Abstract

We report a tunable passively Q-switched fiber laser at the wavelengths near 3 μm, using large aspect ratio gold nanorods (LAR-GNRs) as a saturable absorber (SA) for the first time. The GNRs with a large average aspect ratio of up to ~20 were prepared using the seed-mediated growth method, which yielded a strong absorption band of 2.2–3 μm with a peak at ~2600 nm, stemming from longitudinal surface plasmon resonance (SPR). The corresponding nonlinear absorption was characterized using 2.87 μm ultrafast pulses, giving the modulation depth of 8.89%, saturation intensity of 14.9 MW/cm2, and nonsaturation loss of 39.9%. When introducing the material into a tunable Ho3+/Pr3+ codoped ZBLAN fiber laser as a SA, stable Q-switched pulses with a tunable wavelength within 2.83–2.88 μm were achieved. The largest output power of 30.8 mW, repetition rate of 78.12 kHz, and narrowest pulse width of 2.18 μs were simultaneously attained when tuned to ~2.865 μm at the pump power of 307.2 mW, while the largest pulse energy of 0.48 μJ was obtained at the longest tuning edge of 2.88 μm. Our work indicates that LAR-GNRs are a type of versatile broadband SA material available for the mid-infrared region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Pulsed version of fiber laser operating at 3 μm mid-infrared waveband has attracted increased attention in the past decade because of its active demand in a wide range of applications e.g., surgery, material processing, remote sensing, infrared countermeasures, etc [1]. Q-switching, as one of the widely used methods to generate ns–ms scale short pulse with high pulse energy, was always paid much attention. Thereinto, the passive scheme resorting to saturable absorbers (SAs) was much more advantageous on the aspect of compactness, simplicity and low cost in design compared to the active scheme based on some externally controlled modulators. SESAM which maybe the current most mature commercial SA, was earliest introduced in a Ho3+/Pr3+ codoped ZBLAN fiber laser at ~3 μm to realize pulse generation in 2012 [2]. The shortest pulse widths of 720 ns (Q-switching) and 24 ps (mode-locking) were gained. Despite its excellent performance and the ability of customizing some of its parameters e.g., modulation depth, non-saturation loss, recovery time, etc., mainly attributable to well-developed semiconductor technologies such as bandgap and defect engineering and growth, the narrow operation band of hundreds of nanometers and the limited effective wavelength of <3.2 μm hinder its utilization at longer wavelengths. Although Fe2+:ZnSe crystal could cover some shortages of SESAM to some extent [3], its bulk nature doesn’t match with the development tendency of all-fiber scheme in the future. With the development of material science and technology, novel two-dimensional (2D) materials e.g., graphene, topological insulators (TIs), transition mental dichalcogenides (TMDs), and black phosphorus (BP), antimonene, etc., have drawn our attention because of their distinct broadband saturable absorption properties and been also used to Q-switch or mode-lock Er3+- or Ho3+-doped ZBLAN fiber lasers around 3 μm [4–11]. In 2013, C. Wei et al demonstrated the first graphene based Q-switched Er3+-doped ZBLAN fiber laser at 2.78 μm. The maximum output power of 70 mW was obtained with a pulse width of 2.9 μs [4]. After that, we used TI as the SA to realize a passively Ho3+-doped ZBLAN fiber laser at 2.98 μm giving an output power of 327.4 mW and a pulse width of 1.37 μs [5]. Then, BP was also introduced into an Er3+-doped fiber laser at 2.8 μm by Z. P. Qin et al to generate stable pulses [6,8]. The shortest pulse widths of 1.18 μs (Q-switching) and 42 ps (mode-locking) were achieved. Recently, we presented a passively Q-switched Ho3+/Pr3+ codoped ZBLAN fiber laser at 2.87 μm using multi-layer antimonene. The maximum output power and shortest pulse width were 112.3 mW and 1.74 μs, respectively [11]. But all have their own shortages. For example, graphene has weak absorption (~2.3% single layer) and low modulation depth. TIs require complex preparation process. TMDs possess a large bandgap and need complex control of defects when operating in the mid-infrared region. BP is easily oxidized under ambient condition while antimonene is difficultly tailored on the aspect of parameters.

