Abstract

We present an induced reflection response analogue to electromagnetically induced transparency (EIT) in a novel Tamm plasmon system, consisting of a thin metal film and a Bragg grating with a defect layer. The results show that an induced narrow peak can be generated in the original broad reflection dip, which is attributed to the coupling and interference between the Tamm plasmon and defect modes in the grating structure. It is found that the EIT-like induced reflection is strongly dependent on the thickness of defect layer, grating period number between the metal and defect layers, thickness of Bragg grating layer, refractive index of defect layer, and thickness of metal film. Additionally, the induced reflection can be dynamically tuned by adjusting the angle of incident light. The numerical simulations agree extremely well with theoretical calculations. The coupling strength between the Tamm plasmon and defect modes is determined by the above parameters. These results will provide a new avenue for light field control and devices in multilayer photonic systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, surface plasmon polaritons (SPPs) have attracted broad attentions in the nanophotonics field because of their promising prospects for novel optical physics and functional devices [1–32]. However, the generation of SPPs requires the external assistance of prism, grating, or metal/fiber tips to compensate the wavevector mismatch between the SPPs and incident light [33]. In 2007, Kaliteevski et al. theoretically proposed a relatively new optical effect named Tamm plasmon polaritons (TPPs), which is an optical state formed between the metal film and dielectric Bragg grating [34]. Next year, they reported experimental observation of the TPP effect [35]. In contrast to SPPs, TPPs are polarization-independent and can be generated without the external compensation of wavevector [34]. This feasibly excited plasmon polaritons with strong localization and slow light properties have obtained rapid development and found crucial applications in optical manipulation and functionalities [35–55]. Particularly, the strong localization makes TPPs an exciting candidate for applications in strong coupling [36,40], nonlinear optical effect [37,44,46], spontaneous emission [38,50,53], enhanced absorption [39,43,54,55], and lasing [42,45]. For instance, Symonds et al. experimentally reported the observation of strong coupling regime generating between the TPP mode and exciton in Ga0.95In0.05As quantum wells (QWs) [36]. Liew et al. realized the integrated logical circuits based on bistable states in semiconductor microcavities with tunable Tamm-plasmon-exciton-polariton modes [37]. Gazzano et al. demonstrated the controlled spontaneous optical emission with the confined TPP mode [38]. Zhang et al. achieved enhanced broad-band light absorption in organic solar cells by the excitation of TPPs [43]. Symonds et al. proposed a novel kind of lasers based on the confined TPP modes in the metal-semiconductor structure [42,45]. Subsequently, the sensitivity of TPPs to refractive index of Bragg grating were proposed for the application in optical sensing [48,49,52]. Besides these, as a crucial issue, the coupling behaviors between TPP and cavity modes attracts special attentions [40,41,46,47,51]. Especially, the terahertz-range electromagnetically induced transparency (EIT)-like effect was realized by the coupling between Tamm and plasmonic defect states [47]. EIT is a counterintuitive phenomenon occurring in atomic systems owing to the destructive quantum interference between the possible pathways to the upper energy levels [56]. The coupling-based EIT-like effect operating in near-infrared region could find excellent applications in optical modulation [12], sensitive sensing [30], multi-channel filtering [31], and lasing [32]. Exploring the near-infrared EIT-like response in Tamm plasmon systems is particularly significant for the realization of novel functionalities based on TPPs.

Here, we report a near-infrared optical response analogue to the EIT-like effect in the Tamm plasmon system by introducing a defect layer into Bragg grating. The simulation results illustrate that an obvious peak can appear in the TPPs-induced broad reflection spectral dip. This EIT-like induced reflection is attributed to the coupling and interference between the TPP and defect modes in the multilayer photonic structure. We also find that the induced reflection is particularly dependent on the thickness of defect layer, grating period number between the metal and defect layers, thickness of Bragg grating, refractive index of defect layer, thickness of metal film, and incident angle of light. The numerical simulations are consistent with theoretical calculations. These results will open a new avenue for the generation of EIT-like effect and enrich the TPP control and applications.

2. Structure and model

As shown in Fig. 1, the proposed Tamm plasmon multilayer system is composed of a thin metal film and a Bragg grating with a defect layer. The metal is assumed as silver (Ag), whose relative permittivity can be described using Drude model: εa(ω) = ε-ωp2/[ω( + ω)] [57], where ω = 2πc/λ represents the free-space angular frequency of light, ε is the relative permittivity of metal at the infinite frequency, ωp is the bulk plasma frequency of metal, and γ is the electron collision frequency of metal. c is the light velocity in vacuum. The parameters for silver can be fitted as ε = 3.7, ωp = 9.1 eV, and γ = 0.018 eV according to the experimental data [57]. The Bragg grating consists of periodically stacked SiO2 and Si3N4 layers, whose refractive indices can be set as nA = 1.45 and nB = 2.2, respectively. The refractive index of Al2O3 defect layer is set as ns = 1.76. The thicknesses of metal, SiO2, Si3N4, and Al2O3 layers are originally set as da = 30 nm, dA = 275 nm, dB = 160 nm, and ds = 0 nm, respectively. The grating period number N is set as 24. The TM-polarized light is incident with an angle θ = 0°. The characteristics of light propagation in multilayer photonic systems can be theoretically calculated by the transfer matrix method (TMM) [34]. In TMM, the matrixes Mj and Pj can be used to characterize the light propagation through the j-th boundary and layer, which are respectively described as

