cm−1) was employed to calibrate the absolute frequency. In addition, a scale factor and an offset were used for further frequency calibration according to the wavemeter results and the forward model calculation. Finally, the calibrated LHR results were interpolated with the same frequency interval as the forward model and then the processed LHR spectrum is now ready (blue dots in Fig. 7(a)) for further data retrieval to inverse the LHR spectrum to the corresponding vertical concentration profiles.

3. Data retrieval and results analysis

The LHR data retrieval was performed employing the optimal estimation method (OEM), introduced by Rodgers [19]. The applications of the OEM to a LHR based atmospheric sounding has already been described in detail by Weidmann [20]. Here, only a brief recall is presented. The atmospheric transmission spectrum of the solar radiance can be calculated using a radiative transfer model (F). The relationship between pre-processed LHR data and the atmospheric state vectors is described as:

ym=F(x,a,b,c)+ε.
where ym is the measurement vector, x is the state vector considered in the forward calculation, and ε is the error vector. A second order polynomial baseline (with coefficients of a, b and c) represents the non-selective absorption and uncorrected power contributions in the target spectral region. The OEM-based data retrieval is a Levenberg–Marquardt (LM) iterative process, using Bayesian statistics with Gaussian probability density functions, to minimize the cost function (χ2):
χ2=(yF)TSε1(yF)+(xixa)TSa1(xixa).
where xa is a priori state vector with an a priori covariance matrix Sa, and Sε is the error covariance matrix. The iterative state vector xi + 1 is calculated using the following equation:
xi+1=xi+[(1+γ)Sa1+KiTSε1Ki]1×[KiTSε1(ymFi)Sa1(xixa)].
where K is the Jacobian matrix (or weighting functions), and γ is the Levenberg–Marquardt (LM) parameter.

The flow chart of the LHR data retrieval is shown in Fig. 5, which mainly consists of a forward calculation program and an iterative inverse program. Crucially, the forward model employed in this study is based on the reference forward model (RFM, version 4.34), which is a fast and high-resolution line-by-line algorithm developed by Dudhia [21]. In the forward calculation program, atmospheric transmission spectrum (y) combined with a baseline and the corresponding Jacobian matrix (K) are calculated with the input atmospheric parameters (profiles of pressure, temperature, and atmospheric species), ILS, a priori state vector and solar position (zenith angle for ray trace path calculation). In the inverse program, the forward model is iteratively called to minimize the cost function (Eq. (2)) following LM algorithm (Eq. (3)). Table 1 defines the used state vector in the data retrieval, which consists of two scale factors of the considered atmospheric species (CH4 and H2O) and three polynomial coefficients of the baseline. It should be noted that, when the scale factor x is exchanged with VMRs (volume mixing ratios) at different altitudes, the inverse program will yield a ‘real’ profiles retrieval. Here, the scale factor of a prior profile is retrieved in this manuscript.

 figure: Fig. 5

Fig. 5 Flow chart of the data retrieval. VMRs: volume mixing ratios; ILS: instrument lineshape; L-M: Levenberg–Marquardt.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Definition of the state vector used in the data retrieval.

The temperature and pressure profiles used in the retrieval are shown in Fig. 6, which were obtained from the China Meteorological Data Service Center (CMCC) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Data below 30 km (blue dots) were interpolated from the upper air data of Anqing observation station (China, 30.53°N 117.05°E), and the data above 30 km (red dots) were interpolated from the typical zonal mean profiles in different months (obtained from ECMWF). For the methane and water vapor profiles, typical mid-latitude daytime profiles were used. Note that the atmosphere is separated to 45 layers from surface to 78 km with an altitude grid of 0.5, 1, 2, 4 and 6 km, separately.

 figure: Fig. 6

Fig. 6 Temperature (a) and pressure (b) profiles used for the IC-LHR retrieval.

