Abstract

An active multifunctional terahertz modulator based on plasmon-induced transparency (PIT) metasurface under the effect of external infrared light was investigated theoretically and experimentally. A distinct transparency window, which resulted from the near-field coupling between two resonators, could be observed in the transmission spectra. Experimental results showed a phenomenon infrared light induced blue shift on the both resonator with increasing optical powers. When the optical power was tuned from 0 mW to 400 mW, the amplitude tunability of transmission at transparency window reached to 34.01%, much larger than that at the two resonance frequencies. Moreover, the phase tunability of the transmission at 0.98 THz reached to 31.35%. Meanwhile, the amplitude variation was limited to 10%. Furthermore, a coupled Lorentz oscillator model was adopted to analyze the near-field interaction of the resonances. Experimental results were in good agreement with the analytical fitting results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

During the last decade, metasurface (or metamaterial) has earned considerable attention due to its potential applications in areas such as bio-sensing, compressive imagining and so on [1–5]. Metasurface are engineered electromagnetic materials, which offered enormous opportunities and unprecedented functionalities to manipulate electromagnetic waves [6]. Therefore, metasurface or metamaterials based switcher, modulator, absorber and polarizer has been investigated by peers from all over the world [7–10]. For example, Zhang Xin proposed a reconfigurable terahertz metasurface quarter-wave plate, realizing real-time tuning of the polarization state of the transmitted light [11]. The anisotropic metasurface enabled tunable polarization conversion through voltage-based cantilever actuation and provided mode-selective control of the resonance frequency. Relevant studies shows that metasurfaces’ properties mainly resulted from sub wavelength details of the metallic or dielectric element, which could be dynamically controlled in the electrical, thermal or optical methods [12–14]. Thus semiconductor is an ideal candidate for metamaterial based devices, such as graphene, silicon and vanadium dioxide [15–18]. Their conductivity could be tuned by optical or electric field, which guaranteed the active control [19, 20]. For a broadband terahertz devices based on vanadium dioxide metamaterials, the absorptance at peak frequencies can be continuously tuned from 30% to 100% by changing the conductivity from 10 to 2000 Ω−1 cm−1 [21].

Electromagnetically induced transparency (EIT) is known as a quantum interference effect that occurs in three-level atomic systems and gives rise to a sharp transparency window within a broad absorption spectrum [22–24]. Associated with the enhanced transmission is extreme dispersion; thus the EIT effect enables a very small group velocity [23,25]. Similar to the EIT effect in atomic physics, the plasmon-induced transparency (PIT) metamaterial has attracted much attention, because it is not restricted to systems supporting quantum mechanical states, and can be mimicked with metamaterials [26–28]. Theoretically and experimentally realization of PIT structures in classical systems, such as electric circuits, coupled resonator, and plasmonic structures have already been reported [29–31]. These artificial structures possessing PIT resonances stem from the destructive interference between different resonance modes or asymmetry structure of the metamaterial system [32]. Furthermore, motivated by the strong field localization and field enhancement, plasmonic metamaterial has been exploited to demonstrate PIT effects with high figure of merit in terms of narrow transparency and high modulation depth [33–35].

In this manuscript, we proposed a PIT metasurface based on p-type silicon (Si). An tunable infrared light was used to switch and modulate terahertz wave effectively, and the transmission properties of the PIT metasurface was characterized by terahertz time-domain spectroscopy at room temperature.

2. Experimental details

The sample of a metasurface fabricated on a light doped p-type Si wafer (ρ=15Ωcm) with the thickness of 500 um was displayed in Fig. 1(a). The metasurface was prepared by the photo-lithography technique, and subsequent deposition of Ti film as the adhesion layer and Al film was prepared by the electron beam evaporation. After photo resist was lift off, the optical microscope (OM) image of the sample was shown in Fig. 1(b). Unit cell of the metasurface was shown in Fig. 1(c), consisting of two elements: (i) Π-shaped resonator (PSR): a long metallic wire that electrically connects the neighboring cells in x-direction, and a pair of y-oriented cut wires attached to the long wire; and (ii) a C-shaped square resonator (CSR) placed in their proximity. The sample of metasurface was consisted of 80*80 unit cells.

 figure: Fig. 1

Fig. 1 (a) The schematic of an efficient light modulator based on a frequency-selective tunable terahertz metasurface. The sample size was 15 mm*15mm. (b) the OM image of the sample when the photo-resist was lift off. (c) Geometry of the unit-cell of the metasurface with parameters: L1 = 120 um, L2 = 80 um, h1 = 30 um, h2 = 25 um, a = 30 um, g = w = 5um. Metal thickness for the metasurface: d = 100 nm (5 nm Ti + 95 nm Al).

