Abstract

A photonic nanojet (PNJ) is a tightly focused beam that emerges from the shadow surface of microparticles. Due to its high peak intensity and subwavelength beam waist, the PNJ has increasingly attracted attention, with potential applications in optical imaging, nanolithography, and nanoparticle sensing. A variety of ways have been demonstrated to further shrink the beam waist of PNJs, such as engineering the microparticle geometry and optimizing a multilayer structure. In this simulation work, we report the realization of an ultranarrow PNJ, which is formed by an engineered two-layer microcylinder of high refractive-index materials. Finite element analysis shows that under 632.8 nm illumination, the full width at half maximum of the beam waist can reach 87 nm (~λ/7.3). As far as we know, this is the narrowest PNJ ever reported. Using the backscattering intensity as a contrast mechanism, we also demonstrated the imaging resolution and capability of the ultranarrow PNJ through numerical simulations. We anticipate that this ultranarrow PNJ will open new possibilities in a variety of research areas, including nanoparticle detection, biomedical imaging, and nanolithography.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

A photonic nanojet (PNJ) is a phenomenon in which a narrow beam emerges on the shadow surface of a microcylinder or microsphere. This phenomenon was first reported by Benincasa et al.in 1987 [1], and the term “PNJ” was introduced by Chen et al. in 2004 [2]. Due to their distinctive characteristics, including a subwavelength beam waist, a relatively long decay length, and a high-intensity peak [3,4], PNJs have increasingly attracted attention over the years. Various types of PNJ-based applications and devices have been proposed and studied, such as nanoparticle sensing [5–8], optical manipulation and trapping [9–13], nanolithography [14–16], super-resolution imaging [17–24], optical data storage [25], a coupled resonator optical waveguide [26], and an all optical-switch [27]. Very recently, PNJs have also been demonstrated with the capability to carry orbital angular momentum [28]. For these applications, the long decay length and narrow beam waist of PNJs are particularly important. Many studies have sought to elongate the decay length of PNJs to extend the working distance [5,6,29–35]. Multilayer microspheres with a graded refractive index have achieved success by engineering the power flow [5,31,32]. Later, a simple two-layer microsphere with a high refractive-index shell and a low refractive-index core was designed to achieve a PNJ extending up to 22 times the incident wavelength, by paralleling the power flow near the focal point [32]. Similarly, a liquid-filled hollow microcylinder was also proposed to extend a PNJ by more than 100 times the illuminating wavelength [33]. Besides multilayer structures, hemispherical [34] and conical [35] microparticles have also been demonstrated elongated PNJ lengths. On the other hand, the beam waist of PNJs, defined as the full width at half-maximum (FWHM) of the intensity profile, should ideally be narrow, especially for nanolithography and high-resolution optical imaging. Multilayer microstructures have been utilized to shrink the FWHM of PNJs [36]. Using a genetic algorithm, Huang et al. optimized the optical properties and the radii of a five-layer microcylinder, reporting a PNJ with a FWHM of 0.22λ (~λ/4.5) [37]. Microparticles with engineered shapes and structures have also been reported to reduce the FWHM of PNJs. For example, Gu et al. used a selected middle part of a microcylinder to generate a PNJ with a FWHM of 0.287λ (~λ/3.5) [38]. By introducing the concentric ring structures into the illumination side of the microspheres, Wu et al. reduce the FWHM of PNJ to 0.485λ [39]. Using a center-covered microsphere, a PNJ with a FWHM of 0.387λ (~λ/2.6) was generated by Wu et al. [40]. Also, by using hexagonally-arranged nanofibers to form a cylindrical metalens, a PNJ with a FWHM of 0.244λ (~λ/4.1) was obtained [41]. Recently, a horizontal graded-index microcylinder produced a side-lobes-controlled PNJ with a FWHM of 116.6 nm (~λ/4.3) [42]. We emphasize here that all these results were obtained by measuring FWHMs directly at the optical foci.

Inspired by both the multilayer designs and engineered structures in previous works, here we designed an engineered two-layer microcylinder of high refractive-index materials. Using the finite element method, we numerically showed that under the illumination of 632.8-nm light, an ultranarrow PNJ with a FWHM of only 87 nm (~0.137λ, ~λ/7.3) was generated. As far as we know, λ/7.3 is the narrowest beam waist ever reported with PNJs. Moreover, we show that the two-layer design enables the engineering of the power flow, which makes the achieved narrow PNJ diverges slightly slower compared to the one achieved using a similar one-layer design. As we will show in the rest of the paper, even at 150 nm away from the focus, the FWHM of the transverse intensity profile of the PNJ can still be as low as 188 nm (~λ/3.4). These properties of the proposed PNJ greatly benefit high-resolution optical imaging over an extended region. To quantify the resolution power of the PNJ, we scanned a series of periodic bar patterns and showed that adjacent bars separated by 120 nm could still be resolved. Moreover, we imaged a micrometer-long target with three defects and clearly identified all three in the reconstructed image. These results indicate that our work could potentially contribute to the development of optical nanoscopy and biophotonics. We also note that although this work focused on a two-dimensional (2D) cylindrical structure, the proposed design can be extended for three-dimensional (3D) spherical structures [43].