Mj=12nj1cosθj1(nj1cosθj+njcosθj1nj1cosθjnjcosθj1nj1cosθjnjcosθj1nj1cosθj+njcosθj1),
Pj=(exp(i2πdjnjcosθj/λ)00exp(i2πdjnjcosθj/λ)),
where θj and nj stand for the angle of light propagation and the refractive index in the j-th layer, respectively. They satisfy the relation: nj-1sinθj-1 = njsinθj (θ0 = θ). dj represents the thickness of the j-th layer. The total matrix can be written as Q = M1P1M2P2MN+2. The reflection of multilayer photonic system can be calculated by R = |Q21/Q11|2. There exists an electromagnetic state between the metal and dielectric multilayer, whose frequency is less than plasma frequency of the metal and close to the operating frequency of Bragg grating [34]. The condition of eigenmode in this multilayer structure can be written as rMrB = 1, where rM and rB are the amplitude coefficients of light reflection on the metal and Bragg grating from Si3N4, respectively. According to the Fresnel formula, rM can be written as rM = (nB-na)/(nB + na). When ω<<ωp and γ is small, na can be approximately expressed as nap/ω [34]. Thus, rM can be written as rM≈exp[i(π + 2nBω/ωp)]. With a large number of layers for Bragg grating, rB can be expressed as rB = exp[(ω-ω0)/ω0], where η = πnB/(nB-nA). na is the refractive index of the metal, and ω0 = πc/(nBdB + nAdA) is the Bragg frequency. By combing these equations, the frequency of this eigenmode (i.e., TPP frequency) can approximately be expressed as ωT = ω0/[1 + 2ω0(nB-nA)/(πωp)]. By substituting the above parameters, ωT is predicted to be 0.790 eV. This value agrees well with the frequency of the reflection dip (0.796 eV) obtained by the TMM method, as shown in Fig. 2(a). To verify the theoretical results, we use the finite-difference time-domain (FDTD) method (commercial package from FDTD Solutions) to simulate the optical response in the multilayer system. In FDTD method, the periodic boundary conditions are set on the top/bottom of unit cell, and the perfectly matched layer absorbing boundary conditions are set on the left/right sides [58]. The spatial mesh grids are set as Δx = Δy = 4 nm. The source is set as a pulse with a pulse length of 9.9 fs and center wavelength of 1550 nm. For the convergence of the results, the temporal step and simulation time are set as 0.00893 fs and 15000 fs, respectively. The FDTD simulations agree well with the theoretical results, as shown in Fig. 2(a).

 

Fig. 1 Schematic diagram of the Tamm plasmon multilayer system. The thicknesses of metal, SiO2, Si3N4, and Al2O3 layers are denoted by da, dA, dB, and ds, respectively. The grating period number is N. The incident angle of light is θ.

Download Full Size | PPT Slide | PDF

 

Fig. 2 (a) Reflection spectra of the multilayer photonic system without and with the defect layer (i. e., ds = 0 and 258 nm). The circles and curves stand for the FDTD simulation and TMM theoretical results, respectively. The inset shows the three-level system. (b)-(c): Field distributions of |E|2 at the wavelength of 1556 nm in the multilayer systems without and with the defect layer. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, N = 24, and θ = 0°.

