Abstract

The light absorption of a hybrid novel MoS2-based nanostructure is theoretically investigated by using the finite-difference time-domain (FDTD) simulations, and high-efficiency broadband absorption is achieved in the visible wavelength region. The enhancement of localized electromagnetic field owing to that localized surface plasmon resonances (LSPRs) supported by Au nanoparticles (NPs) can be used to enhance the absorption of MoS2, and the localized absorption of monolayer MoS2 are remarkably enhanced up from about 18.3% and 4.6% to about 55.2% and 84.8% at the resonant wavelengths of 467.7 nm and 557.8 nm, respectively. Furthermore, the effects of radii of Au NPs, period of Au NPs array, Au@Si NPs core-shell ratios, period numbers of the distributed Bragg mirror (DBR), and incident angle on the absorption of the proposed nanostructure have been systematically investigated. The similar design idea to enhance the light-MoS2 interaction can also be applied to other transition-metal dichalcogenides (TMDCs). This work will contribute to the design of TMDCs-based nanophotonic and optoelectronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Two-dimensional (2D) materials, such as graphene [1–3], hexagonal boron nitride (hBN) [4], and transition-metal dichalcogenides (TMDCs) [5–7] have received an upsurge of attention for application in nanophotonics and optoelectronics owing to their unique electrical, optical and mechanical properties. Unlike graphene, TMDCs (e.g., MoS2, MoSe2, WS2, and WSe2) possess special direct band gaps and internal amplification similar to semiconductors. Furthermore, molybdenum disulfide (MoS2) attracts more attention than other TMDCs due to the relative abundance of molybdenum crystals [8]. As a typical kind of TMDCs, MoS2 has high current cut-off ratios [9] and tunable optical and electronic properties [10], these unique characteristics make MoS2 an excellent candidate to realize photonic functional devices, such as field-effect transistors [11,12], photoluminescence devices [13,14], photodetectors [15,16], and photovoltaic devices [17,18]. However, the absorption of monolayer MoS2 is usually lower than 0.1 within the visible wavelength region [19] owing to the ultra-thin thickness, which limits its potential applications in many optoelectronic devices. Therefore, the enhancement of absorption in monolayer MoS2 acts as a greater role in enabling MoS2-based optoelectronic devices.

Over the past few years, many efforts have been made to enhance the absorption of monolayer MoS2. It is well known that the common method is utilizing resonances to enhance absorption [20–27], however, the monolayer MoS2 does not have strong resonant behavior in the visible range. Therefore, the monolayer MoS2 is usually inserted into the designed resonant structure to use the resonance in the structure enhancing the absorption. Liu et al. [28] combined a photonic crystal slab with a spacer to enlarge the absorption of monolayer MoS2 to 0.35. Guo et al. [29] proposed a magnetic coupling metasurface to achieve the broadband absorption enhancement in the monolayer MoS2. Long et al. [30] made full use of Ag grating to enhance the optical absorption of monolayer MoS2 by mechanism of magnetic polariton (MP), and the maximum absorption of the monolayer MoS2 layer itself is increased by more than 20-fold to nearly 90%. Lu et al. [31] proposed a novel multilayer photonic structure to realize the strong optical absorption in monolayer MoS2 due to the excitation of Tamm plasmon polaritons (TPP). The critical coupling of guided resonances in the photonic crystal slab combined with metallic or multilayer Bragg reflectors have also been reported to acquire high absorption of light in monolayer MoS2 [32–34].