Download Full Size | PPT Slide | PDF

To explore transmission characteristics of the PIT metasurface in terahertz range, a terahertz time-domain spectrometer system was used to measure the transmission spectra of the sample under external optical field. An all-solid-state CW laser (center wavelength, 1064 nm) was employed for the external optical pumping in this experiment. The light was obliquely incident upon the film at 30°. The spot size of the terahertz beam and external infrared light was 4 mm and 8 mm, respectively.In order to eliminate the Fabry-Perot effect, time domain signals obtained from the THz-TDS were windowed and Fourier transformed to calculate the complex transmission of the metasurface. In subsequent steps, the complex transmission of sample could be obtained from the ratio of the two waveforms via the formula:t(ω)=Es(ω)/Er(ω), where theEs(ω)is the frequency waveform of the sample and Er(ω)is the frequency waveform of underlying substrate.

3. Experimental results and discussion

Figure 2 displayed the measured and simulated transmission spectra of the sample based on metasurface. To reveal the underlying physical mechanism for the electromagnetic response of the metasurface, numerous simulations were performed using a full-wave electromagnetic simulation software CST based on a finite integration technique. In the simulation process, the propagation wave vector (k) was perpendicular to the structure plane whereas the electric field (E) and magnetic field (H) were parallel to the incident plane. In addition, we chose the Al with electric conductivity σ=3.72×107S/mas lossy metallic pattern. The simulated parameters of the Si were calculated by the Drude model:

ε=εwp2w2+iwγ,
with high frequency dielectric constant ε=12.5, damping rate γ=5×1012rad/sand plasma frequency wp=3.57×1012rad/s. Figures 2(a) and 2(d) displayed the transmission spectra of the CSR and PSR part in the metasurface, respectively. It could be found that for the CSR structure with electric field parallel to x direction, there was a dip at 0.81 THz in the transmission spectrum, resulting from dipolar resonance of the CSR. However, the transmission spectrum of the PSR was comparatively flat in whole frequency domain. When the two structures integrated together with the horizontal polarization as shown in Figs. 2(b) and 2(e), a second mode and a transparency window were respectively introduced, whose resonant frequencies corresponding to 0.68 THz and 0.79 THz. The addition of the PSR structure also resulted in a red shift of the dipolar resonance of the CSR from 0.81 THz to 0.98 THz in the transmission spectra caused by the capacitive coupling between the CSR and PSR [36]. Besides, the simulated transmission spectrum of the metasurface was given in Fig. 2(b), which reproduced a good agreement with the measured result displayed in Fig. 2(e). However, the resonance degree of the experimental result is weaker than that of the simulation result. The Q-factor of the monopole resonance at 0.68 THz for simulated and experimental results were 37.33 and 6.84, respectively. The Q-factor of dipole resonance at 0.98 THz for the simulated and experimental results were 34.56 and 4.92, respectively. Therefore, compared with the simulated results, the Q-factor of the experimental results was much smaller because of large non-radiative loss resulted from ohmic damping and absorption of the substrate [16]. From Figs. 2(c) and 2(f), it could be found that there was no resonance observed in the transmission spectra of the metasurface with the vertical polarization, which indicated the structure of the metasurface is polarization sensitive.

 figure: Fig. 2

Fig. 2 Simulated and measured transmission spectra of terahertz metasurface. (a) and (b) are simulated transmission spectra for the bottom and the upper half of the metasurface, respectively. (b) and (e) are simulated and measured transmission spectra of the metasurface when terahertz wave is horizontal polarized, respectively. (c) and (f) are simulated and measured transmission spectra of the metasurface when terahertz wave is vertically polarized.