Download Full Size | PPT Slide | PDF

3. Results and analysis

As shown in Fig. 2(b), the strongly confined eigenmode (TPP mode) is formed between the metal and Bragg grating at the dip of reflection spectrum in Fig. 1 [34]. TPPs are different from surface Bloch wave generated between the isotropic medium and Bragg grating [59]. The enhanced field of TPP mode could find crucial applications in perfect absorption [54,60–64]. As the thickness of defect layer is set as ds = 258 nm, an obvious narrow peak appears at the center of the broad TPPs-induced reflection dip. The defect mode in the middle of the grating can be excited at the reflection peak (λp = 1556 nm). This spectral response can be regarded as a typical EIT-like profile [23,31]. The physical mechanism can be understood through the analogy to EIT in atomic systems [23,65–67]. For a typical three-level system, the ground state is denoted by |0> and the upper states are denoted by |1> and |2> (i.e., dark state), as shown in the inset of Fig. 2(a) [23,67]. The light is incident on the metal and excites the TPP mode, which can be analogue to the transition from |0> to |1> under the condition of “probe laser” [65]. The narrow defect mode in Bragg grating will be excited (by the evanescent field of TPPs) and couple with the TPP mode, which can be in analog to the transition between |1> and |2> in the absence of “pump light” [65]. The coupling strength κ corresponds to the Rabi frequency [67]. Thus, the two possible transition processes, namely |0>→|1> and |0>→|1>→|2>→|1>, will generate the destructive interference owing to a π-phase difference [23,66]. The destructive interference contributes to the disappearance of TPP field and the generation of narrow induced peak in a broad reflection dip, as depicted in Fig. 2. the dissipation rates of TPP and defect modes are denoted by γ1 and γ2, respectively. The defect mode in Bragg grating relies on the thickness of defect layer ds [68]. Here, we investigate the dependence of induced reflection spectrum on ds. Figure 3(a) shows that there exist obvious EIT-like peaks when ds is around 258 nm. As depicted in Fig. 3(b), the wavelength of induced reflection peak exhibits a linear red-shift with the increase of ds around 258 nm. The resonance wavelength of defect cavity in the Bragg grating can be expressed as λ0 = 4πnsds/(2kπ-φ1-φ2), where φ1 and φ2 are reflective phase shifts on two sides of defect cavity [68]. The integer k stands for the order of resonant mode. From this formula, it is found that the wavelength of defect mode linearly increases with ds. According to the interference mechanism of EIT-like effect, the wavelength of defect mode will determine the position of reflection peak [29]. Thus, we can see that the reflection peak has a linear red-shift with increasing ds. The simulation results are in good agreement with theoretical calculations. The coupling strength is a crucial factor to influence the EIT-like response, which can be controlled by changing the coupling distance between the TPP and defect modes. Figure 4 depicts the reflection spectra with different grating period numbers between the metal and defect layers. It is found that the spectral width of induced reflection becomes sharper with increasing the period number, while the height of reflection peak gradually drops, thus providing a trade-off between the width and height of reflection peak. The numerical simulations are consistent with theoretical results. This behavior is similar to the EIT-like response in plasmonic systems [22,29]. The coupling strength κ increases with the decrease of coupling distance [29,31]. In the strong-driving region with κ>>κT (κT = (γ1-γ2)/4), the induced reflection in the transparency window will be attributed to Autler-Townes splitting (ATS) with a symmetric doublet [67]. When the grating period number between metal and defect layer is 8, ATS will appear with κ = 7.97 × 1012 rad/s and κT = 1.06 × 1012 rad/s.

 

Fig. 3 (a) Evolution of reflection spectrum with the defect layer thickness ds. (b) Wavelengths (λp) of induced reflection peak with different ds. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, N = 24, and θ = 0°.

Download Full Size | PPT Slide | PDF

 

Fig. 4 FDTD simulation (a) and TMM theoretical (b) results of reflection spectra with different grating period numbers between the defect and metal layers. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, ds = 258 nm, and θ = 0°.

Download Full Size | PPT Slide | PDF

Subsequently, we investigate the influence of grating layer thickness on the induced reflection. As shown in Fig. 5(a), the wavelength of reflection dip possesses a linear red-shift with increasing the Si3N4 thickness dB. According to the TPP theory, the TPP frequency can also be expressed as ωT = πc/[nBdB + nAdA + 2(nB-nA)c/ωp]. Thus, the TPP wavelength can be obtained as λT = 2[nBdB + nAdA + 2(nB-nA)c/ωp], which linearly increases with dB. Thus, we can observe the linear red-shift of reflection dip with increasing dB. When dB reaches around 160 nm, the narrow induced refection peaks emerge in the spectral dip. The results in Fig. 5(b) show that the wavelength of reflection peak has a red-shift with increasing dB, which is attributed to the increase of the wavelength of defect mode. The similar response will be generated when we change the SiO2 thickness dA (not shown here). The selection of geometrical parameters can offer the effective means for the tunability of induced reflection spectrum. Figure 6(a) shows the evolution of reflection spectrum with the refractive index of defect layer ns. It is found that the wavelength of induced reflection peak has a linear red-shift with increasing ns. According to λ0 = 4πnsds/(2kπ-φ1-φ2), we can see that the wavelength of defect mode linearly increases with ns. Thus, the induced reflection peak linearly red-shifts as ns increases. It is shown in Fig. 6(b) that the wavelength of induced reflection peak remains constant, and the steeper slope moves from the left to right side of reflection peak when da increases. From Ref [39], we can find that the TPP wavelength possesses a blue-shift with the increase of metal film thickness da. The wavelength of defect mode is mainly dependent on the parameters of Bragg grating, while not sensitive to da. Thus, we can see the unchanged position of induced reflection peak in Fig. 6(b). By combining with the blue-shift of TPP reflection dip, it is not difficult to understand the change of spectral lineshape for induced reflection peak with da. Finally, the dependence of induced reflection spectrum on the incident angle θ is theoretically studied. As depicted in Fig. 7(a), the wavelength of induced reflection peak has a blue-shift as θ increases. The TPP wavelength decreases when the angle of incident light increases [35]. Therefore, the reflection dip possesses a blue-shift with increasing θ. We can see from Ref [69] that the wavelength of defect mode also decreases with the increase of θ. Thus, it is also not difficult to understand the blue-shift of reflection peak with increasing θ. Moreover, it is found that the peak position gradually deviates from the center and approaches the short-wavelength dip. It illustrates that the wavelength of TPP mode exhibits slower shift than that of defect mode. When the incident light is changed into TE polarization, we can observe the similar response for the induced reflection spectrum, as shown in Fig. 7(b). In contrast to TM polarization, the blue-shift range is smaller for TE polarization. The theoretical positions of induced reflection peaks are consistent with the wavelengths of reflection peaks obtained by the simulations. The adjustment of incident angle provides an essential way for the dynamical control of the EIT-like reflection response. It is worth noting that the above parameters play an important role in determining the coupling strength κ due to the variation of electromagnetic field. Figure 8 depicts the dependence of κ on the thickness of defect layer ds, period number of Bragg grating between metal and defect layers, thickness of Si3N4 layer dB, refractive index of defect layer ns, thickness of metal film da, incident angle of light θ. These values are obtained by fitting the results in Figs. 3–7 using equations in Ref [29]. We can see in Figs. 8(a) and 8(d) that κ exhibits a slight decrease when ds and ns deviate from 258 nm and 1.76, respectively. κ drops distinctly with increasing the period number of Bragg grating and da, as shown in Figs. 8(b) and 8(e). This verifies the above analysis. κ raises slowly when dB increases around 160 nm. κ increases slightly as θ increases from 0° to 12° for TM-polarized light, while decreases for TE-polarized light. The variations of electric field intensities in the defect layer at the induced peaks are opposite with the change of θ for TM/TE-polarized light (not shown here).