Download Full Size | PPT Slide | PDF

The covariance matrices (Sa and Sε) were set to be diagonal, where Sε was built based on the standard deviation of the measurement vector (ym), while Sa was built based on the error definitions shown in Table 1. The iterative solution is defined to be converged with Δχ22 < 1E-3, within an upper limit of 20 iterations. In a well-conditioned retrieval, the ultimate cost function (χ2) should be close to the size of the measurement vector (m). Figure 7(a) shows the pre-processed LHR data and the fitted spectrum over the spectral region of 2831.64 - 2832.07 cm−1 with an interval of 0.001 cm−1. The iterative process is shown in the inset of Fig. 7(a), where χ2/m equal to ~1.05 is obtained after 6 iterations. The residuals between the pre-processed data and the fitted result are shown in Fig. 7(b), where the random distribution indicates a well configured fit. The retrieved CH4 and water vapor profiles (Figs. 7(c) and 7(d)) are calculated by multiplying the retrieved scale factor with the a priori profile. Based on the retrieved CH4 and water vapor profiles, the total column abundance of water vapor is calculated to be ~2868ppm (or ~5.8E + 23 molecules/cm2), the total column abundance of methane and its mixing ratio in dry air (XCH4) are found to be ~1.875 ppm (or ~3.8E + 20 molecules/cm2) and ~1.88 ppm (part per million), respectively.

 figure: Fig. 7

Fig. 7 LHR data retrieval results: (a) experimental (blue) and fitted (red) LHR spectra and the convergence of the iteration process (inset); (b) the residuals (pink); (c) and (d) the retrieved vertical concentration profiles of CH4 and water vapor, respectively.

Download Full Size | PPT Slide | PDF

In order to perform an error analysis, the smoothing error Ss and the measurement error Sm are considered. In our case, the retrieval error is dominated by smoothing error. The Ss and Sm can be calculated by using the following equation [19]:

Sm=GSεGT,Ss=(InA)Sa(InA)T.
A=x^x=GK=[(KTSε1K+Sa1)1KTSε1]K.
where G and A are the gain matrix and averaged kernel matrix. The total retrieval error of two scale factors were calculated to be ~6% and ~8%, respectively. 20 consecutive measurements indicate an uncertainty of 20 ppb (part per billion) and 21 ppb for the total CH4 column abundance and XCH4, respectively. For further improvement of the measurement uncertainty, works in the near future will be focused on improving the signal to noise ratio of the IC-LHR signal and determining an appropriate weight of the constraint in the retrieval, so as to a ‘true’ profile retrieval.

4. Conclusions

An ICL based mid-infrared LHR has been demonstrated in ground-based solar occultation mode. High-resolution (0.0033 cm−1) LHR spectrum near 3.53 μm were obtained for simultaneous atmospheric observations of H2O vapor and CH4. OEM and RFM based retrieval algorithm was developed for retrieval of the vertical profiles of H2O and CH4 and error analysis. The measured total CH4 column abundance and XCH4 were determined to be 1.87 ± 0.02 ppm and 1.88 ± 0.02 ppm, respectively. The IC-LHR has high potential to be developed as a compact, robust and unattended instrument for spacecraft, airborne or ground-based applications.

Funding

National Key Research and Development Program of China (2017YFC0209700, 2016YFC0303900), Key Project of the National Natural Science Foundation of China (41730103) and National Natural Science Foundation of China (41405022, 41805018).

Acknowledgments

The authors are grateful to Damien Weidmann from Rutherford Appleton Laboratory and Gerard Wysocki from Princeton University for their technical guidance of LHR. They are also very grateful to Anu Dudhia from University of Oxford and Yao Veng TE from Pierre and Marie Curie University for providing RFM source codes and guidance of retrieval algorithm.

References

1. R. T. Menzies and R. K. Seals Jr., “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977). [CrossRef]   [PubMed]  

2. M. A. Frerking and D. J. Muehlner, “Infrared heterodyne spectroscopy of atmospheric ozone,” Appl. Opt. 16(3), 526–528 (1977). [CrossRef]   [PubMed]  

3. M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978). [CrossRef]  

4. D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983). [CrossRef]  

5. G. Sonnabend, D. Wirtz, F. Schmülling, and R. Schieder, “Tuneable heterodyne infrared spectrometer for atmospheric and astronomical studies,” Appl. Opt. 41(15), 2978–2984 (2002). [CrossRef]   [PubMed]  