Download Full Size | PPT Slide | PDF

From the transmission spectra of the metasurface shown in Figs. 2(b) and 2(e), the-metasurface exhibited two distinct resonances and a transparency window at 0.68 THz, 0.98 THz and 0.79 THz, separately. The electric field and the surface current distributions of the 0.68, 0.79 and 0.98 THz have been plotted as shown in Fig. 3. As shown in Figs. 3(c) and 3(f), the one at higher resonance frequency of 0.98 THz primarily arises from dipolar resonance of the CSR and PSR structure directly excited by the incident plane wave (bright mode). The mechanism of dipolar resonance is electrical response induced by a parallel current in PSR structure and DSR structure. In addition, the near-field coupling between the CSR and PSR structure produces a characteristic quadrupole-like electric field distribution as shown in Figs. 3(a) and 3(d), which could lead to the resonance at 0.68 THz (dark mode). This emergent mode is referred to as the monopolar mode because of the strong current flow between neighboring cut wires. The near-field coupling between the two discrete (dipolar and monopolar) modes and the broad-band currents flowing in the wire grid cause a Fano interference, as shown in Figs. 3(b) and 3(e). Therefore, a distinct transparency window at 0.79 THz was appeared.

 figure: Fig. 3

Fig. 3 (a), (b)and (c) are the simulated electric field distribution of the metasurface in the frequency of 0.68 THz, 0.79 THz and 0.98 THz, respectively. (d), (e), and (f) are the simulated surface charge density of the metasurface in the frequency of 0.68 THz and 0.98 THz, respectively.

Download Full Size | PPT Slide | PDF

For realizing an active switching effect, we investigated transmission characteristics of the metasurface under the effect of infrared light. Figure 4(a) compared the transmission properties of the metasurface with the infrared light off and on. It could be observed that when the sample without illumination by the infrared light, the value of the transmission reached to 0.7 at 0.79 THz. However, the value of transmission was decreased to 0.44 when optical power of the infrared light was tuned to 400 mW, realizing a good modulating effect on terahertz wave. Moreover, Fig. 4(b) displayed the transmission tunability of the metasurface sample under the effect of optical powers in the frequency of 0.69 THz, 0.79 THz and 0.89 THz. The tunability of the metasurface was obtained from ΔT/T=(T(P)T(0))/T(0), where T(0) is the transmission of the sample without the effect of infrared light and T(P) is the transmission of the sample with the applied optical power P. Therefore, when the optical power was tuned to 400 mW, the tunability of transmission reached to 19.33%, 34.01% and 9.23% at 0.68 THz, 0.79 THz, and 0.98 THz, respectively. Obviously, the infrared light tuned the amplitude of terahertz wave most at the transparency window of 0.79 THz.

 figure: Fig. 4

Fig. 4 (a) Transmission spectra of the metasurface with infrared light off and on. When the infrared light was illuminated on the metasurface, the value of optical power was 400 mW. (b) Transmission tunability of the metasurface-as function of optical powers at 0.68 THz, 0.79 THz and 0.98 THz, respectively.

Download Full Size | PPT Slide | PDF

In order to further investigate the refined variation of transmission characteristics with infrared light, Fig. 5 displayed the transmission properties of the metasurface with increasing optical powers. When the illuminated power was increased from 0 mW to 400mW, there was a blue shift on the both resonances in the transmission spectra as shown in Fig. 5(b). In addition, the transparency window gradually got deteriorated as shown in Figs. 5(a) and 5(b). From the transmission spectra, it could be observed that the resonance frequency of the monopolar resonance was shifted from 0.64 THz to 0.78 THz and the frequency of the dipolar resonance was shifted from 0.95 to 1.12 THz. As a result, the transparency window shifted along with them. The resonance frequency was determined by f1/4lεs, in which, l represented the length of the resonator and εswas the dielectric constant of the underlying substrate [37,38]. The corresponding increase of the illumination powers led to the increase of the carriers in the substrate, which resulted into the decrease of the dielectric constant [39]. In Eq. (1), the plasma frequency could be further expressed as wp=Ne2/με0, in which e is electron charge, μis reduced mass andε0is the vacuum permittivity and therefore the plasma frequency is related to the carrier density N. When the infrared light was illuminated on the metasurface, large numbers of carriers were excited, leading to a decrease in Re(ε) of the substrate and a increase in the dielectric loss Im(ε) of the substrate, as Fig. 5(f) displayed. Therefore, according to Eq. (1), it could be deduced that the optical field (would lead) leading to a blue shift on the both resonances at peak, dip A and dip B, as shown in Fig. 5(b). In addition, the resonance at dip B was gradually ambiguously when the optical power was further increased to 300 mW, because the large numbers of the excited carriers from Si substrate weakened the direct interaction of the CSR structure with the incident terahertz wave. Moreover, Fig. 5(c) displayed the transmission of the metasurface with different optical powers corresponding to each resonance. The transmission of each resonance was decreased with increasing optical powers. For example, monopolar resonance decreased from 0.61 to 0.42, caused by more terahertz wave absorbed and reflected with increasing numbers of excited carriers. Thus enhancement of modulation depth was realized by the blue shift of resonances and the increment of dielectric loss with the increasing optical powers.

