R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]
[PubMed]
D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]
D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref]
[PubMed]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]
[PubMed]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]
[PubMed]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]
I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10(12), 933–936 (2014).
[Crossref]
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]
[PubMed]
H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, and T. M. Fortier, “Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability,” Optica 4(8), 879–885 (2017).
[Crossref]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, and T. M. Fortier, “Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability,” Optica 4(8), 879–885 (2017).
[Crossref]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref]
[PubMed]
F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
P. Gill, “When should we change the definition of the second?” Philos Trans A Math Phys Eng Sci 369(1953), 4109–4130 (2011).
[Crossref]
[PubMed]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]
[PubMed]
T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]
[PubMed]
Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref]
[PubMed]
T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]
[PubMed]
Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]
D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).
[Crossref]
[PubMed]
F.-L. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28(1), 012002 (2017).
[Crossref]
T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]
[PubMed]
K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref]
[PubMed]
D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]
Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]
[PubMed]
D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]
D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref]
[PubMed]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]
[PubMed]
N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref]
[PubMed]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, “Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation,” Opt. Express 26(7), 8831–8840 (2018).
[Crossref]
[PubMed]
K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref]
[PubMed]
D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]
D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref]
[PubMed]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]
Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref]
[PubMed]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]
[PubMed]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]
K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref]
[PubMed]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref]
[PubMed]
Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]
[PubMed]
K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]
Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]
C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref]
[PubMed]
H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]
[PubMed]
N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref]
[PubMed]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, “Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation,” Opt. Express 26(7), 8831–8840 (2018).
[Crossref]
[PubMed]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]
Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]
Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref]
[PubMed]
N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]
I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]
K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref]
[PubMed]
K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, “Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation,” Opt. Express 26(7), 8831–8840 (2018).
[Crossref]
[PubMed]
K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref]
[PubMed]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref]
[PubMed]
D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]
D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref]
[PubMed]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]
[PubMed]
N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10(12), 933–936 (2014).
[Crossref]
D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]
F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]
F. Riehle, “Towards a redefinition of the second based on optical atomic clocks,” C. R. Phys. 16(5), 506–515 (2015).
[Crossref]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, and M. E. Fermann, “Ultra-broadband dual-branch optical frequency comb with 10 −18 instability,” Optica 5(9), 1070–1077 (2018).
[Crossref]
C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]
[PubMed]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref]
[PubMed]
K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]
H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]
[PubMed]
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]
N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]
K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref]
[PubMed]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref]
[PubMed]
N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]
[PubMed]
D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]
T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]
[PubMed]
Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]
K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref]
[PubMed]
I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]
N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref]
[PubMed]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref]
[PubMed]
C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref]
[PubMed]
T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref]
[PubMed]
S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]
T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]
A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]
K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref]
[PubMed]
H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref]
[PubMed]
T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref]
[PubMed]
D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]
D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref]
[PubMed]
H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref]
[PubMed]
D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref]
[PubMed]
M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref]
[PubMed]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]
T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref]
[PubMed]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref]
[PubMed]
U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]
J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]