Recently, gold nanoparticles (GNPs) received our extra attention since their unique optical properties such as large third-order nonlinearity (~10−6 esu), broadband absorption induced by surface plasmon resonance (SPR), and fast response time of few picoseconds [12–16], making it an ideal SA for Q-switching and mode-locking. In 2012, Jiang et al experimentally demonstrated a passively Q-switched Er3+-doped fiber laser at ~1.5 μm using gold nanospheres (GNSs) as a SA, for the first time [17]. However, the isotropic dimensions of GNSs lead to only one SPR band with an absorption peak at 523 nm, which originates from transverse SPR absorption. Although the aggregated GNSs have been experimentally identified to be effective in a passively Q-switched solid-state laser at ~3 μm very recently [18], it is difficult to control the aggregation as required. Compared to GNSs, the non-spherical symmetric structure of gold nanorodes (GNRs) results in an anisotropic SPR showing two absorption bands. One is the weak transverse SPR absorption, originating from electron resonance that is perpendicular to the axial of rod. The other one is the strong longitudinal SPR absorption, originating from electron resonance that is along the axial of rod. In contrast to the former one, the latter one can be tuned in a wide range by varying the aspect ratio of GNRs. Specifically, the transverse SPR absorption peak was almost fixed at 532 nm while the longitudinal SPR absorption peak was red-shifting with increasing the aspect ratio [19], making it a more flexible broadband SA for pulse generation compared to GNSs and some other saturable absorption materials (e.g., MXene, plasmonic semiconductors, etc [20–23]). Until now, Q-switched and mode-locked fiber lasers in a wide near-infrared wavelength region (i.e., ~1 μm [19,24], ~1.5 μm [24–31], and ~2 μm [30,32]) have been constructed using GNRs with different aspect ratios as SAs. However, there are no reports at the longer mid-infrared wavelengths near 3 μm. In the previous reports, most aspect ratios of the used GNRs were less than 10, corresponding to longitudinal SPR absorption peaks of <2 μm. To modulate the ~3 μm laser more efficiently, it needs to exploit larger aspect ratios GNRs with a longer absorption peak closer to ~3 μm.

In this paper, we adopted the seed-mediated growth approach to prepare GNRs with a large average aspect ratio of up to ~20, contributing to a longitudinal SPR absorption peak at ~2600 nm. The nonlinear absorption of the LAR-GNRs was first characterized at 2.87 μm. Then introducing them into a Ho3+/Pr3+ codoped ZBLAN fiber laser as a SA, stable Q-switched pulses were obtained at a tunable range of 2.83–2.88 μm. The dependences of output power, pulse energy, repetition rate, and pulse width on pump power and laser wavelength were studied. To our knowledge, this is the first pulsed laser around 3 μm using LAR-GNRs as a SA.

2. Preparation and characterizations of LAR-GNRs SA

2.1 Preparation of LAR-GNRs SA

The LAR-GNRs used in our experiment were synthesized based on the seed-mediated growth method [33,34], and the schematic of the synthesis procedure is displayed in Fig. 1. It starts with the preparation of the seed solution. First, 10 mL aqueous solution containing 0.2 mM HAuCl4 and 0.1 M cetyl trimethyl ammonium bromide (CTAB) was prepared in a beaker. Then, 0.5 mL 0.02 M freshly NaBH4 solution was introduced into the above solution while stirring vigorously. The color of the solution turned brown immediately, indicating the formation of gold particles. After stirring for 10 min, the solution was kept undisturbed for 2 h at room temperature to decompose excess borohydride by water and used for the synthesis of the LAR-GNRs. The size of the GNRs was measured by using the image measurement software and then doing scale conversion. The seed particles had sizes of a few nanometers. Subsequently, the growth solution was prepared by mixing 1.4 mL 0.01 M HAuCL4 solution, 52.5 mL deionized water and 2 g CTAB in a beaker. Next, 1 mL 0.5 M HNO3 solution was added into the above solution. After that, three flasks were prepared and labeled A, B, and C, respectively. 4.5 mL of the growth solution was added into flasks A and B, and 45 mL to flask C. Then 25 μL, 25 μL, and 250 μL of 0.1 M ascorbic acid (AA) were, respectively, introduced into flasks A, B, and C under vigorously stirred for 3 min until they became colorless. Finally, 400 μL gold seed solution was added to flask A and shaken slightly for 10 s. Immediately, 400 μL of the solution in flask A was transferred to flask B and shaken for 10 s. After that, 4 mL of the solution in flask B was transferred to flask C and shaken for 5 s. Flask C was left undisturbed for 12 h in order to make sure of the full growth of GNRs. The final solution was concentrated by centrifugation at 5000 rpm for 10 min twice and redispersed in 10 mL of deionized water. Then it was deposited onto a CaF2 substrate and an Au mirror for linear/nonlinear absorption measurements and acting as SA, respectively.

 

Fig. 1 The synthesis procedure of the LAR-GNRs.

Download Full Size | PPT Slide | PDF

2.2 Characterizations of LAR-GNRs SA

Figure 2(a) displays the transmission electron microscopy (TEM) image of the LAR-GNRs, which was measured using a microscope (JEM-2100F). It is found that most of the particles are nanorods with an average length of 380 nm and a width of ~19 nm, corresponding to an aspect ratio of ~20. Its inset shows the photograph of the aqueous solution of LAR-GNRs, the color of the solution is buff. In order to investigate its linear absorption characteristics at 3 μm band, the absorption spectrum was measured using the spectrometer (Shimadzu, UV 3600) based on the previous prepared sample on a CaF2 substrate under natural drying to avoid the strong absorption band around 3 μm of liquid water as shown in Fig. 2(b). Two obvious SPR absorption peaks are observed. The longitudinal SPR absorption peak at ~2600 nm, longer than the theoretically predicted value (2320 nm) (λ = 95R + 420 nm; R: aspect ratio) [35], was primarily caused by the aggregation or self-assembling of these GNRs. Another longitudinal SPR absorption peak at ~980 nm was resulted from the rare small aspect ratio GNRs during the synthesized process or the cascaded multiple transverse SPR peaks. The absence of the transverse SPR band at 532 nm suggested high yield of nanorods without significant existence of spheres in our case.