6. D. Weidmann and D. Courtois, “Infrared 7.6-microm lead-salt diode laser heterodyne radiometry of water vapor in a CH4-air premixed flat flame,” Appl. Opt. 42(6), 1115–1121 (2003). [CrossRef]   [PubMed]  

7. D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007). [CrossRef]   [PubMed]  

8. D. Weidmann and G. Wysocki, “High-resolution broadband (>100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser,” Opt. Express 17(1), 248–259 (2009). [CrossRef]   [PubMed]  

9. D. Weidmann, B. J. Perrett, N. A. Macleod, and R. M. Jenkins, “Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry,” Opt. Express 19(10), 9074–9085 (2011). [CrossRef]   [PubMed]  

10. T. R. Tsai, R. A. Rose, D. Weidmann, and G. Wysocki, “Atmospheric vertical profiles of O3, N2O, CH4, CCl2F2, and H2O retrieved from external-cavity quantum-cascade laser heterodyne radiometer measurements,” Appl. Opt. 51(36), 8779–8792 (2012). [CrossRef]   [PubMed]  

11. A. Hoffmann, N. A. Macleod, M. Huebner, and D. Weidmann, “Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO<sub>2</sub> measurements,” Atmos. Meas. Tech. 9(12), 5975–5996 (2016). [CrossRef]  

12. D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017). [CrossRef]  

13. E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014). [CrossRef]  

14. E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017). [CrossRef]  

15. A. Rodin, A. Klimchuk, A. Nadezhdinskiy, D. Churbanov, and M. Spiridonov, “High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption,” Opt. Express 22(11), 13825–13834 (2014). [CrossRef]   [PubMed]  

16. J. Kurtz and S. O’Byrne, “Multiple receivers in a high-resolution near-infrared heterodyne spectrometer,” Opt. Express 24(21), 23838–23848 (2016). [CrossRef]   [PubMed]  

17. M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008). [CrossRef]  

18. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013). [CrossRef]  

19. C. D. Rodgers, “Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).

20. D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007). [CrossRef]   [PubMed]  

21. A. Dudhia, “The reference forward model (RFM),” J. Quant. Spectrosc. Radiat. Transf. 186, 243–253 (2017). [CrossRef]  

References

  • View by:

  1. R. T. Menzies and R. K. Seals, “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
    [Crossref] [PubMed]
  2. M. A. Frerking and D. J. Muehlner, “Infrared heterodyne spectroscopy of atmospheric ozone,” Appl. Opt. 16(3), 526–528 (1977).
    [Crossref] [PubMed]
  3. M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
    [Crossref]
  4. D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
    [Crossref]
  5. G. Sonnabend, D. Wirtz, F. Schmülling, and R. Schieder, “Tuneable heterodyne infrared spectrometer for atmospheric and astronomical studies,” Appl. Opt. 41(15), 2978–2984 (2002).
    [Crossref] [PubMed]
  6. D. Weidmann and D. Courtois, “Infrared 7.6-microm lead-salt diode laser heterodyne radiometry of water vapor in a CH4-air premixed flat flame,” Appl. Opt. 42(6), 1115–1121 (2003).
    [Crossref] [PubMed]
  7. D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
    [Crossref] [PubMed]
  8. D. Weidmann and G. Wysocki, “High-resolution broadband (>100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser,” Opt. Express 17(1), 248–259 (2009).
    [Crossref] [PubMed]
  9. D. Weidmann, B. J. Perrett, N. A. Macleod, and R. M. Jenkins, “Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry,” Opt. Express 19(10), 9074–9085 (2011).
    [Crossref] [PubMed]
  10. T. R. Tsai, R. A. Rose, D. Weidmann, and G. Wysocki, “Atmospheric vertical profiles of O3, N2O, CH4, CCl2F2, and H2O retrieved from external-cavity quantum-cascade laser heterodyne radiometer measurements,” Appl. Opt. 51(36), 8779–8792 (2012).
    [Crossref] [PubMed]
  11. A. Hoffmann, N. A. Macleod, M. Huebner, and D. Weidmann, “Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements,” Atmos. Meas. Tech. 9(12), 5975–5996 (2016).
    [Crossref]
  12. D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
    [Crossref]
  13. E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
    [Crossref]
  14. E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
    [Crossref]
  15. A. Rodin, A. Klimchuk, A. Nadezhdinskiy, D. Churbanov, and M. Spiridonov, “High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption,” Opt. Express 22(11), 13825–13834 (2014).
    [Crossref] [PubMed]
  16. J. Kurtz and S. O’Byrne, “Multiple receivers in a high-resolution near-infrared heterodyne spectrometer,” Opt. Express 24(21), 23838–23848 (2016).
    [Crossref] [PubMed]
  17. M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
    [Crossref]
  18. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
    [Crossref]
  19. C. D. Rodgers, “Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).
  20. D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
    [Crossref] [PubMed]
  21. A. Dudhia, “The reference forward model (RFM),” J. Quant. Spectrosc. Radiat. Transf. 186, 243–253 (2017).
    [Crossref]