Furthermore, another effective approach to enhance and control the optical response of materials relies on the use of localized surface plasmon resonances (LSPRs) sustained by metal nanoparticles (NPs) [35]. LSPRs is collective oscillations of the conductor’s surface electrons at the interface between the metal NPs, which are much smaller than the incident light wavelength, and a dielectric medium under excited electromagnetic field that tends to trap optical waves near their interface [36]. LSPRs wavelength of Ag and Au NPs can be effectively tuned by size, shape, and surrounding dielectric medium [37]. Yang et al. [38] investigated the optical properties of monolayer MoS2/Ag NPs hybrids and their application to surface catalytic reactions. Britnell et al. [39] enhanced light absorption within monolayer MoS2 which was spattered on top of Au NPs, and observed a 10-fold increase in the photocurrent at wavelength of 633 nm. Sobhani et al. [40] employed Si-core Au-shell NPs with a surface coverage of less than 1% and demonstrated a 3-fold increase in the photocurrent and a 2-fold increase in the photoluminescence at the excitonic transitions of 630 and 680 nm of MoS2 near the band edge. However, the localized absorption of monolayer MoS2 in previous studies is not sufficient enough for optoelectronic devices, which needs to be significantly enhanced over the visible wavelength. To tackle this problem, broadband light absorption structure should be developed for monolayer MoS2 so that it can be more efficiently applied to solar energy conversion devices and broadband photodetectors.

In this study, we propose a MoS2-based nanostructure that can enhance the localized absorption of monolayer MoS2 based on LSPRs supported by Au NPs. The novel MoS2-based nanostructure is composed of a periodic Au NPs array, a distributed Bragg mirror (DBR) with alternate silicon dioxide (SiO2) and silicon (Si) layers, and a monolayer MoS2 is sandwiched between the periodic Au NPs array and DBR. Actually, using DBR as a substrate can greatly suppress the light pass and reflect the incident light for reabsorption. Therefore, combining Au NPs array and DBR can achieve localized field concentration to further enhance the localized absorption of monolayer MoS2. Consequently, high-efficiency broadband localized absorption of the MoS2-based nanostructure can be achieved, and the localized absorption of monolayer MoS2 in the wavelength range from 400 nm to 700 nm can be obviously improved. Meanwhile, such a MoS2-based nanostructure enables tunable operating wavelength by adjusting the geometrical parameters to realize the wavelength selectivity of the system. Moreover, such a kind of plasmon-enhanced MoS2-based nanostructure can also be extended to other monolayer TMDCs, such as WS2, MoSe2 and WSe2, which demonstrates that plasmon-enhanced MoS2-based nanostructure is of general applicability for high-efficiency light absorption within 2D materials. The meaningful improvement and tunability of the absorption in 2D materials can be applied to 2D materials-based optoelectronic devices.

2. Structure and modeling method

As shown in Fig. 1, the proposed MoS2-based nanostructure consists of a periodic Au NPs array, a DBR composes with alternate SiO2 and Si layers with a period number of N, and a monolayer MoS2 is sandwiched between the periodic Au NPs array and DBR. The Au NPs array is periodic in the x- and y-directions, and the period can be expressed as Px and Py, respectively. In this study, we only consider the absorption as P = Px = Py for simplification. The dielectric function of Si and SiO2 can be obtained from Ref [41], and the thickness d1 and d2 of Si and SiO2 can be set as d1 = 38 nm and d2 = 90 nm, respectively. A plane electromagnetic wave is normally incident from air to the periodic Au NPs array. In our calculation, the wavelength-dependent complex dielectric function of the monolayer MoS2 has been measured experimentally by Li et al. [19] and the thickness of monolayer MoS2 is set as 0.65 nm. Simultaneously, the dielectric function of Au is derived from Palik [42]. The finite-difference time-domain (FDTD) simulations are utilized to numerically calculate the light absorption of the proposed MoS2-based nanostructure. In the simulations, the perfectly matched layer absorbing boundary condition is applied along the z-direction, and the periodic boundary condition is employed in the x- and y-directions, respectively. In addition, the non-uniform mesh is adopted, and the minimum mesh size inside the monolayer MoS2 equals to 0.1 nm and gradually increases outside the MoS2 sheet for saving storage space and computational time.

 figure: Fig. 1

Fig. 1 Schematic diagram of the MoS2-based nanostructure. r represents the radii of the Au NPs; Px and Py stand for the periods in the x- and y-directions; d1 (d2) stands for the thickness of Si (SiO2) layer in the DBR with a period number of N.