The remainder of the paper is organized as follows. In section 2, we describe the computational environment of the numerical study and detail the parameters of the engineered two-layer microcylinder structure. In section 3, we demonstrate the imaging resolution and capability of the PNJ by imaging a series of periodic bar patterns and a micrometer-long target with three different embedded defects. Finally, we summarize our conclusions in section 4.

2. Method and design

We start by describing the computational environment of this numerical study. The wave optics module of COMSOL Multiphysics, a commercial finite element software, was used for computing PNJs. In order to reduce the computational complexity, we restricted ourselves to 2D simulations. As depicted in Fig. 1, the incident light is a plane wave propagating along the x direction, while its electric field is polarized along the z direction. The wavelength is fixed at 632.8 nm. The background is air with refractive index set to 1. A second-order scattering boundary condition (SBC) is set for all boundaries surrounding the computational domain. A triangle mesh with a maximum size of 15 nm (~λ/42) and a minimum size of 0.4 nm (~λ/1582) is adopted, which guarantees the accuracy of the simulation results. This computational environment was used throughout the entire study.

 figure: Fig. 1

Fig. 1 Schematic of the cylindrical structure used in numerical simulations.

Download Full Size | PPT Slide | PDF

To design a microparticle with a narrow PNJ, we need to first understand what factors limit the beam waist of PNJs. Governed by the diffraction limit, the numerical aperture, which is proportional to the refractive index of the illuminated object, sets an upper bound for the FWMH of PNJs. Therefore, it is possible to obtain a narrow PNJ by selecting materials with high refractive indices. However, as is widely shown in the literature, if the refractive index exceeds 2, the PNJ is formed inside the microparticle [4,38]. Figure 2(a) maps the power flow of a typical microcylinder, which has a radius R = 5λ [32] and a high refractive index of n = 3. In this case, the strong refraction forms a focus inside the microcylinder, at 1.45 μm past the center. The directions and lengths of the small blue arrows represent the orientations and magnitudes of the Poynting vectors at different spatial positions. The streamlines, indicated by two solid red lines, indicate the power flow during this process [32,44]. Both multilayer structures and engineered shapes have been proposed to exceed the upper limit of the refractive index while still forming a practicable PNJ outside the microcylinder, and these designs achieve narrow PNJs with FWHMs down to 0.22λ [37] and 0.287λ [38], respectively. However, these two proposed designs would be difficult to be actually fabricated.

 figure: Fig. 2

Fig. 2 (a) Poynting vectors (small blue arrows) and streamlines (red solid lines) for a one-layer microcylinder of a high refractive-index material. R = 5λ and n = 3. The position of the focus is at d = 1.45 μm away from the center. (b) Poynting vectors and streamlines for the engineered one-layer microcylinder after splitting at d = 0.95 μm. R = 5λ and n = 3.5 (c) Poynting vectors and streamlines for the engineered two-layer microcylinder. Rs = 5λ, ns = 1.4, Rc = 4.55λ, and nc = 3.5. The splitting occurs at d = 1.0 μm. (d) Simulated intensity map of the PNJ formed by the engineered two-layer microcylinder. The PNJ outside the shadow surface is shown enlarged in the inset.

Download Full Size | PPT Slide | PDF

In contrast, Fig. 2(b) shows a relatively simple design that directly splits the microcylinder at the focl point and removes the right portion, which encloses the optical focus. We note that this structure is similar to the Weierstrass solid immersion lens (SIL) [45], differing in the splitting position. For R = 5λ and n = 3.5 (AlxGa1-xAs [46]), the Weierstrass solid immersion lens requires that the position of the splitting is R/n = 0.9 μm to the right of the center. Numerically, we found that for this one-layer microcylinder, the splitting position that yields the narrowest beam waist and minimum sidelobes is 0.95 μm to the right of the center. Figure 2(b) also shows the power flow in the microcylinder after splitting, which exhibits a direct convergence followed by a fast divergence. This observation also means that the narrow beam waist of the PNJ cannot last long and diverges quickly after propagating a short distance.