 figure: Fig. 5

Fig. 5 (a) Amplitude of the measured transmission of the metasurface in frequency spectra with different powers of the infrared light. (b) Plotted the resonance frequency of the metasurface with increasing optical powers. (c) Variation of the transmission amplitude as function of optical powers at the resonances, and the peak, respectively. (d) Phase of the measured transmission of the metasurface in frequency spectra with different powers of infrared light. (e) Phase of the transmission of the metasurface at 0.98 THz with different optical powers. (f) Dielectric constant of the Si substrate with different powers of infrared light at 0.4 THz, Re(ε) represented the real part of the complex dielectric constant, Im(ε) represented the imaginary part of the complex dielectric constant

Download Full Size | PPT Slide | PDF

Figure 5(d) plotted phase variation of the complex transmission with optical powers and resonance shift also could be observed in the phase spectra. When the optical powers was tuned from 0 mW to 400 mW, the amplitude variation of the transmission at 0.98 THz was limited to 10%. However, the phase of transmission at 0.98 THz was increased from −1.50 rad to −1.19 rad and the modulation depth in phase reached to 31.33%, as Fig. 5(e) shown, inferring its phase sensitivity to infrared light powers.

In order to elucidate the physical mechanism of the frequency tunable metasurface behavior, the widely used coupled Lorentz oscillator model is adopted to analyze the near field interaction of the resonances. This model involves a radiative plasmonic state, a dark plasmonic state and a ground state, similar to the three level system in quantum EIT. The dipolar resonance in the CSR was inferred as a radiative transition from the ground state to the radiative state. The monopolar resonance in the PSR was inferred as a dark forbidden transition from the ground state to the dark plasmonic state. The coupling effect between the two resonances is related to the transition from the radiative state to the dark plasmonic state. In the metasurface, the amplitude χ1 and χ2 in the coupled Lorentz oscillator model can be used to describe the interference formed by the two resonances, which is shown as below [40,41]:

χ¨1+γ1χ˙1+ω20χ1+κχ2=gE,χ¨2+γ2χ˙2+(ω0+δ)2χ2+κχ1=0.
In Eq. (2), γ1 and γ2 are damping factors of the radiative and dark plasmonic state, respectively. w0 represents the resonance frequencies of the radiative plasmonic state when it is isolated from dark plasmonic state. δ represents the detuning of the resonance frequency of dark plasmonic state from radiative plasmonic state. κ denotes coupling coefficient between two plasmonic states, and g is a geometric parameter indicating the coupling strength of the radiative plasmonic state with the incident THz wave.

By solving the Eq. (2), the susceptibility χe of the unit cell can be achieved. In addition, the susceptibility of the metasurface layer is expressed asχ˜=χ˜e/dwith a thickness of d [35]. Provided that sufficiently metasurface layer is thinner than the wavelengths of the incident THz waves, the near-field susceptibility can be approximately regarded as the far-field transmission of the metasurface, which can be shown as [42,43],

|t˜|=|c(1+ns)/[c(1+ns)iωχ˜e]|,
where c is the light velocity in vacuum and ns represents the refractive index of the Si substrate. Figure 6 displayed the analytical fitting of the experimental transmission spectra with different optical powers According to Eqs. (2) and (3). It could be found that the experimental results are in good agreement with coupled Lorentz oscillator model results. In addition, the extracted fitting parameters with different optical powers are plotted in Fig. 7. Furthermore, an obvious increase of coupling coefficient κ resulted from a reduction in screening effect formed by carriers. This is because the external optical field and local high field of the PIT metasurface exhausted the carriers around the gap between the CSR resonator and PSR resonator. The damping factor γ1 did not vary significantly with increasing optical powers and the damping factor γ2 was increased greatly due to much excited carriers existed in the metasurface. Hence, the dipolar resonance in CSR structure got broadened which further increased the coupling effect between the monopolar PSR resonator and the dipolar CSR resonator. Besides, δ increases markedly from 0.008 THz to 0.8 THz when optical powers was tuned from 0 mW to 400 mW, resulting from increasing resonance frequency difference between the monopolar resonance of the PSR and dipolar resonance of the CSR with optical powers. The resonance frequency of the two resonator varied out of sync with dielectric constant of the substrate.

 figure: Fig. 6

Fig. 6 Experimental and theoretical transmission spectra of the metasurface when the optical powers are (a) 0 mW, (b) 100 mW, (c) 200 mW, and (d) 300 mW, respectively.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7

Fig. 7 Values of γ1, γ2, δ and κ were extracted by fitting the numerical transmission spectra. In addition, The unit of κ is THz2.