2017 (3)

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

A. Dudhia, “The reference forward model (RFM),” J. Quant. Spectrosc. Radiat. Transf. 186, 243–253 (2017).
[Crossref]

2016 (2)

A. Hoffmann, N. A. Macleod, M. Huebner, and D. Weidmann, “Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements,” Atmos. Meas. Tech. 9(12), 5975–5996 (2016).
[Crossref]

J. Kurtz and S. O’Byrne, “Multiple receivers in a high-resolution near-infrared heterodyne spectrometer,” Opt. Express 24(21), 23838–23848 (2016).
[Crossref] [PubMed]

2014 (2)

A. Rodin, A. Klimchuk, A. Nadezhdinskiy, D. Churbanov, and M. Spiridonov, “High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption,” Opt. Express 22(11), 13825–13834 (2014).
[Crossref] [PubMed]

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

2013 (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (1)

2008 (1)

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

2007 (2)

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[Crossref] [PubMed]

D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
[Crossref] [PubMed]

2003 (1)

2002 (1)

1983 (1)

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[Crossref]

1978 (1)

M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
[Crossref]

1977 (2)

R. T. Menzies and R. K. Seals, “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
[Crossref] [PubMed]

M. A. Frerking and D. J. Muehlner, “Infrared heterodyne spectroscopy of atmospheric ozone,” Appl. Opt. 16(3), 526–528 (1977).
[Crossref] [PubMed]

Abbas, M. M.

M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
[Crossref]

Abell, J.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Allan, G. R.

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

Ammons, M. S.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Barraclough, S.

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Bewley, W. W.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Birk, M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Bizzocchi, L.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Boudon, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Brown, L. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Brown, L. W.

M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
[Crossref]

Bruner, W. W.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Buhl, D.

M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
[Crossref]

Campargue, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Canedy, C. L.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Carter, D.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Chance, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Chris Benner, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Churbanov, D.

Clarke, G. B.

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

Cohen, E. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Coudert, L. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Courtois, D.

Deming, D.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[Crossref]

Devi, V. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Digregorio, A. J.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Drouin, B. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Dudhia, A.

A. Dudhia, “The reference forward model (RFM),” J. Quant. Spectrosc. Radiat. Transf. 186, 243–253 (2017).
[Crossref]

Espenak, F.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[Crossref]

Fayt, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Flaud, J.-M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Frerking, M. A.

Gamache, R. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Garner, R. M.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Griffin, D.

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

Harrison, J. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Hartmann, J.-M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Hill, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Hodges, J. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Hoffman, C.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Hoffmann, A.

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

A. Hoffmann, N. A. Macleod, M. Huebner, and D. Weidmann, “Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements,” Atmos. Meas. Tech. 9(12), 5975–5996 (2016).
[Crossref]

Huebner, M.

A. Hoffmann, N. A. Macleod, M. Huebner, and D. Weidmann, “Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements,” Atmos. Meas. Tech. 9(12), 5975–5996 (2016).
[Crossref]

Jacquemart, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Jenkins, R. M.

Jennings, D.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[Crossref]

Jolly, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Kim, C. S.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Kim, M.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Klimchuk, A.

Kostiuk, T.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[Crossref]

M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
[Crossref]

Kunde, V. G.

M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
[Crossref]

Kurtz, J.