To mitigate the fast divergence, we introduced a two-layer design, which consists of an inner core with a high refractive index and an outer shell with a low refractive index (Fig. 2(c)). For a fair comparison, the refractive index of the core was maintained as nc = 3.5 and the total radius of microcylinder was still set as Rs = 5λ. After optimization of the refractive index of the outer shell ns, the radius of the inner core Rc, and the splitting position, the narrowest beam waist (≈87 nm) was obtained when ns = 1.4 (LiF [47]), Rc = 4.55λ, and d = 1.0 μm. We also note here that although this value (87 nm, λ/7.3) is still governed by the diffraction limit, it is slightly narrower than the beam width of SIL spatially resolved PNJs. From Fig. 2(c), we can see that the streamlines diverge slowly around focal point, indicating that the PNJ can maintain a narrow beam waist over a relatively long distance. The refractive index distribution of this two-layer design makes the power flow near the focal point essentially parallel, resulting in an extended beam length while keeping the narrow beam waist. Figure 2(d) is an intensity map of the engineered two-layer microcylinder. For visualization, the PNJ outside the shadow surface is also shown enlarged in the inset. A similar strategy of using two-layer structure to engineer power flow has also been reported in Ref [32], where a low refractive index core and a high refractive index shell are used to extend the length of PNJs. In contrast, a high refractive index core and a low refractive index shell are adopted here.

To illustrate the divergence of the PNJ generated by the engineered two-layer microcylinder, Figs. 3(a)-3(c) plot the transverse intensity profiles (along the y axis) at different positions along the x axis. For Fig. 3(a), the peak intensity of the side lobe is only 0.08 of the peak intensity of the main lobe, while for Figs. 3(b) and 3(c), the side lobes are barely visible. Moreover, at 0 nm, 100 nm, and 150 nm away from the shadow surface, the FWHMs are quantified to be 87 nm (~0.138λ), 152 nm (~0.24λ), and 188 nm (~0.297λ), respectively. This broadening in the FWHMs results from the diffraction of light. As a comparison, the same intensity profiles of the PNJ generated by a similar engineered one-layer microcylinder are plotted in Figs. 3(d)-3(f). At 0 nm, 100 nm, and 150 nm away from shadow surface, the FWHMs are quantified to be 104 nm (~0.164λ), 164 nm (~0.259λ), and 200 nm (~0.316λ), respectively. These plots show that the engineered two-layer microcylinder always outperforms the engineered one-layer microcylinder.

 figure: Fig. 3

Fig. 3 (a)-(c) Transverse intensity profiles (along the y axis) of the PNJ generated by the engineered two-layer microcylinder, quantified at different positions along the x axis. (d)-(e) Transverse intensity profiles of the PNJ generated by the engineered one-layer microcylinder, quantified at different positions along the x axis. All the intensities are normalized by the intensity of the incident light. Note that the vertical axes do not all have the same range.

Download Full Size | PPT Slide | PDF

Figure 4 directly compares the evolution of the FWHMs of the transverse intensity profiles along the x axis for both cases. When measured at the same position, the FWHMs of the two-layer case (red dots) are always narrower than those of the one-layer case (black squares). Moreover, we note that up to a distance of 150 nm, the divergence rate (slope) is similar for the two cases, which is about 0.67. However, beyond 150 nm, the slope for the one-layer structure gradually increases to 0.88, due to diffraction. In contrast, because of the engineered power flow, the slope for the two-layer structure even decreases to 0.4, which is desirable for practical applications.

 figure: Fig. 4

Fig. 4 Evolution of the FWHMs of transverse intensity profiles along the x axis for both the engineered two-layer microcylinder (red dots) and the engineered one-layer microcylinder (black squares).

Download Full Size | PPT Slide | PDF

When solving electromagnetic problems in an infinite domain, the SBC or the perfectly matched layer (PML) is commonly used to truncate the computation domain. In general, the PML has a better performance over the SBC, especially when anisotropic scattering from the surface of the structure is severe. However, the PML uses more computational memories than the SBC. We performed numerical simulations for the engineered two-layer microcylinder with both truncated boundary conditions. Numerical results show that the FWHMs of the PNJs obtained by using only the SBC and using the PML together with the SBC are 87 nm and 89 nm, respectively. The relative difference of these two values is quite small, which is only 2.2%., As a result, we adopted the second order SBC instead of the PML throughout this work, in order to save the computational memories and facilitate the calculation process.