Download Full Size | PPT Slide | PDF

In order to verify the angular dependence of the metasurface, Fig. 8 plotted the simulated transmission spectra of the metasurface as a function of incident angle and frequency. It could be found that the transmission properties of the metasurface displayed higher dependence on incident angular for both transverse electric (TM) and transverse magnetic (TE) polarization. For TM polarization, the resonance was varied little, however, the bandwidth of the transmission dip broadened with the increasing angular. This is because electric field of the incident wave was decreased with various incident angles and the interaction of the resonator with incident wave was weakened. Besides, for TE polarization, there was one additional dip in the transmission spectra of the metasurface because the metasurface was radiative with the z-polarized magnetic field of the electromagnetic wave.

 figure: Fig. 8

Fig. 8 Transmission properties depended on incident angular: (a) for TM polarization and (b) For TE polarization, respectively.

Download Full Size | PPT Slide | PDF

4. Conclusion

To sum up, we proposed and investigated a dynamical frequency-tunable terahertz modulator based on PIT metasurface. The unit cell of the metasurface consisted of an active C-shaped resonator and a passive Π-shaped resonator. The dipolar resonance at 0.98 THz of the C-shaped resonator is directly radiative with terahertz wave. However, the near-field coupling between the CSR and PSR resonators produces a characteristic of quadrupolar resonator, leading to the resonance at 0.68 THz. The interference of the two resonances resulted in a transparency window in the transmission spectra. Besides, a phenomenon of infrared induced blue shift on both resonance frequencies was observed when the optical powers was increased from 0 mW to 400 mW. That is because the external optical filed excited large numbers of carriers in the substrate and the dielectric properties of the substrate was varied along with it. A coupled Lorentz oscillator model is adopted to analyze the near field interaction of the resonances and experimental results is found to be in good agreement with the analytical fitting results. In addition, the resonances of metasurface is also dependent on angular. This paper would provide a reference for tunable opto-electrical devices based on metasurface.

Funding

National Natural Science Foundation of China (61735010, 61675147); National Key Research and Development Program of China (2017YFA0700202).

Acknowledgments

We would like to thank Guang Huang engineer in the Center of Micro-Fabrication and Characterization (CMFC) of WNLO for the support in preparation of the sample.

References

1. R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).

2. Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018). [CrossRef]   [PubMed]  

3. L.-H. Du, J. Li, Q. Liu, J.-H. Zhao, and L.-G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7(4), 1335 (2017). [CrossRef]  

4. G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018). [CrossRef]  

5. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014). [CrossRef]  

6. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]  

7. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012). [CrossRef]   [PubMed]  

8. Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016). [CrossRef]   [PubMed]  

9. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014). [CrossRef]  

10. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

11. X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018). [CrossRef]  

12. Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015). [CrossRef]   [PubMed]  

13. J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018). [CrossRef]  

14. X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

15. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef]   [PubMed]  

16. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef]   [PubMed]  

17. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010). [CrossRef]  

18. X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016). [CrossRef]  

19. W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018). [CrossRef]  

20. L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016). [CrossRef]  

21. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018). [CrossRef]   [PubMed]  

22. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]  

23. R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013). [CrossRef]  

24. Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018). [CrossRef]  

25. Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018). [CrossRef]   [PubMed]  

26. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef]   [PubMed]  

27. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012). [CrossRef]   [PubMed]  

28. Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018). [CrossRef]  

29. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011). [CrossRef]   [PubMed]  

30. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012). [CrossRef]   [PubMed]  

31. N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017). [CrossRef]   [PubMed]  

32. M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008). [CrossRef]   [PubMed]  

33. E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018). [CrossRef]  

34. J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018). [CrossRef]  

35. D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017). [CrossRef]   [PubMed]  

36. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015). [CrossRef]  

37. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012). [CrossRef]  

38. R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011). [CrossRef]   [PubMed]  

39. K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018). [CrossRef]   [PubMed]  

40. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef]   [PubMed]  

41. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012). [CrossRef]   [PubMed]  

42. X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013). [CrossRef]   [PubMed]  

43. G. Yao, F. Ling, J. Yue, Q. Luo, and J. Yao, “Dynamically tunable graphene plasmon-induced transparency in the terahertz region,” J. Lightwave Technol. 34, 3937–3942 (2016).