 

Fig. 5 (a) Evolution of reflection spectrum with the thickness of Si3N4 layer dB. (b) Wavelengths (λp) of induced reflection peak with different dB. Here, da = 30 nm, dA = 275 nm, ds = 258 nm, N = 24, and θ = 0°.

Download Full Size | PPT Slide | PDF

 

Fig. 6 (a) Evolution of reflection spectrum with the refractive index of defect layer ns when da = 30 nm. (b) Evolution of reflection spectrum with the thickness of metal film da when ns = 1.76. The circles denote the positions of induced reflection peak obtained by FDTD simulations. Here, dA = 275 nm, dB = 160 nm, ds = 258 nm, and N = 24.

Download Full Size | PPT Slide | PDF

 

Fig. 7 Evolution of reflection spectrum with the incident angle θ for TM (a) and TE (b) polarized light. The circles denote the positions of induced reflection peak obtained by FDTD simulations. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, ds = 258 nm, ns = 1.76, and N = 24.

Download Full Size | PPT Slide | PDF

 

Fig. 8 Dependence of coupling strength κ on the thicknesses of defect layer ds (a), period number of Bragg grating between metal and defect layers (b), thickness of Si3N4 layer dB (c), refractive index of defect layer ns (d), thickness of metal film da (e), incident angle of light θ (f). The structural parameters in (a)-(f) are the same as those in Figs. 3–5, 6(a), 6(b), and 7, respectively.

Download Full Size | PPT Slide | PDF

4. Summary

We have theoretically and numerically investigated an near-infrared EIT-like induced reflection effect in a new Tamm plasmon multilayer system consisting of the thin silver film and SiO2/Si3N4 layers stacked Bragg grating with an Al2O3 defect layer. The results illustrate that the induced reflection peaks can be generated when the thickness of grating defect layer approaches special values due to the coupling and destructive interference between the TPP and defect modes in the multilayer photonic structure. It is also found that the position of induced reflection peak is particularly dependent on the thickness of defect layer and Bragg grating layer as well as the refractive index of defect layer. The spectral width and height of induced reflection can be dynamically tailored by controlling the grating period number between the metal and defect layers. The spectral lineshape of induced reflection is sensitive to the thickness of metal film. Additionally, the induced reflection spectrum can be flexibly tuned by adjusting the incident angle for both the TM and TE polarized light. The above parameters together determine the coupling strength between the TPP and defect modes in this system. Our results will open a new pathway for the EIT-like spectral response as well as the TPP manipulation and devices (e.g. optical switches, filters, and sensors) in multilayer photonic systems.

Funding

National Key R&D Program of China (2017YFA0303800); National Natural Science Foundation of China (11774290, 11634010, and 61705186); Natural Science Basic Research Plan in Shaanxi Province of China (2017JQ1023); Technology Foundation for Selected Overseas Chinese Scholar of Shaanxi Province (2017007); Fundamental Research Funds for the Central Universities (3102018zy039 and 3102018zy050).