3. Imaging results and discussion

Having presented the properties of the PNJ generated with the engineered two-layer microcylinder, we now describe the application of this PNJ for optical imaging through numerical simulations. Many studies have reported using the backscattering intensity of PNJs for nanoparticle sensing [2,5,6], and here we show that the variations of the backscattering intensity can also be used for optical imaging. In the simulation, the backscattering intensity is computed through a line integral of the –x component of the Poynting vector. The length of the line is 4 μm, which is placed 3.4 μm to the left of the center of the microparticle. Since the structure simulated here is translational invariant along the z direction, the backscattering intensity we obtained here has a unit of W/m. We start by scanning bar patterns, which function as resolution targets, to quantify the imaging resolution. Figure 5(a) depicts a typical bar pattern, which consists of periodic bars with equal line widths (LW) and line spacing (LS). In numerical simulations, we fixed the position of the PNJ and scanned a series of bar patterns with different LWs along the negative y direction (Fig. 5(a)). The refractive index of these bar patterns was set to be 1.5 (BK7 [47]). As practical considerations, these bar patterns were assigned a thickness of 60 nm, and their centers were placed 150 nm away from the shadow surface. The backscattering intensity used to reconstruct the image was post-processed by firstly subtracting the backscattering intensity contributed from the microparticle itself, followed by normalization with respect to the same line integral of the Poynting vector of the incident light. For incident light with peak electric field E = 1 V/m, the line integral of the Poynting vector of the incident light is cε0E2/2 × 4 μm = 5.31 × 10−9 W/m, where c is the speed of light in the air and ε0 is the absolute permittivity. Under this illumination, the backscattering intensity contributed from the microparticle is numerically quantified to be 3.21 × 10−9 W/m. At a position 150 nm away from the shadow surface, the transverse intensity profile of this PNJ has a FWHM of 170 nm. The step size of the scanning process was set at 20 nm. Figures 5(b)-5(e) illustrate the imaging results of scanning bar patterns with LW = 180 nm, 150 nm, 120 nm, and 110 nm, respectively. Since the vertical axis denotes the backscattering intensity, it is expected that peaks and dips in the reconstructed image can faithfully represent bars and air gaps, respectively.

 figure: Fig. 5

Fig. 5 (a) An illustration of the imaging process. A typical bar pattern, with the same line width (LW) and line spacing (LS), is scanned along the negative y direction. (b)-(e) Images reconstructed from scanning a series of bar patterns with LWs of 180 nm (b), 150 nm (c), 120 nm (d) and 110 nm (e), respectively. (f) Measured LW as a function of exact LW. Absolute values of the relative errors between these two variables are also plotted.

Download Full Size | PPT Slide | PDF

We can see that, when LW is larger than or equal to 120 nm, the profiles of backscattering intensity always exhibit sinusoidal shapes. Moreover, a noticeable trend in Figs. 5(b)-5(d) is that as LW decreases, small distortions gradually appear in the reconstructed images, which is due to a decreased contrast-to-noise ratio. In simulation works, the errors represent the computational errors originated from solving the Maxwell’s equations. Nevertheless, any two adjacent bars are always distinguishable. In contrast, when LW drops to 110 nm (Fig. 5(e)), the profile becomes messy and irregular, and the bars become indistinguishable. We also performed measurements of the LW and compared this value to the exact LW of the bars. Numerically, the measured LW is calculated using the relative distance between two points at half contrast (maximum − minimum). Figure 5(f) plots the measured LWs as a function of the exact LWs, and shows good agreement with the theoretical line of y = x (red solid line). The absolute values of the relative errors between the measured LWs and the exact LWs are also plotted as blue squares, and are smaller than 1 nm. These results indicate that we can use this ultranarrow PNJ to differentiate adjacent bars with a LW down to 120 nm, which is slightly smaller than the FWHM of the PNJ (170 nm) measured at the same position. This result can be understood by treating our configuration as the analogy of a reflection-mode confocal microscope system, which improves the imaging resolution by a factor of 2.

Having quantified the imaging capability by scanning periodic bars, we then show by simulation that the PNJ can also image long targets with various refractive indices. Figure 6(a) shows a micrometer-long target, which is composed of a uniform substrate (CdS, n = 2.384, k = 0.517 [48]) and three defects. The three defects are assigned with different widths (500 nm, 300 nm, and 300 nm) and different refractive indices (3.5, 3.1, and 2.9). Other materials with refractive indices that fall into this range are Al0.49Ga0.51As, AlAs, and TiO2 - Rutile [46,49]. The step size of the scanning process is set at 25 nm for this study. Figure 6(b) shows the reconstructed image for this micrometer-long target. Black dots are the simulation data, and the blue line is the curve obtained through Fourier fitting. As a comparison, the profile of the refractive index of the sample is also plotted using a red dashed line. Although noticeable fluctuations degrade the quality of the reconstructed image, it is still quite consistent with the original index profile. Additionally, the width of each defect is also in good agreement with the original width of the defect.

 figure: Fig. 6

Fig. 6 (a) Illustration of the imaging process. A micrometer-long target, with three different defects embedded, is scanned along the negative y direction. (b) Reconstructed images of the long target. For comparison, the profile of the refractive index of the sample is also plotted as a red dashed line.

Download Full Size | PPT Slide | PDF

There are two possible reasons for the fluctuations and errors in the reconstructed images. Although the side lobes are small in our design, the non-zero shoulders still contribute when interacting with the portion of the target that is off center. Therefore, future optimizations of this microstructure can enhance the intensity contrast between the peak and the shoulder. Another possible reason is multiple reflections and interference between the engineered microcylinder and the long sample. Possible solutions include adding an antireflection coating or introducing an inclination angle to the flat surface of the engineered microcylinder.