 

Fig. 2 (a) TEM image of the LAR-GNRs (Inset: the photograph of the aqueous solution of the LAR-GNRs), (b) linear absorption spectrum of the LAR-GNRs.

Download Full Size | PPT Slide | PDF

Then the nonlinear absorption of the LAR-GNRs sample was characterized using the typical power dependent measurement scheme which involved a balance twin-detector arrangement. The detailed setup and operation descriptions have been given in [11]. The laser source was a home-made SESAM based passively mode-locked Ho3+/Pr3+ codoped ZBLAN fiber laser at 2.87 μm. It had a pulse width of ~20 ps and a repetition rate of 17.86 MHz. Figure 3 shows the transmission as a function of the input pulse intensity. The relative parameters of the LAR-GNRs sample were obtained by fitting using the following formula:

T(I)=1ΔTexp(I/Isat)Tns,
where T(I) is the transmission, ΔT is the modulation depth, Isat is the saturation intensity, and Tns is the non-saturation loss. Finally, ΔT, Isat, Tns were fitted to be 8.89%, 14.9 MW/cm2, and 39.9%, respectively.

 

Fig. 3 Nonlinear absorption of the LAR-GNRs measured at 2.87 μm.

Download Full Size | PPT Slide | PDF

3. Design of wavelength tunable passively Q-switched fiber laser

The schematic of our designed wavelength tunable passively Q-switched Ho3+/Pr3+ codoped ZBLAN fiber laser using LAR-GNRs as a SA is shown in Fig. 4. The pump unit included two commercially available laser diodes (LDs) (Eagleyard Photonics, Berlin) around 1150 nm. The laser was used to pump the gain fiber after polarization multiplexing through a polarized beam splitter (PBS) and then focusing using an uncoated CaF2 plano-convex lens (LA5315, Thorlabs) with a 20 mm focal length. A specifically designed dichroic mirror with a ~96% transmission around 1150 nm and a >95% reflection around 3 μm was placed between the PBS and CaF2 lens at an angle of 30° with respect to the pump beam to steer the laser. After that, a commercial 3 μm bandpass filter (FB3000-500, Thorlabs) with an operation bandwidth of 500 nm was used to block the residual pump. It had a measured transmittance of ~76% at ~2.87 μm. The gain fiber was a piece of commercial double-cladding Ho3+/Pr3+ codoped ZBLAN fiber (Fiberlabs, Japan) with an octangular pump core with a diameter of 125 μm and a NA of 0.5 and a circular core with a diameter of 10 μm and a NA of 0.2. It could lase at around ~3 μm from the 5I65I7 transition of Ho3+ ions. The concentrations of Ho3+ and Pr3+ were 30,000 and 2,500 ppm, respectively. The launching efficiency was estimated to be 82% [11]. The selected fiber length was 5 m which could provide a ~90% pump absorption efficiency. The fiber end close to the pump was perpendicularly cleaved as one cavity feedback and the output coupler with the help of 4% Fresnel reflection. The other end of the fiber was cleaved at an angle of 8° to avoid parasitic lasing, from which the laser was collimated by a ZnSe objective lens (Innovation Photonics, LFO-5-6, 0.25 NA) with a 6.0 mm focal length onto a plane ruled grating (Thorlabs, 450 lines per mm, blaze wavelength λB = 3.1 µm, blaze angle θB = 32°). Then its first-order reflection was terminated by the LAR-GNRs coated Au mirror (Thorlabs) after focusing using another same ZnSe objective lens as before. According to the used lens, the minimum spot size on the Au mirror was estimated to be ~10 μm. The wavelength was tuned by rotating the plane ruled grating. An InAs detector with a response time of 2 ns connected with a 500 MHz bandwidth digital oscilloscope was used to capture temporal pulse trains and waveforms. A radio frequency (RF) spectrum analyzer (AV4033A) with a scanning range of 30 Hz-18 GHz was used to measure the pulsed RF spectrum. A monochromator with a minimum scanning resolution of 0.1 nm (Princeton instrument Acton SP2300) was utilized to measure the optical spectrum.

 

Fig. 4 Experimental setup of the designed wavelength tunable passively Q-switched Ho3+/Pr3+ codoped ZBLAN fiber laser based on LAR-GNRs SA.