References

1. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]  

2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef]   [PubMed]  

3. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012). [CrossRef]   [PubMed]  

4. F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015). [CrossRef]   [PubMed]  

5. S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016). [CrossRef]   [PubMed]  

6. H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016). [CrossRef]   [PubMed]  

7. H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017). [CrossRef]   [PubMed]  

8. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013). [CrossRef]   [PubMed]  

9. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015). [CrossRef]   [PubMed]  

10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef]   [PubMed]  

11. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008). [CrossRef]   [PubMed]  

12. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017). [CrossRef]  

13. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011). [CrossRef]   [PubMed]  

14. X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017). [CrossRef]  

15. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006). [CrossRef]   [PubMed]  

16. Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018). [CrossRef]   [PubMed]  

17. S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018). [CrossRef]  

18. Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016). [CrossRef]   [PubMed]  

19. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004). [CrossRef]   [PubMed]  

20. J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017). [CrossRef]  

21. A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012). [CrossRef]  

22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef]   [PubMed]  

23. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef]   [PubMed]  

24. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016). [CrossRef]   [PubMed]  

25. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012). [CrossRef]   [PubMed]  

26. X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013). [CrossRef]   [PubMed]  

27. R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014). [CrossRef]  

28. Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017). [CrossRef]  

29. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018). [CrossRef]   [PubMed]  

30. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef]   [PubMed]  

31. H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012). [CrossRef]   [PubMed]  

32. Z. L. Deng and J. W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013). [CrossRef]   [PubMed]  

33. A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003). [CrossRef]  

34. M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007). [CrossRef]  

35. M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008). [CrossRef]  

36. C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009). [CrossRef]  

37. T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010). [CrossRef]  

38. O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011). [CrossRef]   [PubMed]  

39. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011). [CrossRef]   [PubMed]  

40. C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011). [CrossRef]  

41. R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012). [CrossRef]  

42. C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012). [CrossRef]  

43. X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012). [CrossRef]  

44. K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013). [CrossRef]   [PubMed]  

45. C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013). [CrossRef]   [PubMed]  

46. Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013). [CrossRef]  

47. G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013). [CrossRef]  

48. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014). [CrossRef]   [PubMed]  

49. areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014). [CrossRef]  

50. T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015). [CrossRef]  

51. S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016). [CrossRef]   [PubMed]  

52. S. Huang, K. Chen, and S. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7(4), 1267–1273 (2017). [CrossRef]  

53. A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017). [CrossRef]   [PubMed]  

54. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017). [CrossRef]   [PubMed]  

55. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017). [CrossRef]  

56. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991). [CrossRef]   [PubMed]  

57. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

58. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

59. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014). [CrossRef]   [PubMed]  

60. J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016). [CrossRef]  

61. J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017). [CrossRef]  

62. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015). [CrossRef]   [PubMed]  

63. X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018). [CrossRef]   [PubMed]  

64. J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018). [CrossRef]  

65. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002). [CrossRef]  

66. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004). [CrossRef]  

67. B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014). [CrossRef]   [PubMed]  

68. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011). [CrossRef]   [PubMed]  

69. C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  3. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
    [Crossref] [PubMed]
  4. F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
    [Crossref] [PubMed]
  5. S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
    [Crossref] [PubMed]
  6. H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
    [Crossref] [PubMed]
  7. H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
    [Crossref] [PubMed]
  8. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
    [Crossref] [PubMed]
  9. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
    [Crossref] [PubMed]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  11. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
    [Crossref] [PubMed]
  12. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
    [Crossref]
  13. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011).
    [Crossref] [PubMed]
  14. X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
    [Crossref]
  15. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
    [Crossref] [PubMed]
  16. Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018).
    [Crossref] [PubMed]
  17. S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
    [Crossref]
  18. Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
    [Crossref] [PubMed]
  19. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
    [Crossref] [PubMed]
  20. J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
    [Crossref]
  21. A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  23. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  24. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
    [Crossref] [PubMed]
  25. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
    [Crossref] [PubMed]
  26. X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
    [Crossref] [PubMed]
  27. R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
    [Crossref]
  28. Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
    [Crossref]
  29. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
    [Crossref] [PubMed]
  30. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  31. H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
    [Crossref] [PubMed]
  32. Z. L. Deng and J. W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
    [Crossref] [PubMed]
  33. A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
    [Crossref]
  34. M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
    [Crossref]
  35. M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
    [Crossref]
  36. C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
    [Crossref]
  37. T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
    [Crossref]
  38. O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
    [Crossref] [PubMed]
  39. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
    [Crossref] [PubMed]
  40. C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
    [Crossref]
  41. R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
    [Crossref]
  42. C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
    [Crossref]
  43. X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
    [Crossref]
  44. K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013).
    [Crossref] [PubMed]
  45. C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
    [Crossref] [PubMed]
  46. Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
    [Crossref]
  47. G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
    [Crossref]
  48. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
    [Crossref] [PubMed]
  49. areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
    [Crossref]
  50. T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
    [Crossref]
  51. S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
    [Crossref] [PubMed]
  52. S. Huang, K. Chen, and S. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7(4), 1267–1273 (2017).
    [Crossref]
  53. A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
    [Crossref] [PubMed]
  54. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
    [Crossref] [PubMed]
  55. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
    [Crossref]
  56. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  57. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  58. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  59. Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
    [Crossref] [PubMed]
  60. J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
    [Crossref]
  61. J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
    [Crossref]
  62. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
    [Crossref] [PubMed]
  63. X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
    [Crossref] [PubMed]
  64. J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
    [Crossref]
  65. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
    [Crossref]
  66. D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [Crossref]
  67. B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
    [Crossref] [PubMed]
  68. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011).
    [Crossref] [PubMed]
  69. C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
    [Crossref]