4. Conclusion

In conclusion, we designed an engineered two-layer microcylinder of high refractive-index materials to generate an ultranarrow PNJ. Using the finite element simulation, we show that under 632.8 nm illumination, an ultranarrow PNJ with a FWHM of 87 nm (λ/7.3) can be generated. As far as we know, λ/7.3 is the narrowest beam waist ever reported using PNJs. In contrast to a similar engineered one-layer microcylinder, the FWHM of the transverse intensity profile of the PNJ produced by the engineered two-layer microcylinder is always narrower and diffracts slightly slower. For practical considerations, we choose a position on the PNJ 150 nm away from the shadow surface for optical imaging. The FWHM of the transverse intensity profile at this position still reached 188 nm. Although the 150-nm working distance chosen in this structure limits the operation range, it still can be directly applied to various high-resolution optical imaging modalities, such as fluorescent microscopy and multiphoton microscopy, which do not require a very long working distance. We also note that the working distance can increase at the expense of the beam width. Next, we simulated optical imaging by scanning a series of bar patterns with finite thicknesses. Numerically, we found that adjacent bar patterns with a LW down to 120 nm (~λ/5.3) could still be clearly resolved. Moreover, we also scanned a micrometer-long sample with three embedded defects. The reconstructed image shows good agreement with the original index profile, indicating a promising modality for achieving high-resolution optical imaging. As a final remark, we also note that layered core-shell microcylinder can be fabricated by chemical vapor deposition and sputter coating [50]. Light scattered from the microparticle can be detected using dark-field microscopy [51]. This work targets the visible spectrum, but the findings can also be applied to the infrared spectrum, in which more materials with high refractive indices are available. We envision that our work will open possibilities in a variety of research areas, including nanoparticle detection, biomedical imaging, and nanolithography.

Funding

National Natural Science Foundation of China (61435006, 61525502, 61490710, 61605252); Local Innovation and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X121); The Science and Technology Planning Project of Guangdong Province (2017B010123005, 2018B010114002); Hunan Provincial Natural Science Foundation of China (2017JJ3375).

References

1. D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987). [CrossRef]   [PubMed]  

2. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004). [CrossRef]   [PubMed]  

3. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005). [CrossRef]   [PubMed]  

4. B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017). [CrossRef]  

5. S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009). [CrossRef]   [PubMed]  

6. C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010). [CrossRef]   [PubMed]  

7. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005). [CrossRef]   [PubMed]  

8. G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018). [CrossRef]   [PubMed]  

9. A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012). [CrossRef]   [PubMed]  

10. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]  

11. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012). [CrossRef]  

12. Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016). [CrossRef]   [PubMed]  

13. Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016). [CrossRef]   [PubMed]  

14. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008). [CrossRef]   [PubMed]  

15. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007). [CrossRef]  

16. Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000). [CrossRef]  

17. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011). [CrossRef]   [PubMed]  

18. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011). [CrossRef]   [PubMed]  

19. P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014). [CrossRef]   [PubMed]  

20. C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015). [CrossRef]   [PubMed]  

21. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009). [CrossRef]  

22. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013). [CrossRef]  

23. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker Jr., and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014). [CrossRef]  

24. L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018). [CrossRef]  

25. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008). [CrossRef]   [PubMed]  

26. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006). [CrossRef]   [PubMed]  

27. B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015). [CrossRef]   [PubMed]  

28. Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018). [CrossRef]   [PubMed]  

29. J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016). [CrossRef]   [PubMed]  

30. P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015). [CrossRef]  

31. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011). [CrossRef]  

32. Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014). [CrossRef]   [PubMed]  

33. G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015). [CrossRef]   [PubMed]  

34. Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015). [CrossRef]   [PubMed]  

35. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015). [CrossRef]  

36. H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016). [CrossRef]   [PubMed]  

37. Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019). [CrossRef]   [PubMed]  

38. G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017). [CrossRef]   [PubMed]  

39. M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015). [CrossRef]   [PubMed]  

40. M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016). [CrossRef]   [PubMed]  

41. L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016). [CrossRef]   [PubMed]  

42. H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018). [CrossRef]   [PubMed]  

43. Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018). [CrossRef]  

44. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006). [CrossRef]   [PubMed]  

45. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994). [CrossRef]  

46. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986). [CrossRef]  

47. O. Mazurin, M. Streltsina, and T. Shavaikovskaya, Handbook of Glass Data (Elsevier, 1993).

48. https://www.filmetrics.com/refractive-index-database/CdS/Cadmium-Sulfide

49. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003). [CrossRef]  

50. L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006). [CrossRef]   [PubMed]  

51. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017). [CrossRef]  

References

  • View by:

  1. D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
    [Crossref] [PubMed]
  2. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  3. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
    [Crossref] [PubMed]
  4. B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
    [Crossref]
  5. S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
    [Crossref] [PubMed]
  6. C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
    [Crossref] [PubMed]
  7. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  8. G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
    [Crossref] [PubMed]
  9. A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
    [Crossref] [PubMed]
  10. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  11. A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
    [Crossref]
  12. Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
    [Crossref] [PubMed]
  13. Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
    [Crossref] [PubMed]
  14. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref] [PubMed]
  15. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
    [Crossref]
  16. Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
    [Crossref]
  17. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
    [Crossref] [PubMed]
  18. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
    [Crossref] [PubMed]
  19. P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
    [Crossref] [PubMed]
  20. C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
    [Crossref] [PubMed]
  21. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
    [Crossref]
  22. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
    [Crossref]
  23. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
    [Crossref]
  24. L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
    [Crossref]
  25. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
    [Crossref] [PubMed]
  26. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
    [Crossref] [PubMed]
  27. B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
    [Crossref] [PubMed]
  28. Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
    [Crossref] [PubMed]
  29. J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
    [Crossref] [PubMed]
  30. P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
    [Crossref]
  31. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
    [Crossref]
  32. Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
    [Crossref] [PubMed]
  33. G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
    [Crossref] [PubMed]
  34. Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
    [Crossref] [PubMed]
  35. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
    [Crossref]
  36. H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
    [Crossref] [PubMed]
  37. Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
    [Crossref] [PubMed]
  38. G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
    [Crossref] [PubMed]
  39. M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
    [Crossref] [PubMed]
  40. M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
    [Crossref] [PubMed]
  41. L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
    [Crossref] [PubMed]
  42. H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
    [Crossref] [PubMed]
  43. Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
    [Crossref]
  44. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
    [Crossref] [PubMed]
  45. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
    [Crossref]
  46. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
    [Crossref]
  47. O. Mazurin, M. Streltsina, and T. Shavaikovskaya, Handbook of Glass Data (Elsevier, 1993).
  48. https://www.filmetrics.com/refractive-index-database/CdS/Cadmium-Sulfide
  49. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
    [Crossref]
  50. L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
    [Crossref] [PubMed]
  51. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
    [Crossref]

2019 (1)

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

2018 (5)

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

2017 (3)

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

2016 (6)

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
[Crossref] [PubMed]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

2015 (7)

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

2014 (3)

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

2013 (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

2012 (2)

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

2011 (4)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

2010 (1)

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
[Crossref] [PubMed]

2009 (2)

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

2008 (2)

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

2007 (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

2006 (3)

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

2005 (2)

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

2004 (1)

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

2003 (1)

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

2000 (1)

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

1987 (1)

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

1986 (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Arbouet, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Astratov, V. N.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Backman, V.

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Barber, P. W.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Baron, T.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Benincasa, D. S.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Bhat, R.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Born, B.

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Cai, G.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Cai, Z.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Chang, R. K.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Chen, L.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Chen, M.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

Chen, R.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Chen, X.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Chen, X. D.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Chen, Y.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Chen, Z.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Chong, C. T.

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Cuche, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Cummer, S. A.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Dai, H.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

Darafsheh, A.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Demirörs, A. F.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

des Francs, G. C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Dionne, J. A.

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

Fournel, F.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Gao, H.

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

Geints, Y. E.

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Geoffroy-Gagnon, S.

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Gijs, M. A. M.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Girard, C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Goddard, L. L.

J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
[Crossref] [PubMed]

Gong, L.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Gu, G.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Guo, W.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Hengyu, Z.

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Holzman, J. F.

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Hong, M.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Hong, M. H.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Hsiao, K.-L.

C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
[Crossref] [PubMed]

Hsieh, W. F.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Huang, B. J.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

Huszka, G.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Hwang, I.-C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Jannasch, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Ji, R.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Jiao, L.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Jin, P.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Jouravlev, M. V.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Kaneko, K.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Kim, K. S.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Kong, S.-C.

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Krupa, J. D. A.

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Larrey, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Larrieu, G.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Lecestre, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Lecler, S.

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Lee, S.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Lei, H.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Lei, H.-X.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, B.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Li, B.-J.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, J.

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Li, L.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Li, X.

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Li, Y.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Li, Y.-C.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Li, Y.-Z.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Liang, H.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Limberopoulos, N. I.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Liu, C.-Y.

C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
[Crossref] [PubMed]

Liu, L.-L.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Liu, X.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Logan, R. A.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

Lu, Y. F.

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Luo, X.

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Meyrueis, P.

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

Miao, L.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Min, C.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Minghui, H.

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Minin, I.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Minin, I. V.

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

Minin, O.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Minin, O. V.

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Nabatova-Gabain, N.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Ong, C. K.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Paillard, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Paniagua-Dominguez, R.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Panina, E. K.