References

  • View by:

  1. R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).
  2. Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
    [Crossref] [PubMed]
  3. L.-H. Du, J. Li, Q. Liu, J.-H. Zhao, and L.-G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7(4), 1335 (2017).
    [Crossref]
  4. G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
    [Crossref]
  5. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  6. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  7. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [Crossref] [PubMed]
  8. Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
    [Crossref] [PubMed]
  9. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
    [Crossref]
  10. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).
  11. X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
    [Crossref]
  12. Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
    [Crossref] [PubMed]
  13. J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
    [Crossref]
  14. X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).
  15. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  16. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  17. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
    [Crossref]
  18. X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
    [Crossref]
  19. W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
    [Crossref]
  20. L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
    [Crossref]
  21. Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
    [Crossref] [PubMed]
  22. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  23. R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
    [Crossref]
  24. Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
    [Crossref]
  25. Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
    [Crossref] [PubMed]
  26. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  27. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  28. Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
    [Crossref]
  29. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
    [Crossref] [PubMed]
  30. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  31. N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
    [Crossref] [PubMed]
  32. M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
    [Crossref] [PubMed]
  33. E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
    [Crossref]
  34. J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
    [Crossref]
  35. D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
    [Crossref] [PubMed]
  36. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
    [Crossref]
  37. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
    [Crossref]
  38. R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
    [Crossref] [PubMed]
  39. K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
    [Crossref] [PubMed]
  40. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  41. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  42. X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
    [Crossref] [PubMed]
  43. G. Yao, F. Ling, J. Yue, Q. Luo, and J. Yao, “Dynamically tunable graphene plasmon-induced transparency in the terahertz region,” J. Lightwave Technol. 34, 3937–3942 (2016).

2018 (13)

R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
[Crossref]

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (4)

2015 (4)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

2014 (2)

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

2013 (2)

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
[Crossref]

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

2012 (5)

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

2011 (3)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

2010 (2)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

2009 (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

2008 (2)

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

2006 (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Adato, R.

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

Alici, K. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Altug, H.

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Arora, P.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Averitt, R. D.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Bai, G. D.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Bao, L.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Barash, Y.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Cai, G.

Cao, L.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Castro Neto, A. H.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Chen, K.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Chen, L.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Chen, Y.

Cheng, L.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Cheong, S. A.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Chia, E. E.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Choi, J. W.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Chu, Q.

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Cui, T. J.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Dabidian, N.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Du, L.-H.

Duan, G.

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fainman, Y.

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

Fan, K.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gu, J.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Han, J.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Han, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hentschel, M.

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hong, S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Hong, W.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Hong, Z.

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, J.

Huang, L.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Iqbal, S.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Jeong, Y. G.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Jing, H. B.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Jones, A. C.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Keiser, G. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Khanikaev, A. B.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Kholmanov, I.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kim, B. J.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Kim, D. S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Kim, H. T.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Kyoung, J. S.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Lai, J.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Lang, T.

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

La-o-Vorakiat, C.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Leaw, J.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Levy, U.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Li, B.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Li, H.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Li, J.

Li, R.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Li, S.

Li, Y.

Li, Z. Y.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Ling, F.

Ling, Y.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, C.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, Q.

Liu, Q. H.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
[Crossref] [PubMed]

Liu, T.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Liu, W.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Liu, X.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Liu, Y.-L.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Loh, K. P.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Luan, J.

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Luo, F.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Luo, L.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Luo, Q.

Luo, W.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Luo, Z.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Ma, Q.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Ma, R.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Magnuson, C.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Metcalfe, G. D.

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Mousavi, S. H.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Ouyang, C.

Padilla, W. J.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Park, N.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Qin, S.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Rang, M.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Raschke, M. B.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Rhie, J.

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Ruoff, R. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Schalch, J.

Seren, H. R.

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Shang, J.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Shen, C.

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, G.

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Shvets, G.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smalley, J. S. T.

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Song, Z.