2018 (5)

Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018).
[Crossref] [PubMed]

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

2017 (10)

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

S. Huang, K. Chen, and S. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 7(4), 1267–1273 (2017).
[Crossref]

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref] [PubMed]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref] [PubMed]

2016 (6)

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

2015 (4)

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

2014 (5)

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
[Crossref] [PubMed]

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

2013 (7)

K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Z. L. Deng and J. W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
[Crossref] [PubMed]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

2012 (7)

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

2011 (5)

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011).
[Crossref] [PubMed]

F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36(8), 1500–1502 (2011).
[Crossref] [PubMed]

2010 (4)

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
[Crossref]

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

2009 (3)

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (3)

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

2007 (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (1)

2004 (2)

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

2003 (1)

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

2002 (1)

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

1991 (1)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdala, N. L.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Aberra Guebrou, S.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Abram, R.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Aizin, G.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Alaee, R.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Allen, S.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Angelomé, P. C.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Argyropoulos, C.

Auguié, B.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Baumann, V.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Baumberg, J.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Beere, H.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Bellessa, J.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Bethke, D.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Bloch, J.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Boyd, R.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Bozhevolnyi, S.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brand, S.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Braun, T.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Brolo, A.

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Brückner, R.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Brucoli, G.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Cai, B.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Chamberlain, J.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Chang, H.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Chen, C.

Chen, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Chen, K.

Chen, S.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Chen, W.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Cheng, H.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Christmann, G.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coulson, C.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Dai, X.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

de Vasconcellos, S. M.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Deng, J.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Deng, Y.

Deng, Z. L.

Dong, J. W.

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Duan, X.

Dyer, G.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Egorov, A. Yu.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fainstein, A.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Fan, D.

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

Fan, Y.

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Fang, Y.

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

Farrer, I.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Feng, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Frob, H.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Fuertes, M. C.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Fuller, K.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Gan, X.

Garrido Alzar, C. L.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Gauthron, K.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Gazzano, O.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giannini, V.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gómez Rivas, J.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Gong, Q.

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Gong, Y.

Gramotnev, D.

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Greffet, J. J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Grine, A.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Grossmann, C.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Gu, M.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Gubaydullin, A. R.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Guo, J.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

Gutowski, J.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Harris, S. E.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Hintschich, S.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hofling, S.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Homeyer, E.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Hommel, D.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Hong, M.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Hossain, M. M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Hou, Y.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Hu, F.

Hu, X.

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Huang, K.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Huang, S.

Hugonin, J. P.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Iff, O.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Ishihara, T.

Ivanov, K. A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Jeng, S.

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

Jiang, L.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Jiang, X.

Jiang, Y.

Jiao, J.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jomaa, M. H.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

Kaliteevski, M.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kaliteevski, M. A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Kalitteevski, M.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Kamp, M.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kavokin, A.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Kim, K.

Klein, T.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Klembt, S.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Kolykhalova, E. D.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Laverdant, J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lederer, F.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Lee, K. J.

Lei, D. Y.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Lemaitre, A.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lemaître, A.

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Leo, K.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Leong, E. S.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Le-Van, Q.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Lheureux, G.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Li, G. C.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Li, J.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Li, X.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Li, Y.

Li, Z.

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Liew, T.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

Liew, T. Y.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Liu, J. Q.

Liu, L.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, S. D.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Liu, X.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011).
[Crossref] [PubMed]

Long, Y.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Lu, H.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50(10), 1307–1311 (2011).
[Crossref] [PubMed]

Lu, S.

Lu, Y.

Lukiyanchuk, B.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Luo, X.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

Lyssenko, V.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Ma, Q.

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Mao, D.

Martinez, M. A. G.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Mikhrin, V.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33(8), 869–871 (2008).
[Crossref] [PubMed]

Ming, H.

Ning, T.

Nori, F.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Nussenzveig, P.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Ong, H. C.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Ostatnický, T.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Özdemir, S. K.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Peng, B.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Peyronel, T.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Plenet, J.

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Pozina, G.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Qin, F.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Qiu, C.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Qiu, M.

Rahman, S. S.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Rahmani, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Ramezani, M.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Ranjbar, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Rao, Y. J.

Reineck, P.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Ren, H.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

Reno, J.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Ritchie, D.

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

Rockstuhl, C.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Rosenberger, A.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Sasin, M.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Sasin, M. E.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

Schneider, C.

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

Scholz, R.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Sebald, K.

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Seisyan, R.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Senellart, P.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Shaner, E.

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Shelykh, I.

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Smith, D.

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Smolyaninov, I.

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Soler Illia, G. J. A. A.

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Song, J.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Sudzius, M.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Sun, B.

Sun, H.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

Symonds, C.

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Tang, C.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

Teng, J. H.