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Pendry, J.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Peng, X.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Qu, J.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Ruiz, C. M.

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
[Crossref] [PubMed]

Sahakian, A.

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Saleh, A. A. E.

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

Schäffer, E.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Schurig, D.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Shen, J.-T.

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

Shen, Y.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

Simpson, J. J.

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
[Crossref] [PubMed]

Smith, D. R.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Soh, J.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Song, J.

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Song, W. D.

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Taflove, A.

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

Takakura, Y.

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

Tanemura, S.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Teng, J.

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

Terai, A.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Trouillon, R.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Tu, R.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

Upputuri, P. K.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

van Blaaderen, A.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

van Oostrum, P. D. J.

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Veronis, G.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

Walker, D. E.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

Wang, H.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Wang, L. V.

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Wang, Z.

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Wei, K.

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Wiecha, P. R.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Wu, J.

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Wu, J. F.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Wu, M.

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

Wu, M. X.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Wu, P.

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Wu, Y.

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

Wu, Z.

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Xin, H.

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Xin, H.-B.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Xing, H.

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

Xu, H.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Yan, B.

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Yan, Y.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Yang, H.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Yang, S.

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Yang, Y.

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Yue, L.

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

Yue, W.

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Zaichun, C.

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

Zemlyanov, A. A.

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Zhang, J. Z.

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Zhang, Y.

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

Zhao, M.

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Zhen, Z.

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

Zheng, Y. W.

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Zhou, R.

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Zhou, W.

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Zhu, J.

J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
[Crossref] [PubMed]

ACS Nano (1)

Y. Li, H. Xin, X. Liu, Y. Zhang, H. Lei, and B. Li, “Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array,” ACS Nano 10(6), 5800–5808 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly Directional Scattering from Dielectric Nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Appl. Opt. (1)

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987).
[Crossref] [PubMed]

Appl. Phys. Express (1)

P. Wu, J. Li, K. Wei, and W. Yue, “Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere,” Appl. Phys. Express 8(11), 112001 (2015).
[Crossref]

Appl. Phys. Lett. (2)

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104(6), 061117 (2014).
[Crossref]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[Crossref]

Appl. Surf. Sci. (1)

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212­213, 654–660 (2003).
[Crossref]

J. Appl. Phys. (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60(2), 754–767 (1986).
[Crossref]

J. Opt. (1)

Y. E. Geints, A. A. Zemlyanov, O. V. Minin, and I. V. Minin, “Systematic study and comparison of photonic nanojets produced by dielectric microparticles in 2D-and 3D-spatial configurations,” J. Opt. 20(6), 065606 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Am. B 28(8), 1825–1830 (2011).
[Crossref]

Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am. B 32(8), 1570–1574 (2015).
[Crossref]

JETP Lett. (1)

Y. F. Lu, L. Zhang, W. D. Song, Y. W. Zheng, and B. S. Luk’yanchuk, “Laser writing of a subwavelength structure on silicon (100) surfaces with particle-enhanced optical irradiation,” JETP Lett. 72(9), 457–459 (2000).
[Crossref]

Light Sci. Appl. (2)

Y.-C. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, and B.-J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5(12), e16176 (2016).
[Crossref] [PubMed]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2(9), e104 (2013).
[Crossref]

Nano Lett. (3)

L. Zhang, R. Tu, and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett. 6(12), 2785–2789 (2006).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-Resolution Imaging of a Dielectric Microsphere Is Governed by the Waist of Its Photonic Nanojet,” Nano Lett. 16(8), 4862–4870 (2016).
[Crossref] [PubMed]

Nanoscale (1)

G. Gu, J. Song, M. Chen, X. Peng, H. Liang, and J. Qu, “Single nanoparticle detection using a photonic nanojet,” Nanoscale 10(29), 14182–14189 (2018).
[Crossref] [PubMed]

Nanotechnology (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Nat. Commun. (2)

B. Born, J. D. A. Krupa, S. Geoffroy-Gagnon, and J. F. Holzman, “Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching,” Nat. Commun. 6(1), 8097 (2015).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

A. Jannasch, A. F. Demirörs, P. D. J. van Oostrum, A. van Blaaderen, and E. Schäffer, “Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres,” Nat. Photonics 6(7), 469–473 (2012).
[Crossref]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I.-C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[Crossref]

Opt. Express (11)

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008).
[Crossref] [PubMed]

Y. Huang, Z. Zhen, Y. Shen, C. Min, and G. Veronis, “Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm,” Opt. Express 27(2), 1310–1325 (2019).
[Crossref] [PubMed]

S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
[Crossref] [PubMed]

C. M. Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18(16), 16805–16812 (2010).
[Crossref] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011).
[Crossref] [PubMed]

Z. Hengyu, C. Zaichun, C. T. Chong, and H. Minghui, “Photonic jet with ultralong working distance by hemispheric shell,” Opt. Express 23(5), 6626–6633 (2015).
[Crossref] [PubMed]