Download Full Size | PPT Slide | PDF

4. Experimental results of passively Q-switched fiber laser

4.1 Wavelength fixed Q-switched operation

First, the grating angle was adjusted to maximize the output at the pump power of 307.2 mW, which was determined by controlling the pump power while monitoring the output behavior. For this grating position fixed, stable Q-switching regime was obtained as shown in Fig. 5(a) as the pump power increasing to 115.3 mW, at which the pulse width and repetition rate were 3.46 μs and 42.3 kHz, respectively. This regime could maintain until the pump power of 307.2 mW as plotted in Fig. 5(b) where the pulse width and repetition rate were 2.18 μs and 78.12 kHz, respectively. Once the pump was adjusted beyond this level, the pulse train began to become unstable and then reverted to CW operation with the further increased pump power to 387.6 mW. At this time, if the pump was adjusted back to ~305 mW, stable Q-switching appeared again indicating the LAR-GNRs was free from damage. This phenomenon was primarily caused by the excessive heat from Q-switched pulses, and also observed in our previous experiment [11]. But Q-switching could not be obtained anymore if the pump power was increased beyond 387.6 mW no matter how to adjust the pump power, indicating the damage threshold of our used LAR-GNRs. At the pump power of 307.2 mW, the optical and RF spectra were measured as shown in Fig. 5(c) and 5(d), respectively. The fixed operation wavelength of 2864.3 nm matched well with the free running wavelength at the pump power, since it was selected to achieve the maximum output power. The FWHM of 0.6 nm was significantly smaller than that under free running state [9,11] due to the narrow operation linewidth of the plane ruled grating, but still limited by the distance of ~0.55 m between the grating and the Au mirror considering the scanning resolution of 0.3 nm of our monochromator around 3 µm. The captured RF spectrum yielded a signal-to-noise ratio (SNR) of 31.9 dB at the frequency of 78.12 kHz, which was located at the typical range of passive Q-switching based on some new SA materials [4–7,9,11]. Figures 6(a) and 6(b) show the pulse width, repetition rate, output power and pulse energy as a function of the pump power, respectively. The evolution tendency of both pulse width and repetition rate depending on the pump power matched with the case of typical passive Q-switching. Specifically, with the pump power increasing from 115.3 mW to 307.2 mW, the pulse width decreased from 3.46 µs to 2.18 µs, while the repetition rate increased from 42.3 kHz to 78.12 kHz. The output power increased from 6.8 mW to 30.8 mW at a slope efficiency of 12.0% while the pulse energy increased from 0.16 µJ to 0.38 µJ. The low slope efficiency was mainly resulted from three aspects: (1) non-saturation loss of the LAR-GNRs, (2) insertion loss (~1dB) introduced by the used pair of ZnSe objective lenses, and (3) diffraction loss from the plane ruled grating. Also the power stability of the Q-switched pulses was checked within 240 min as shown in Fig. 7, the low power fluctuation of about 0.8% indicated high stability of our Q-switched system. Recently (about two months after finishing the above experiment), the same SA was also introduced into another Er3+-doped ZBLAN fiber laser to achieve stable Q-switching at 2.8 µm. The results suggested that the prepared LAR-GNRs had high thermal and chemical stability.

 

Fig. 5 Q-switched pulse train and single pulse waveform at the pump power of (a) 115.3 mW and (b) 307.2 mW. (c) Optical and (d) RF spectra at the pump power of 307.2 mW.

Download Full Size | PPT Slide | PDF

 

Fig. 6 (a) Repetition rate and pulse width, and (b) output power and pulse energy as a function of the pump power.

Download Full Size | PPT Slide | PDF

 

Fig. 7 Output power stability within 240 min.

Download Full Size | PPT Slide | PDF

4.2 Wavelength tunable Q-switched operation

Then wavelength tuning under Q-switching operation was performed by rotating the grating at the pump power of 307.2 mW. Figure 8 shows the optical spectra of the Q-switched pulses when tuned. The tuning range was about 46.5 nm spanning from 2834.5 nm to 2881.0 nm with a narrow FWHM of ~0.6 nm across the entire tuning range. It was just located within the absorption band of NH3 and NO2 [36], while avoiding the strong absorption of water vapor around 2.8 μm [36], hence better serving gas detection. Once tuning beyond this range, the laser began to operate at CW regime since the intra-cavity laser power was not strong enough to reach the saturation intensity of the LAR-GNRs anymore due to the decreased gain at two tuning edges. This point could be identified by the fact that the Q-switching appeared again if further increasing the pump power at this time. However, no laser could be attained if further tuning towards two sides, indicating that the intra-cavity gain was smaller than the loss outside of the range at the pump power of 307.2 mW. Figure 9(a) shows the evolutions of output power and repetition rate depending on the tuned wavelength at the pump power of 307.2 mW. It is observed that the output power increases from 18.3 mW to 30.8 mW and then decreases to 23.1 mW with the wavelength tuning from 2834.5 nm to 2881.0 nm, which matched with the gain spectrum of Ho3+/Pr3+ codoped ZBLAN fiber [37]. While the pulse repetition rate exhibited a similar variation tendency to the output power since higher intra-cavity power led to faster blenching of SA hence larger repetition rate [38]. The corresponding evolutions of pulse width and energy are shown in Fig. 9(b). In contrast to Fig. 9(a), the pulse width decreased first and then increased with tuning towards long wavelength direction, similar to the tendency observed in wavelength tunable passively Q-switched Er3+-doped fiber lasers around 1.5 μm [38,39]. While the pulse energy almost increased monotonously from 0.29 μJ to 0.48 μJ.