Download Full Size | PPT Slide | PDF

3. Results and discussion

Figure 2(a) manifests the simulated absorption spectra Aλ of a suspended monolayer MoS2, a periodic Au NPs array, a periodic Au NPs array on monolayer MoS2 and the proposed MoS2-based nanostructure for normal TM-polarized light (magnetic field is perpendicular to the xz plane) in the wavelength region from 400 nm to 700 nm. Here, unless a specific description, the basic geometrical parameters are assumed as r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm and N = 5. The band structure and carrier density of the monolayer MoS2 determine its optical absorption. Actually, monolayer MoS2 has a large absorption coefficient, while it is too thin so that a suspended monolayer MoS2 can be regarded as transparent especially at the visible wavelength region, the average absorption is about 0.1 in the wavelength range from 400 nm to 700 nm. The maximum absorption of a suspended monolayer MoS2 is 0.23 at near 435 nm, and two small peaks, which can be attributed to the excitons transitions, exist with absorption peak about 0.06 at near 606 nm and 658 nm. For the periodic Au NPs array, the absorption in short wavelength range reaches above 0.4, which is higher than that in long wavelength range, and an absorption peak exists at wavelength of near 510 nm owing to the excitation of LSPRs. For a periodic Au NPs array on monolayer MoS2, compared with the absorption of the suspended monolayer MoS2, the absorption of the whole structure at the given wavelength region is obviously improved. The maximum absorption is about 0.56 at near 430 nm, and two small peaks exist with absorption about 0.17 at near 606 nm and 658 nm. In addition, a new absorption peak occurs at near 505 nm owing to the intrinsic absorption property of Au NPs array. However, the localized absorption of monolayer MoS2 with the help of the above nanostructure at the given wavelength region is still weak.

 figure: Fig. 2

Fig. 2 (a) Normal absorption spectra Aλ of Au NPs/MoS2/DBR, Au NPs array, Au NPs/MoS2 and monolayer suspended MoS2 for TM-polarized light. (b) Normal reflection spectra Rλ of DBR for different period numbers N. (c) Impedance of the MoS2-based nanostructure. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.

Download Full Size | PPT Slide | PDF

Therefore, a DBR is introduced to enhance the absorption of MoS2, because DBR just serves as a mirror to effectively reflect light back for reabsorption and has little effect on the pattern of the optical electric in the device, and the reflection spectra of DBR is shown in Fig. 2(b). It is well known that the high reflectivity of DBR can increase the light pass through monolayer MoS2, and the combined influence of DBR and Au NPs array increases the light pass through monolayer MoS2, and achieves localized field concentration to enhance the absorption of monolayer MoS2. Then, the absorption of the proposed MoS2-based nanostructure can be described by Aλ=1Rλ-Tλ, where Rλ and Tλ are the reflection and transmission spectra of the proposed nanostructure. The pink line in Fig. 2(a) shows the absorption of the proposed MoS2-based nanostructure, and the absorption is obviously improved. It is found that the absorption of the proposed MoS2-based nanostructure can achieve above 0.99 at the wavelengths of 467.7 nm and 557.8 nm. Differently, the absorption peaks of the excitons are covered owing to the existence of the DBR [31]. In order to calculate the localized absorption by the MoS2 in the proposed MoS2-based nanostructure, the power dissipation density can be given as follow [43,44]

w(x,z)=12ε0ωε(x,z)|Ε(x,z)|2,
where ε0,ε(x,z) and Ε(x,z) denote the permittivity of vacuum, the imaginary part of the dielectric function and the electric field distribution, respectively. Then, the localized absorption of monolayer MoS2 in the proposed MoS2-based nanostructure with a specified volume V can be calculated by
α=w(x,z)dV0.5c0ε0|Εinc|2Sareacosθ.
The denominator is the power of incident waves on the projected surface area Sarea at an incident angle θ. As a result, the localized absorption of monolayer MoS2 has been remarkably increased to about 55.2% and 84.8% at the wavelengths of 467.7 nm and 557.8 nm, respectively. The orange line in Fig. 2(a) manifests the localized absorption of monolayer MoS2 in the wavelength range from 400 nm to 700 nm, and the localized absorption is obviously improved. From the point of macroscopic electromagnetism, we give an analysis of near-perfect absorption based on the impedance transformation method. When the near-perfect absorption condition is satisfied, the impedance of the nanostructure should be equal to that of the free space (Z0 = 1). The relation between the S parameters and impedance Z can be expressed as [45,46]
S21=S12=1cos(nkd)i2(Z+12)sin(nkd),
S11=S22=i2(1ZZ)sin(nkd),
where S11, S21, S12, S22, n, k, and d represent S parameters, the effective refractive index, the wave vector, and thickness of the nanostructure, respectively. Therefore, the impedance Z is yielded by