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

Tian, J.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

X. Duan, S. Chen, H. Cheng, Z. Li, and J. Tian, “Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial,” Opt. Lett. 38(4), 483–485 (2013).
[Crossref] [PubMed]

Tiecke, T. G.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Van Hoof, N.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Vasil’ev, A.

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

Voisin, P.

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Wang, F.

Wang, G.

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

Wang, H.

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Wang, L.

Wang, L. L.

Wang, P.

Wang, S.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Wang, X.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wen, S.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

Wen, S. C.

Wu, C.

C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
[Crossref]

Wu, J.

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

Wu, J. W.

Wu, L.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

Xia, S. X.

Xiang, Y.

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

Xiao, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Xiao, S.

Yang, D.

Yang, G.

Yang, H.

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Yang, L.

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

Yang, X.

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Yi, H.

You, Q.

Yu, P.

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

Yu, R.

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Yue, S.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Yue, Z.

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Zakhidov, A.

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Zang, X.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Zayats, A.

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Zeng, C.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhai, X.

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

Zhang, Q.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Zhao, J.

Zheng, J.

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

Zhou, X.

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

Zhou, Y.

Zhou, Z.

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

ACS Nano (1)

S. D. Liu, E. S. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, “Polarization- independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

areB. Auguié, M. C. Fuertes, P. C. Angelomé, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photonics 1(9), 775–780 (2014).
[Crossref]

Adv. Opt. Mater. (1)

J. Li, P. Yu, C. Tang, H. Cheng, J. Li, S. Chen, and J. Tian, “Bidirectional perfect absorber using free substrate plasmonic metasurfaces,” Adv. Opt. Mater. 5(12), 1700152 (2017).
[Crossref]

AIP Adv. (1)

J. Guo, L. Wu, X. Dai, Y. Xiang, and D. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

Am. J. Phys. (1)

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

T. Braun, V. Baumann, O. Iff, S. Hofling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]

C. Grossmann, C. Coulson, G. Christmann, I. Farrer, H. Beere, D. Ritchie, and J. Baumberg, “Tuneable polaritonics at room temperature with strongly coupled Tamm plasmon polaritons in metal/air-gap microcavities,” Appl. Phys. Lett. 98(23), 231105 (2011).
[Crossref]

C. Symonds, A. Lemaître, P. Senellart, M. H. Jomaa, S. Aberra Guebrou, E. Homeyer, G. Brucoli, and J. Bellessa, “Lasing in a hybrid GaAs/silver Tamm structure,” Appl. Phys. Lett. 100(12), 121122 (2012).
[Crossref]

X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]

M. Sasin, R. Seisyan, M. Kalitteevski, S. Brand, R. Abram, J. Chamberlain, A. Yu. Egorov, A. Vasil’ev, V. Mikhrin, and A. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]

C. Symonds, A. Lemaître, E. Homeyer, J. Plenet, and J. Bellessa, “Emission of Tamm plasmon/exciton polaritons,” Appl. Phys. Lett. 95(15), 151114 (2009).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

Y. Fang, J. Zheng, L. Yang, and X. Zhou, “All-optical diode actions through a coupled system of Tamm plasmon-polariton and nonlinear cavity mode,” Eur. Phys. J. Appl. Phys. 63(2), 20501 (2013).
[Crossref]

J. Appl. Phys. (1)

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Zhang, Y. Long, and X. Zang, “Unidirectional plasmonically induced transparency behavior in a compact graphene-based waveguide,” J. Phys. D Appl. Phys. 50(29), 295301 (2017).
[Crossref]

Nano Lett. (4)

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

X. Yang, X. Hu, H. Yang, and Q. Gong, “Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities,” Nanophotonics 6(1), 365–376 (2017).
[Crossref]

Nanotechnology (1)

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4(1), 2891 (2013).
[Crossref] [PubMed]

B. Peng, S. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (4)

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

D. Gramotnev and S. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

G. Dyer, G. Aizin, S. Allen, A. Grine, D. Bethke, J. Reno, and E. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Frob, V. Lyssenko, and K. Leo, “Phase-locked coherent modes in a patterned metal-organic microcavity,” Nat. Photonics 6(5), 322–326 (2012).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (11)

H. Lu, Y. Gong, D. Mao, X. Gan, and J. Zhao, “Strong plasmonic confinement and optical force in phosphorene pairs,” Opt. Express 25(5), 5255–5263 (2017).
[Crossref] [PubMed]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24(16), 17886–17899 (2016).
[Crossref] [PubMed]

Z. L. Deng and J. W. Dong, “Lasing in plasmon-induced transparency nanocavity,” Opt. Express 21(17), 20291–20302 (2013).
[Crossref] [PubMed]

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19(19), 18393–18398 (2011).
[Crossref] [PubMed]

W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
[Crossref] [PubMed]

K. J. Lee, J. W. Wu, and K. Kim, “Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures,” Opt. Express 21(23), 28817–28823 (2013).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref] [PubMed]