 

Fig. 8 Optical spectra of the passively Q-switched pulses when tuning at the pump power of 307.2 mW.

Download Full Size | PPT Slide | PDF

 

Fig. 9 (a) Output power and repetition rate, (b) pulse width and pulse energy as a function of the wavelength.

Download Full Size | PPT Slide | PDF

5. Discussion

In our experiment, no mode-locked pulses were observed mainly due to low intra-cavity laser intensity and large insertion loss of the SA, which made the system difficult to work in mode-locking regime. Here, the large insertion loss was primarily caused by the increased scattering loss with the enlarged aspect ratio. Moreover, it was also related to the solution concentration and could be reduced by further concentration optimizing while controlling the dispersibility. In the future, the polarization dependent loss property of GNRs [40] could be utilized as well to fabricate polarizer while acting as a SA. This new device would be useful for hybrid mode-locking combined with nonlinear polarization rotation (NPR) effect.

In this case, the maximum tunable range under Q-switching operation was about 46.5 nm (2834.5–2881.0 nm), which was significantly narrower than that under CW operation extended to ~150 nm (2825–2975 nm) [37]. The primary reason was the low pump power allowable, which was not strong enough to make the intra-cavity net gains at longer or shorter wavelengths within the gain spectrum of Ho3+/Pr3+ codoped ZBLAN fiber reach the threshold levels. This was limited by the heat accumulated on the LAR-GNRs induced material damage. Thus further extending the tunable range could resort to improving the SA damage threshold by carefully expanding the spot focused onto the LAR-GNRs under Q-switching operation while imposing cooling on the Au substrate. Another effective approach to improve the SA damage threshold is to use the ZBLAN microfiber with the help of evanescent effect, which can enlarge the interactive area between laser and LAR-GNRs thus reducing the photothermal effect of the SA. Although the aspect ratio of ~20 was enough for efficiently modulating ~3 μm laser hence generating pulses, larger aspect ratio was demanded for the lasers at longer wavelengths (e.g., ~3.5 μm [41], ~3.9 μm [42]). This could be realized through changing the size of gold seeds or reaction time and concentration of growth solution, despite the uncontrollable yield of nanorods relative to byproducts such as spheres. Besides, the template approach [43] and assembly method [44] would be adopted to improve the ratio aspect of GNRs as well in the future.

6. Conclusion

In this paper, we demonstrated a wavelength tunable passively Q-switched Ho3+/Pr3+ codoped ZBLAN fiber laser at the range of 2.83–2.88 μm, using LAR-GNRs as a SA for the first time. Based on the seed-mediated growth approach, the GNRs with a large average aspect ratio of ~20 were prepared, contributing to a long longitudinal SPR band peaked at ~2600 nm. This is the current longest absorption peak of GNRs reported and suited to modulating ~3 μm laser. The nonlinear absorption of the LAR-GNRs was characterized at 2.87 μm as well, giving the modulation depth of 8.89%, saturation intensity of 14.9 MW/cm2, and non-saturation loss of 39.9%. Introducing the LAR-GNRs into a linear-cavity tunable Ho3+/Pr3+ codoped ZBLAN fiber laser as a SA, stable Q-switched pulses with a tunable wavelength within 2834.5–2881.0 nm were achieved. It was found that there was an optimal wavelength for getting the largest output power and repetition rate, and narrowest pulse width for a fixed pump power. While long wavelength operation was helpful for higher pulse energy. Finally, the largest output power of 30.8 mW, repetition rate of 78.12 kHz, and narrowest pulse width of 2.18 μs were obtained at the tuned wavelength of ~2.865 μm at the pump power of 307.2 mW, and the largest pulse energy of 0.48 μJ was gained at the longest tuning edge of 2.88 μm. This work indicates that GNRs are a kind of versatile nonlinear material for SA fabrication aiming at different operation wavelengths. In the future, more efforts would be paid on preparing larger aspect ratio GNRs for pulse generation at longer mid-infrared wavelengths.

Funding

National Natural Science Foundation of China (NSFC) (61435003, 61722503, 61605219, 61527823, and 61421002); Open Fund of Science and Technology on Solid-State Laser Laboratory, Fundamental Research Funds for the Central Universities (ZYGX2016J068); International Scientific Cooperation Project of Sichuan Province (2017HH0046); Joint Fund of Ministry of Education for Equipment Pre-research (6141A02033411); Science and Technology Project of Jilin Province (20160520085JH); Key Technology Research and Development Project of Jilin Province (20180201120GX); Youth Innovation Promotion Association, CAS.