Z=±(1+S11)2S212(1S11)2S212.

The relation between the impedance Z of the proposed MoS2-based nanostructure and the wavelength λ is plotted in Fig. 2(c). It is well known that, in order to obtain a near-perfect absorption, the impedance at the wavelength of the working band should match the free-space impedance, namely Z (λ) = Z0 (λ) [45,46]. Results show that the impedance Z of the proposed MoS2-based nanostructure is close to unity at the wavelengths of 467.7 nm and 557.8 nm, which agree well with the near-perfect absorption wavelengths shown in Fig. 2(a), namely, the well impedance matching indeed is achieved. Moreover, in order to further elucidate the underlying physical mechanism, the electric and magnetic field amplitude distributions at the resonant wavelengths of 467.7 nm and 557.8 nm are given in Figs. 3(a)-3(d) under the normal TM-polarized light whose electric field along the x-z plane. Consequently, the electric and magnetic fields around the surface of Au NPs are gathered and enhanced. In fact, such electromagnetic field characteristics correspond to the excitation of LSPRs mode. In other words, the incident electric and magnetic field are trapped surrounding the monolayer MoS2 due to that LSPRs induces light energy concentration and near field enhancement.

 figure: Fig. 3

Fig. 3 Electric field (|E|) and magnetic field (|H|) amplitude distributions of the proposed MoS2-based nanostructure for normal TM-polarized light. (a) |E| and (b) |H| at the resonant wavelength of λ = 467.7 nm. (c) |E| and (d) |H| at the resonant wavelength of λ = 557.8 nm. White lines denote the profile of MoS2. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.

Download Full Size | PPT Slide | PDF

Subsequently, we further investigate the dependence of the absorption of the proposed MoS2-based nanostructure on geometrical parameters. First, we discuss the effect of the period number N of the DBR on the absorption owing to that DBR can act as a back reflector and effectively suppress the transmission of light. As shown in Fig. 4(a), results illustrate that increasing the period number N of the DBR can promote the absorption of light, and when the number of period N5, the absorption at the given wavelength region almost reaches saturation condition. This can be attributed to that the optical reflectivity of the inserted DBR achieves the saturated value, the corresponding reflection spectra of the DBR is shown in Fig. 2(b). As we know, LSPRs wavelength of Au NPs can be effectively tuned by size, shape, and surrounding dielectric medium [37]. Then, we explore the influences of changing the radii of Au NPs on the optical absorption of the proposed MoS2-based nanostructure, as shown in Fig. 4(b). Since LSPRs can harvest electromagnetic energy and significantly promote the absorption, the radii of Au NPs have a remarkable influence on LSPRs [47]. It can be seen from Fig. 4(b) that when we increase the radii of Au NPs, the absorption spectrum obviously moves into a longer wavelength, the absorption peaks at the resonance wavelength almost reach unity at r = 39 nm, and then the absorption at the resonance wavelength will slightly diminish when r continuously increases or decreases. Similarly, Fig. 4(c) shows the effect of the period of Au NPs array on the absorption spectra of the proposed MoS2-based nanostructure. Altering the period of Au NPs array from 100 nm to 120 nm, the absorption spectrum moves into a shorter wavelength, and the absorption at the resonant wavelength will decrease with the period increasing, which can be attributed to that LSPRs will weaken between Au NPs with the period of Au NPs array increasing.

 figure: Fig. 4

Fig. 4 Normal absorption spectra Aλ of the proposed MoS2-based nanostructure with (a) different period numbers (N) of the DBR, (b) different radii (r) of Au NPs and (c) different periods (P) of Au NPs array. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.