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Z. Song, K. Wang, J. Li, and Q. H. Liu, “Broadband tunable terahertz absorber based on vanadium dioxide metamaterials,” Opt. Express 26(6), 7148–7154 (2018).
[Crossref] [PubMed]

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

Y. Chen, J. Yao, Z. Song, L. Ye, G. Cai, and Q. H. Liu, “Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab,” Opt. Express 24(15), 16961–16972 (2016).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Stern, L.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, A. C.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Strikwerda, C.

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

Su, H.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Talker, E.

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

Tan, Y.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Taubert, R.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tian, Z.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Trendafilov, S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Vallini, F.

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, G.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Wang, K.

Wang, W.

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wen, Q.-Y.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Wiley, B. J.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

Won, R.

R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).

Wraback, M.

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Wu, C.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Wu, D.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Wu, H. T.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Wu, N.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Wu, R. Y.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Xia, Y.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Xie, Y.-S.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Xu, Q.

Xu, X.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Yang, C.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Yang, Q.-H.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Yanik, A. A.

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

Yao, G.

Yao, J.

Ye, H.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Ye, L.

Ye, Y.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Yu, L.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Yu, T.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Yu, Y.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Yu, Z.

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Yue, J.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, G. F.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Zhang, H. C.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

Zhang, H.-W.

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Zhang, J.

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

Zhang, L.

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Zhang, N.

Zhang, S.

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303 (2018).
[Crossref]

N. Zhang, Q. Xu, S. Li, C. Ouyang, X. Zhang, Y. Li, J. Gu, Z. Tian, J. Han, and W. Zhang, “Polarization-dependent electromagnetic responses in an A-shape metasurface,” Opt. Express 25(17), 20689–20697 (2017).
[Crossref] [PubMed]

X. Zhao, J. Zhang, K. Fan, G. Duan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Nonlinear terahertz metamaterial perfect absorbers using GaAs,” Photon. Res. 4(3), A16 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X. A.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Zhao, J.-H.

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zhao, X.

Zheng, X.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Zhou, F.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Zhu, J. X.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Zhu, L.-G.

Zhu, M.

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zou, X.

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

E. Talker, P. Arora, Y. Barash, L. Stern, and U. Levy, “Plasmonic Enhanced EIT and Velocity Selective Optical Pumping Measurements with Atomic Vapor,” ACS Photonics 5(7), 2609–2616 (2018).
[Crossref]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Adv. Mater. (1)

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric Huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

G. D. Bai, Q. Ma, S. Iqbal, L. Bao, H. B. Jing, L. Zhang, H. T. Wu, R. Y. Wu, H. C. Zhang, C. Yang, and T. J. Cui, “Multitasking shared aperture enabled with multiband digital coding metasurface,” Adv. Opt. Mater. 6(21), 1800657 (2018).
[Crossref]

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2(12), 1221–1226 (2014).
[Crossref]

C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2015).

Adv. Opt. Photonics (1)

J. S. T. Smalley, F. Vallini, X. Zhang, and Y. Fainman, “Dynamically tunable and active hyperbolic metamaterials,” Adv. Opt. Photonics 10(2), 354 (2018).
[Crossref]

Appl. Phys. Express (1)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Appl. Phys. Lett. (1)

Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

IEEE T. Microw. Theory (1)

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE T. Microw. Theory 64(9), 2730–2739 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Mater. Lett. (1)

Z. Song, Q. Chu, and Q. H. Liu, “Isotropic wide-angle analog of electromagnetically induced transparency in a terahertz metasurface,” Mater. Lett. 223, 90–92 (2018).
[Crossref]

Nano Lett. (4)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, and H. Altug, “On chip plasmonic monopole nano-antennas and circuits,” Nano Lett. 11(12), 5219–5226 (2011).
[Crossref] [PubMed]

Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, “A vanadium dioxide metamaterial disengaged from insulator-to-metal transition,” Nano Lett. 15(10), 6318–6323 (2015).
[Crossref] [PubMed]

Nanoscale (2)

Y. Tan, F. Luo, M. Zhu, X. Xu, Y. Ye, B. Li, G. Wang, W. Luo, X. Zheng, N. Wu, Y. Yu, S. Qin, and X. A. Zhang, “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale 10(42), 19964–19971 (2018).
[Crossref] [PubMed]

Y. Ling, L. Huang, W. Hong, T. Liu, J. Luan, W. Liu, J. Lai, and H. Li, “Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial,” Nanoscale 10(41), 19517–19523 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

R. Won, “Metasurface mixer,” Nat. Photonics 12, 443 (2018).

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (2)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. (1)