References

1. X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017). [CrossRef]  

2. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012). [CrossRef]   [PubMed]  

3. https://www.ipgphotonics.com/en/88/Widget/Passive+Q-switch+Fe_ZnS+and+Fe_ZnSe+Datasheet.pdf

4. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013). [CrossRef]   [PubMed]  

5. J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015). [CrossRef]   [PubMed]  

6. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015). [CrossRef]   [PubMed]  

7. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016). [CrossRef]  

8. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016). [CrossRef]   [PubMed]  

9. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016). [CrossRef]  

10. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016). [CrossRef]  

11. H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018). [CrossRef]  

12. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006). [CrossRef]  

13. L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008). [CrossRef]  

14. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011). [CrossRef]   [PubMed]  

15. J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012). [CrossRef]  

16. Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014). [CrossRef]  

17. T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012). [CrossRef]  

18. W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, and J. He, “Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber,” Opt. Lett. 43(5), 1179–1182 (2018). [CrossRef]   [PubMed]  

19. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014). [CrossRef]  

20. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018). [CrossRef]  

21. Z. Wang, R. Zhao, J. He, B. Zhang, J. Ning, Y. Wang, X. Su, J. Hou, F. Lou, K. Yang, Y. Fan, J. Bian, and J. Nie, “Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm,” Opt. Express 24(2), 1598–1603 (2016). [CrossRef]   [PubMed]  

22. Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017). [CrossRef]   [PubMed]  

23. X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017). [CrossRef]   [PubMed]  

24. Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015). [CrossRef]  

25. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013). [CrossRef]  

26. Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015). [CrossRef]  

27. X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014). [CrossRef]  

28. J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5(8), 1859–1867 (2015). [CrossRef]  

29. X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016). [CrossRef]  

30. J. S. Lee, J. H. Koo, J. H. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 μm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016). [CrossRef]  

31. G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017). [CrossRef]  

32. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015). [CrossRef]  

33. Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013). [CrossRef]   [PubMed]  

34. Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017). [CrossRef]   [PubMed]  

35. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009). [CrossRef]   [PubMed]  

36. J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012). [CrossRef]  

37. S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015). [CrossRef]  

38. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014). [CrossRef]   [PubMed]  

39. Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

40. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009). [CrossRef]   [PubMed]  

41. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017). [CrossRef]   [PubMed]  

42. F. Maes, V. Fortin, S. Poulain, M. Poulain, J. Carrée, M. Bernier, and R. Vallée, “Room-temperature fiber laser at 3.92 μm,” Optica 5(7), 761–764 (2018). [CrossRef]  

43. C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011). [CrossRef]   [PubMed]  

44. J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
    [Crossref]
  2. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
    [Crossref] [PubMed]
  3. https://www.ipgphotonics.com/en/88/Widget/Passive+Q-switch+Fe_ZnS+and+Fe_ZnSe+Datasheet.pdf
  4. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref] [PubMed]
  5. J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
    [Crossref] [PubMed]
  6. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  7. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
    [Crossref]
  8. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
    [Crossref] [PubMed]
  9. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
    [Crossref]
  10. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
    [Crossref]
  11. H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
    [Crossref]
  12. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  13. L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
    [Crossref]
  14. H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
    [Crossref] [PubMed]
  15. J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
    [Crossref]
  16. Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
    [Crossref]
  17. T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
    [Crossref]
  18. W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, and J. He, “Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber,” Opt. Lett. 43(5), 1179–1182 (2018).
    [Crossref] [PubMed]
  19. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
    [Crossref]
  20. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
    [Crossref]
  21. Z. Wang, R. Zhao, J. He, B. Zhang, J. Ning, Y. Wang, X. Su, J. Hou, F. Lou, K. Yang, Y. Fan, J. Bian, and J. Nie, “Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm,” Opt. Express 24(2), 1598–1603 (2016).
    [Crossref] [PubMed]
  22. Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
    [Crossref] [PubMed]
  23. X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
    [Crossref] [PubMed]
  24. Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
    [Crossref]
  25. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
    [Crossref]
  26. Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
    [Crossref]
  27. X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
    [Crossref]
  28. J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5(8), 1859–1867 (2015).
    [Crossref]
  29. X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
    [Crossref]
  30. J. S. Lee, J. H. Koo, J. H. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 μm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
    [Crossref]
  31. G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
    [Crossref]
  32. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
    [Crossref]
  33. Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
    [Crossref] [PubMed]
  34. Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
    [Crossref] [PubMed]
  35. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
    [Crossref] [PubMed]
  36. J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
    [Crossref]
  37. S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
    [Crossref]
  38. Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
    [Crossref] [PubMed]
  39. Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).
  40. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
    [Crossref] [PubMed]
  41. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
    [Crossref] [PubMed]
  42. F. Maes, V. Fortin, S. Poulain, M. Poulain, J. Carrée, M. Bernier, and R. Vallée, “Room-temperature fiber laser at 3.92 μm,” Optica 5(7), 761–764 (2018).
    [Crossref]
  43. C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
    [Crossref] [PubMed]
  44. J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
    [Crossref]

2018 (4)

2017 (7)

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

2016 (7)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

J. S. Lee, J. H. Koo, J. H. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 μm band for a broadband saturable absorber,” J. Lightwave Technol. 34(22), 5250–5257 (2016).
[Crossref]

Z. Wang, R. Zhao, J. He, B. Zhang, J. Ning, Y. Wang, X. Su, J. Hou, F. Lou, K. Yang, Y. Fan, J. Bian, and J. Nie, “Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm,” Opt. Express 24(2), 1598–1603 (2016).
[Crossref] [PubMed]

2015 (7)

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5(8), 1859–1867 (2015).
[Crossref]

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

2014 (5)

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref] [PubMed]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

2013 (3)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

2012 (4)

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

2011 (2)

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

2009 (2)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

2008 (1)

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

2006 (1)

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Aminossadati, S. M.