Y. Xiang, J. Guo, X. Dai, S. Wen, and D. Tang, “Engineered surface Bloch waves in graphene-based hyperbolic metamaterials,” Opt. Express 22(3), 3054–3062 (2014).
[Crossref] [PubMed]

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Photon. Res. (2)

Phys. Rev. A (1)

D. Smith, H. Chang, K. Fuller, A. Rosenberger, and R. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (3)

R. Yu, R. Alaee, F. Lederer, and C. Rockstuhl, “Manipulating the interaction between localized and delocalized surface plasmon-polaritons in graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 90(8), 085409 (2014).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. Abram, J. Chamberlain, A. Kavokin, and I. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]

T. Liew, A. Kavokin, T. Ostatnický, M. Kaliteevski, I. Shelykh, and R. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B Condens. Matter Mater. Phys. 82(3), 033302 (2010).
[Crossref]

Phys. Rev. Lett. (3)

O. Gazzano, S. M. de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Plasmonics (1)

J. Wu, J. Guo, X. Wang, L. Jiang, X. Dai, Y. Xiang, and S. Wen, “Dual-band infrared near-perfect absorption by Fabry-Perot resonances and surface phonons,” Plasmonics 13(3), 803–809 (2018).
[Crossref]

Prog. Electromagnetics Res. (1)

C. Wu and Z. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Prog. Electromagnetics Res. 103, 169–184 (2010).
[Crossref]

Sci. Adv. (1)

Z. Yue, B. Cai, L. Wang, X. Wang, and M. Gu, “Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index,” Sci. Adv. 2(3), e1501536 (2016).
[Crossref] [PubMed]

Sci. Rep. (6)

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5(1), 9977 (2015).
[Crossref] [PubMed]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8, 1558 (2018).
[Crossref] [PubMed]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2015).
[Crossref] [PubMed]

A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, “Enhancement of spontaneous emission in Tamm plasmon structures,” Sci. Rep. 7(1), 9014 (2017).
[Crossref] [PubMed]

S. S. Rahman, T. Klein, S. Klembt, J. Gutowski, D. Hommel, and K. Sebald, “Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons,” Sci. Rep. 6(1), 34392 (2016).
[Crossref] [PubMed]

Science (1)

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref] [PubMed]

Other (1)

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the Tamm plasmon multilayer system. The thicknesses of metal, SiO2, Si3N4, and Al2O3 layers are denoted by da, dA, dB, and ds, respectively. The grating period number is N. The incident angle of light is θ.
Fig. 2
Fig. 2 (a) Reflection spectra of the multilayer photonic system without and with the defect layer (i. e., ds = 0 and 258 nm). The circles and curves stand for the FDTD simulation and TMM theoretical results, respectively. The inset shows the three-level system. (b)-(c): Field distributions of |E|2 at the wavelength of 1556 nm in the multilayer systems without and with the defect layer. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, N = 24, and θ = 0°.
Fig. 3
Fig. 3 (a) Evolution of reflection spectrum with the defect layer thickness ds. (b) Wavelengths (λp) of induced reflection peak with different ds. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, N = 24, and θ = 0°.
Fig. 4
Fig. 4 FDTD simulation (a) and TMM theoretical (b) results of reflection spectra with different grating period numbers between the defect and metal layers. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, ds = 258 nm, and θ = 0°.
Fig. 5
Fig. 5 (a) Evolution of reflection spectrum with the thickness of Si3N4 layer dB. (b) Wavelengths (λp) of induced reflection peak with different dB. Here, da = 30 nm, dA = 275 nm, ds = 258 nm, N = 24, and θ = 0°.
Fig. 6
Fig. 6 (a) Evolution of reflection spectrum with the refractive index of defect layer ns when da = 30 nm. (b) Evolution of reflection spectrum with the thickness of metal film da when ns = 1.76. The circles denote the positions of induced reflection peak obtained by FDTD simulations. Here, dA = 275 nm, dB = 160 nm, ds = 258 nm, and N = 24.
Fig. 7
Fig. 7 Evolution of reflection spectrum with the incident angle θ for TM (a) and TE (b) polarized light. The circles denote the positions of induced reflection peak obtained by FDTD simulations. Here, da = 30 nm, dA = 275 nm, dB = 160 nm, ds = 258 nm, ns = 1.76, and N = 24.
Fig. 8
Fig. 8 Dependence of coupling strength κ on the thicknesses of defect layer ds (a), period number of Bragg grating between metal and defect layers (b), thickness of Si3N4 layer dB (c), refractive index of defect layer ns (d), thickness of metal film da (e), incident angle of light θ (f). The structural parameters in (a)-(f) are the same as those in Figs. 3–5, 6(a), 6(b), and 7, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M j = 1 2 n j 1 cos θ j 1 ( n j 1 cos θ j + n j cos θ j 1 n j 1 cos θ j n j cos θ j 1 n j 1 cos θ j n j cos θ j 1 n j 1 cos θ j + n j cos θ j 1 ) ,
P j = ( exp ( i 2 π d j n j cos θ j / λ ) 0 0 exp ( i 2 π d j n j cos θ j / λ ) ) ,

Metrics