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

J. Kurtz and S. O’Byrne, “Multiple receivers in a high-resolution near-infrared heterodyne spectrometer,” Opt. Express 24(21), 23838–23848 (2016).
[Crossref] [PubMed]

Lamouroux, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Le Roy, R. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Li, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Lindle, J. R.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Long, D. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Lyulin, O. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Mackie, C. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Macleod, N.

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

Macleod, N. A.

A. Hoffmann, N. A. Macleod, M. Huebner, and D. Weidmann, “Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements,” Atmos. Meas. Tech. 9(12), 5975–5996 (2016).
[Crossref]

D. Weidmann, B. J. Perrett, N. A. Macleod, and R. M. Jenkins, “Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry,” Opt. Express 19(10), 9074–9085 (2011).
[Crossref] [PubMed]

Mao, J. P.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Massie, S. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

McLinden, M. L.

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

Melroy, H. R.

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

Menzies, R. T.

R. T. Menzies and R. K. Seals, “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
[Crossref] [PubMed]

Meyer, J. R.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Middleton, K.

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

Mikhailenko, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Miller, J. H.

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

Muehlner, D. J.

Müller, H. S. P.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Mumma, M.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[Crossref]

Mumma, M. J.

M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
[Crossref]

Nadezhdinskiy, A.

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

O’Byrne, S.

Oman, L. D.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Orphal, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Ott, L. E.

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

Perevalov, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Perrett, B. J.

Perrin, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Polovtseva, E. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Ramanathan, A.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Reburn, W. J.

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[Crossref] [PubMed]

D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
[Crossref] [PubMed]

Richard, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Riot, V. J.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Rodin, A.

Rose, R. A.

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Schieder, R.

Schmülling, F.

Seals, R. K.

R. T. Menzies and R. K. Seals, “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
[Crossref] [PubMed]

Smith, K. M.

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[Crossref] [PubMed]

D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
[Crossref] [PubMed]

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Sonnabend, G.

Spiridonov, M.

Starikova, E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Strahan, S. E.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Sung, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Tashkun, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Tennyson, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Toon, G. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Tsai, T. R.

Tyuterev, V. G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Vurgaftman, I.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Wagner, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

Weidmann, D.

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

A. Hoffmann, N. A. Macleod, M. Huebner, and D. Weidmann, “Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements,” Atmos. Meas. Tech. 9(12), 5975–5996 (2016).
[Crossref]

T. R. Tsai, R. A. Rose, D. Weidmann, and G. Wysocki, “Atmospheric vertical profiles of O3, N2O, CH4, CCl2F2, and H2O retrieved from external-cavity quantum-cascade laser heterodyne radiometer measurements,” Appl. Opt. 51(36), 8779–8792 (2012).
[Crossref] [PubMed]

D. Weidmann, B. J. Perrett, N. A. Macleod, and R. M. Jenkins, “Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry,” Opt. Express 19(10), 9074–9085 (2011).
[Crossref] [PubMed]

D. Weidmann and G. Wysocki, “High-resolution broadband (>100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser,” Opt. Express 17(1), 248–259 (2009).
[Crossref] [PubMed]

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[Crossref] [PubMed]

D. Weidmann, W. J. Reburn, and K. M. Smith, “Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis,” Appl. Opt. 46(29), 7162–7171 (2007).
[Crossref] [PubMed]

D. Weidmann and D. Courtois, “Infrared 7.6-microm lead-salt diode laser heterodyne radiometry of water vapor in a CH4-air premixed flat flame,” Appl. Opt. 42(6), 1115–1121 (2003).
[Crossref] [PubMed]

Wilson, E. L.

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

Wirtz, D.

Wysocki, G.

Zipoy, D.