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Bachelier, G.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Baida, H.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Balakrishnan, K.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

Bao, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Bernier, M.

Bian, J.

Bowen, W. P.

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Cai, Z.

Cao, R.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Carrée, J.

Charipar, N.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Che, K.

Chen, H.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Chen, S. Q.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Chen, Y.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Christofilos, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Crawford, S.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

Crut, A.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Cui, Y.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Dai, H. W.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

De Boni, L.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Del Fatti, N.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Du, J.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Du, L.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Duan, W.

Dunkelberger, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Fan, D.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Fan, S. S.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Fan, Y.

Feng, Y.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Fontana, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Fortin, V.

Gao, C.

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

Gao, X. J.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Gao, Y.

Ge, Y.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Gilroy, K. D.

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Gordel, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Guo, Q.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Guo, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Guo, X. Y.

Guo, Z.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Han, J. B.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

He, G.

He, J.

He, Z.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Hernandez, F. E.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Hosono, H.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Hou, J.

Huang, B.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Huang, M. H.

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Huang, Y.

Hudson, D. D.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Jackson, S. D.

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Ji, W.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Jia, Z. X.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Jiang, G. B.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Jiang, T.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Jiang, X.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Jin, Y.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Kang, Z.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Kizil, M. S.

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Kolkowski, R.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Koo, J.

Koo, J. H.

Kotov, L. V.

Lee, J.

Lee, J. H.

Lee, J. S.

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Li, C.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Li, H.

Li, J.

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
[Crossref]

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref] [PubMed]

Li, L.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Li, N.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Li, Q.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Li, Y.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Y. Huang, Z. Luo, Y. Li, M. Zhong, B. Xu, K. Che, H. Xu, Z. Cai, J. Peng, and J. Weng, “Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber,” Opt. Express 22(21), 25258–25266 (2014).
[Crossref] [PubMed]

Liang, W.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, H.

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Liu, L.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Liu, M.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Liu, M. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Liu, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, X.

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Liu, Y.

Lou, F.

Lu, R.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Lu, Z.

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

Luo, A. P.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Luo, H.

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

Luo, S.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Luo, Z.

Luo, Z. C.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Ma, Z. W.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Maes, F.

Maioli, P.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Matczyszyn, K.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Miao, L. L.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Ming, T.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Mongin, D.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Naciri, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Nie, H.

Nie, J.

Ning, J.

Nita, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Norwood, R. A.

Olesiak-Banska, J.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Owrutsky, J.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Park, K.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Peng, H. C.

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Peng, J.

Peyghambarian, N.

Pique, A.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Poulain, M.

Poulain, S.

Qian, L.

Qin, G. S.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Qin, W. P.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Qin, Z.

Qiu, J.

H. Luo, X. Tian, Y. Gao, R. Wei, J. Li, J. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
[Crossref]

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

Ratna, B.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Samoc, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Shemshad, J.

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Shin, W.

Song, F.

Su, X.

Sun, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Sun, X.

Tang, D. Y.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Tang, P. H.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Tang, R.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

Tian, Q. J.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Tian, X.

Tong, M.

Toro, C.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Vaia, R.

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Vallée, F.

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Vallée, R.

Wang, F.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

Wang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wang, J.

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Wang, L.

Wang, R.

Wang, X.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Wang, X. D.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Wang, Y.

Wang, Y. N.

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Wang, Z.

Wei, C.

Wei, R.

Wei, W. T.

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Wen, Q.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wen, S.

Wen, S. C.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Weng, J.

Wood, E. L.

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Xia, H.

Xia, X.

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Xia, Y.

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Xie, G.

Xie, J.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Xu, B.

Xu, H.

Xu, S.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Xu, W. C.

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Xu, Y.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Yan, C.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yang, C. W.

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Yang, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Yang, K.

Yang, Q.

Yang, R. Y.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Yang, Y.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yao, Y.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Ye, Y.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Yin, S. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Yin, Y.

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

Yuan, P.

Zhai, B.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Zhan, J.

Zhang, B.

Zhang, F.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Zhang, H.

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, C. Zhao, H. Zhang, H. Li, and Y. Liu, “3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40(15), 3659–3662 (2015).
[Crossref] [PubMed]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Zhang, L.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhang, Q.

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

Zhang, S.

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

Zhao, C.

Zhao, C. J.

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

Zhao, D.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhao, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Zhao, R.

Zhong, M.

Zhu, G.

X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, and N. Peyghambarian, “Pulsed fluoride fiber lasers at 3 μm [Invited],” J. Opt. Soc. Am. B 34(3), A15–A28 (2017).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

Zhu, X.