J. Zhu and L. L. Goddard, “Spatial control of photonic nanojets,” Opt. Express 24(26), 30444–30464 (2016).
[Crossref] [PubMed]

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong, “Modulation of photonic nanojets generated by microspheres decorated with concentric rings,” Opt. Express 23(15), 20096–20103 (2015).
[Crossref] [PubMed]

Opt. Lett. (8)

L. Yue, B. Yan, and Z. Wang, “Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit,” Opt. Lett. 41(7), 1336–1339 (2016).
[Crossref] [PubMed]

H. Xing, W. Zhou, and Y. Wu, “Side-lobes-controlled photonic nanojet with a horizontal graded-index microcylinder,” Opt. Lett. 43(17), 4292–4295 (2018).
[Crossref] [PubMed]

C.-Y. Liu and K.-L. Hsiao, “Direct imaging of optimal photonic nanojets from core-shell microcylinders,” Opt. Lett. 40(22), 5303–5306 (2015).
[Crossref] [PubMed]

S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005).
[Crossref] [PubMed]

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

G. Gu, R. Zhou, Z. Chen, H. Xu, G. Cai, Z. Cai, and M. Hong, “Super-long photonic nanojet generated from liquid-filled hollow microcylinder,” Opt. Lett. 40(4), 625–628 (2015).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[Crossref] [PubMed]

Y. Zhou, H. Gao, J. Teng, X. Luo, and M. Hong, “Orbital angular momentum generation via a spiral phase microsphere,” Opt. Lett. 43(1), 34–37 (2018).
[Crossref] [PubMed]

Opt. Mater. Express (1)

B. S. Luk’yanchuk, R. Paniagua-Dominguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow Invited,” Opt. Mater. Express 7(6), 1820–1847 (2017).
[Crossref]

Opto-Electronic Advances (1)

L. Chen, Y. Zhou, M. Wu, and M. Hong, “Remote-mode microsphere nano-imaging: new boundaries for optical microscopes,” Opto-Electronic Advances 1(1), 17000101 (2018).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, and M. Hong, “Super-focusing of center-covered engineered microsphere,” Sci. Rep. 6(1), 31637 (2016).
[Crossref] [PubMed]

G. Gu, J. Song, H. Liang, M. Zhao, Y. Chen, and J. Qu, “Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets,” Sci. Rep. 7(1), 5635 (2017).
[Crossref] [PubMed]

Other (2)

O. Mazurin, M. Streltsina, and T. Shavaikovskaya, Handbook of Glass Data (Elsevier, 1993).

https://www.filmetrics.com/refractive-index-database/CdS/Cadmium-Sulfide

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the cylindrical structure used in numerical simulations.
Fig. 2
Fig. 2 (a) Poynting vectors (small blue arrows) and streamlines (red solid lines) for a one-layer microcylinder of a high refractive-index material. R = 5λ and n = 3. The position of the focus is at d = 1.45 μm away from the center. (b) Poynting vectors and streamlines for the engineered one-layer microcylinder after splitting at d = 0.95 μm. R = 5λ and n = 3.5 (c) Poynting vectors and streamlines for the engineered two-layer microcylinder. Rs = 5λ, ns = 1.4, Rc = 4.55λ, and nc = 3.5. The splitting occurs at d = 1.0 μm. (d) Simulated intensity map of the PNJ formed by the engineered two-layer microcylinder. The PNJ outside the shadow surface is shown enlarged in the inset.
Fig. 3
Fig. 3 (a)-(c) Transverse intensity profiles (along the y axis) of the PNJ generated by the engineered two-layer microcylinder, quantified at different positions along the x axis. (d)-(e) Transverse intensity profiles of the PNJ generated by the engineered one-layer microcylinder, quantified at different positions along the x axis. All the intensities are normalized by the intensity of the incident light. Note that the vertical axes do not all have the same range.
Fig. 4
Fig. 4 Evolution of the FWHMs of transverse intensity profiles along the x axis for both the engineered two-layer microcylinder (red dots) and the engineered one-layer microcylinder (black squares).
Fig. 5
Fig. 5 (a) An illustration of the imaging process. A typical bar pattern, with the same line width (LW) and line spacing (LS), is scanned along the negative y direction. (b)-(e) Images reconstructed from scanning a series of bar patterns with LWs of 180 nm (b), 150 nm (c), 120 nm (d) and 110 nm (e), respectively. (f) Measured LW as a function of exact LW. Absolute values of the relative errors between these two variables are also plotted.
Fig. 6
Fig. 6 (a) Illustration of the imaging process. A micrometer-long target, with three different defects embedded, is scanned along the negative y direction. (b) Reconstructed images of the long target. For comparison, the profile of the refractive index of the sample is also plotted as a red dashed line.

Metrics