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

E. L. Wilson, M. L. McLinden, J. H. Miller, G. R. Allan, L. E. Ott, H. R. Melroy, and G. B. Clarke, “Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column,” Appl. Phys. B 114(3), 385–393 (2014).
[Crossref]

Appl. Phys. Lett. (1)

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ = 3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92(19), 191110 (2008).
[Crossref]

Atmos. Meas. Tech. (1)

A. Hoffmann, N. A. Macleod, M. Huebner, and D. Weidmann, “Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements,” Atmos. Meas. Tech. 9(12), 5975–5996 (2016).
[Crossref]

Geophys. Res. Lett. (1)

M. M. Abbas, T. Kostiuk, M. J. Mumma, D. Buhl, V. G. Kunde, and L. W. Brown, “Stratospheric ozone measurement with an infrared heterodyne spectrometer,” Geophys. Res. Lett. 5(4), 317–320 (1978).
[Crossref]

Icarus (1)

D. Deming, F. Espenak, D. Jennings, T. Kostiuk, M. Mumma, and D. Zipoy, “Observations of the 10-μm natural laser emission from the mesospheres of Mars and Venus,” Icarus 55(3), 347–355 (1983).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).
[Crossref]

A. Dudhia, “The reference forward model (RFM),” J. Quant. Spectrosc. Radiat. Transf. 186, 243–253 (2017).
[Crossref]

Meas. Sci. Technol. (1)

E. L. Wilson, A. J. Digregorio, V. J. Riot, M. S. Ammons, W. W. Bruner, D. Carter, J. P. Mao, A. Ramanathan, S. E. Strahan, L. D. Oman, C. Hoffman, and R. M. Garner, “A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing cubsat,” Meas. Sci. Technol. 28(3), 035902 (2017).
[Crossref]

Opt. Express (4)

Remote Sens. (1)

D. Weidmann, A. Hoffmann, N. Macleod, K. Middleton, J. Kurtz, S. Barraclough, and D. Griffin, “The methane isotopologues by solar occultation (miso) nanosatellite mission: spectral channel optimization and early performance analysis,” Remote Sens. 9(10), 1073–1092 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

D. Weidmann, W. J. Reburn, and K. M. Smith, “Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies,” Rev. Sci. Instrum. 78(7), 073107 (2007).
[Crossref] [PubMed]

Science (1)

R. T. Menzies and R. K. Seals, “Ozone monitoring with an infrared heterodyne radiometer,” Science 197(4310), 1275–1277 (1977).
[Crossref] [PubMed]

Other (1)

C. D. Rodgers, “Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the IC-LHR setup and photo of the optical module. ICL: interband cascade laser; BS: beam splitter; LIA: lock-in amplifier; BP Filter: band-pass filter; USB: Universal Serial Bus.
Fig. 2
Fig. 2 Relationships between laser wavenumber (red solid symbols), power (blue hollow symbols) and laser injection current.
Fig. 3
Fig. 3 Band–pass filter used in the experiment and frequency spectrum analysis of the heterodyne, laser and background signals, the inset: the actually used instrument lineshape for data retrieval.
Fig. 4
Fig. 4 (a) Calculated transmittance of atmospheric H2O vapor (black) and CH4 (red dots) based on the forward model; (b) Acquired IC-LHR (black), DC (DC output of detector #1, gray dots) and etalon signals (blue).
Fig. 5
Fig. 5 Flow chart of the data retrieval. VMRs: volume mixing ratios; ILS: instrument lineshape; L-M: Levenberg–Marquardt.
Fig. 6
Fig. 6 Temperature (a) and pressure (b) profiles used for the IC-LHR retrieval.
Fig. 7
Fig. 7 LHR data retrieval results: (a) experimental (blue) and fitted (red) LHR spectra and the convergence of the iteration process (inset); (b) the residuals (pink); (c) and (d) the retrieved vertical concentration profiles of CH4 and water vapor, respectively.

Tables (1)

Tables Icon

Table 1 Definition of the state vector used in the data retrieval.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y m = F ( x , a , b , c ) + ε .
χ 2 = ( y F ) T S ε 1 ( y F ) + ( x i x a ) T S a 1 ( x i x a ) .
x i + 1 = x i + [ ( 1 + γ ) S a 1 + K i T S ε 1 K i ] 1 × [ K i T S ε 1 ( y m F i ) S a 1 ( x i x a ) ] .
S m = G S ε G T , S s = ( I n A ) S a ( I n A ) T .
A = x ^ x = G K = [ ( K T S ε 1 K + S a 1 ) 1 K T S ε 1 ] K .

Metrics