Adv. Mater. (3)

Q. Guo, Y. Cui, Y. Yao, Y. Ye, Y. Yang, X. Liu, S. Zhang, X. Liu, J. Qiu, and H. Hosono, “A solution-processed ultrafast optical switch based on a nanostructured Epsilon-near-zero medium,” Adv. Mater. 29(27), 1700754 (2017).
[Crossref] [PubMed]

X. Liu, Q. Guo, and J. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29(14), 1605886 (2017).
[Crossref] [PubMed]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Fontana, R. Nita, N. Charipar, J. Naciri, K. Park, A. Dunkelberger, J. Owrutsky, A. Pique, R. Vaia, and B. Ratna, “Widely tunable infrared plasmonic nanoantennas using directed assembly,” Adv. Opt. Mater. 5(21), 1700335 (2017).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

Y. Xia, K. D. Gilroy, H. C. Peng, and X. Xia, “Seed-mediated growth of colloidal metal nanocrystals,” Angew. Chem. Int. Ed. Engl. 56(1), 60–95 (2017).
[Crossref] [PubMed]

Appl. Phys. B (1)

J. Shemshad, S. M. Aminossadati, W. P. Bowen, and M. S. Kizil, “Effects of pressure and temperature fluctuations on near-infrared measurements of methane in underground coal mines,” Appl. Phys. B 106(4), 979–986 (2012).
[Crossref]

Appl. Phys. Lett. (5)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Y. Yu, S. S. Fan, H. W. Dai, Z. W. Ma, X. Wang, J. B. Han, and L. Li, “Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response inAu nanobipyramids,” Appl. Phys. Lett. 105(6), 061903 (2014).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 22(5), 0900508 (2014).

IEEE Photonics J. (2)

S. Crawford, D. D. Hudson, and S. D. Jackson, “High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss,” IEEE Photonics J. 7(3), 150239 (2015).
[Crossref]

G. B. Jiang, Y. Jin, L. L. Miao, L. Du, Z. Kang, B. Huang, C. J. Zhao, and S. C. Wen, “Tunable gold nanorods Q-switcher for pulsed Er-doped fiber laser,” IEEE Photonics J. 9(5), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonics Technol. Lett. 28(1), 7–10 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

C. Gao, Q. Zhang, Z. Lu, and Y. Yin, “Templated synthesis of metal nanorods in silica nanotubes,” J. Am. Chem. Soc. 133(49), 19706–19709 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Langmuir (1)

Y. N. Wang, W. T. Wei, C. W. Yang, and M. H. Huang, “Seed-mediated growth of ultralong gold nanorods and nanowires with a wide range of length tunability,” Langmuir 29(33), 10491–10497 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Laser Phys. Lett. (4)

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982 nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

X. D. Wang, Z. C. Luo, M. Liu, R. Tang, A. P. Luo, and W. C. Xu, “Wavelength-switchable femtosecond pulse fiber laser mode-locked by silica-encased gold nanorods,” Laser Phys. Lett. 13(4), 045101 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13(10), 105108 (2016).
[Crossref]

Nano Lett. (1)

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Opt. Mater. Express (3)

Optica (1)

Photon. Res. (1)

Phys. Rev. Lett. (1)

H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, and F. Vallée, “Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance,” Phys. Rev. Lett. 107(5), 057402 (2011).
[Crossref] [PubMed]

Plasmonics (1)

L. De Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Sci. Rep. (1)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material formid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6(1), 30361 (2016).
[Crossref]

Other (1)

https://www.ipgphotonics.com/en/88/Widget/Passive+Q-switch+Fe_ZnS+and+Fe_ZnSe+Datasheet.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The synthesis procedure of the LAR-GNRs.
Fig. 2
Fig. 2 (a) TEM image of the LAR-GNRs (Inset: the photograph of the aqueous solution of the LAR-GNRs), (b) linear absorption spectrum of the LAR-GNRs.
Fig. 3
Fig. 3 Nonlinear absorption of the LAR-GNRs measured at 2.87 μm.
Fig. 4
Fig. 4 Experimental setup of the designed wavelength tunable passively Q-switched Ho3+/Pr3+ codoped ZBLAN fiber laser based on LAR-GNRs SA.
Fig. 5
Fig. 5 Q-switched pulse train and single pulse waveform at the pump power of (a) 115.3 mW and (b) 307.2 mW. (c) Optical and (d) RF spectra at the pump power of 307.2 mW.
Fig. 6
Fig. 6 (a) Repetition rate and pulse width, and (b) output power and pulse energy as a function of the pump power.
Fig. 7
Fig. 7 Output power stability within 240 min.
Fig. 8
Fig. 8 Optical spectra of the passively Q-switched pulses when tuning at the pump power of 307.2 mW.
Fig. 9
Fig. 9 (a) Output power and repetition rate, (b) pulse width and pulse energy as a function of the wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( I ) = 1 Δ T exp ( I / I s a t ) T n s ,

Metrics