Phys. Rev. Lett. (5)

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

X. Zou, J. Shang, J. Leaw, Z. Luo, L. Luo, C. La-o-Vorakiat, L. Cheng, S. A. Cheong, H. Su, J. X. Zhu, Y. Liu, K. P. Loh, A. H. Castro Neto, T. Yu, and E. E. Chia, “Terahertz conductivity of twisted bilayer graphene,” Phys. Rev. Lett. 110(6), 067401 (2013).
[Crossref] [PubMed]

Physica B (1)

W. Wang and Z. Song, “Multipole plasmons in graphene nanoellipses,” Physica B 530, 142–146 (2018).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Sci. Rep. (1)

D. Wu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Li, R. Ma, C. Liu, J. Zhang, and H. Ye, “Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor,” Sci. Rep. 7(1), 45210 (2017).
[Crossref] [PubMed]

Sensors and Actuat. A: Phys. (1)

X. Zhao, K. Fan, J. Zhang, H. R. Seren, G. D. Metcalfe, M. Wraback, R. D. Averitt, and X. Zhang, “Optically tunable metamaterial perfect absorber on highly flexible substrate,” Sensors and Actuat. A: Phys. 231, 74–80 (2015).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The schematic of an efficient light modulator based on a frequency-selective tunable terahertz metasurface. The sample size was 15 mm*15mm. (b) the OM image of the sample when the photo-resist was lift off. (c) Geometry of the unit-cell of the metasurface with parameters: L1 = 120 um, L2 = 80 um, h1 = 30 um, h2 = 25 um, a = 30 um, g = w = 5um. Metal thickness for the metasurface: d = 100 nm (5 nm Ti + 95 nm Al).
Fig. 2
Fig. 2 Simulated and measured transmission spectra of terahertz metasurface. (a) and (b) are simulated transmission spectra for the bottom and the upper half of the metasurface, respectively. (b) and (e) are simulated and measured transmission spectra of the metasurface when terahertz wave is horizontal polarized, respectively. (c) and (f) are simulated and measured transmission spectra of the metasurface when terahertz wave is vertically polarized.
Fig. 3
Fig. 3 (a), (b)and (c) are the simulated electric field distribution of the metasurface in the frequency of 0.68 THz, 0.79 THz and 0.98 THz, respectively. (d), (e), and (f) are the simulated surface charge density of the metasurface in the frequency of 0.68 THz and 0.98 THz, respectively.
Fig. 4
Fig. 4 (a) Transmission spectra of the metasurface with infrared light off and on. When the infrared light was illuminated on the metasurface, the value of optical power was 400 mW. (b) Transmission tunability of the metasurface-as function of optical powers at 0.68 THz, 0.79 THz and 0.98 THz, respectively.
Fig. 5
Fig. 5 (a) Amplitude of the measured transmission of the metasurface in frequency spectra with different powers of the infrared light. (b) Plotted the resonance frequency of the metasurface with increasing optical powers. (c) Variation of the transmission amplitude as function of optical powers at the resonances, and the peak, respectively. (d) Phase of the measured transmission of the metasurface in frequency spectra with different powers of infrared light. (e) Phase of the transmission of the metasurface at 0.98 THz with different optical powers. (f) Dielectric constant of the Si substrate with different powers of infrared light at 0.4 THz, Re(ε) represented the real part of the complex dielectric constant, Im(ε) represented the imaginary part of the complex dielectric constant
Fig. 6
Fig. 6 Experimental and theoretical transmission spectra of the metasurface when the optical powers are (a) 0 mW, (b) 100 mW, (c) 200 mW, and (d) 300 mW, respectively.
Fig. 7
Fig. 7 Values of γ1, γ2, δ and κ were extracted by fitting the numerical transmission spectra. In addition, The unit of κ is THz2.
Fig. 8
Fig. 8 Transmission properties depended on incident angular: (a) for TM polarization and (b) For TE polarization, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε = ε w p 2 w 2 + i w γ ,
χ ¨ 1 + γ 1 χ ˙ 1 + ω 2 0 χ 1 + κ χ 2 = g E , χ ¨ 2 + γ 2 χ ˙ 2 + ( ω 0 + δ ) 2 χ 2 + κ χ 1 = 0.
| t ˜ | = | c ( 1 + n s ) / [ c ( 1 + n s ) i ω χ ˜ e ] | ,

Metrics