Download Full Size | PPT Slide | PDF

In addition, the above calculations are just based on normal incident light. However, an ideal absorber should satisfy high optical absorption to work on the relatively wide range of incident angles in the practical applications of nanophotonic and optoelectronic devices. As a result, we further investigate the optical absorption of the proposed MoS2-based nanostructure with different incident angles in order to explore the absorption dependence at oblique incidence under TM and TE polarizations, and results are shown in Figs. 5(a) and 5(b), respectively. It can be seen that the absorption of the proposed MoS2-based nanostructure is almost independent with the incident angle increasing from 0° to 30° for both TM and TE polarizations, which can be attributed that LSPRs coupling can be maintained for TM or TE polarized incident light with small incident angles. This provides a quite suitable way to optimize the absorption at the concerned wavelength region by just adjusting the incident angle. Therefore, the polarization-insensitive property, combined with the good absorption stability under oblique incidence, undoubtedly enables this absorber to be more feasible in practical applications of nanophotonic and optoelectronic devices.

 figure: Fig. 5

Fig. 5 Effect of incident angle on the absorption spectra Aλ of the proposed MoS2-based nanostructure for (a) TM polarization and (b) TE polarization. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.

Download Full Size | PPT Slide | PDF

Moreover, it has been demonstrated that core-shell NPs insulated by a shell, which can be called core-shell NPs. The hybrid core-shell NPs can lead to a better photovoltaic performance than bare metal NPs, which can be attributed to that the shell not only ensures electrical and chemical isolation of the plasmonic core, but also provides another possibility to tune LSPRs owing to that it is dependent on the dielectric function of the surrounding medium [48]. Here, we investigate the impact of different Au@Si NPs core-shell ratios on the absorption of the proposed MoS2-based nanostructure, as shown in Fig. 6. Results manifest that the introduction of the coating shell can increase the light absorption wavelength bandwith compared with the bare Au NPs. Two absorption peaks occur in the absorption spectra, and the absorption peak at the wavelength of about 467 nm is the result of coupling between MoS2 and Au@Si NPs, and almost unchanged with core-shell ratios increasing, of which the absorption contribution of MoS2 is dominant. However, the second absorption peak is mainly the contribution of the Au@Si NPs, and the absorption peak gradually moves into a longer wavelength with the increasement of core-shell ratios. It is noted that, in experiments, Au NPs typically have a layer of organic ligands attached on their surface, the layer could be one or several nanometer in thickness, thus the above nanostructure can be regarded as a simple core-shell structure.

 figure: Fig. 6

Fig. 6 Normal absorption spectra Aλ of the MoS2-based nanostructure using Au@Si NPs at different core-shell ratios. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.

Download Full Size | PPT Slide | PDF

In the end, we try to make use of the proposed nanostructure to enhance the optical absorption of other TMDCs, such as WS2, MoSe2 and WSe2, of which the MoS2 is replaced by other TMDCs in the proposed MoS2-based nanostructure. Simulated absorption spectra for the proposed nanostructure of monolayer WS2, MoSe2 and WSe2 are shown in Figs. 7(a)-7(c), respectively, and geometrical parameters are similar to that used in Fig. 2(a). In our calculation, the dielectric function of WS2, MoSe2 and WSe2 are obtained from the experimental measurement of Li et al. [19], and the corresponding thicknesses are set as 0.618 nm, 0.646 nm and 0.649 nm, respectively. It should be pointed that the optical properties of monolayer TMDCs can be influenced by their environment (substrate, any layers on top, etc.) and carrier doping concentrations in experiments. Compared with the single-pass absorption spectra (black lines) of monolayer TMDCs suspended in air, the absorption performance (blue lines) of monolayer TMDCs based on our proposed TMDCs-based nanostructure can be obviously improved. Undoubtedly, because WS2, MoSe2 and WSe2 are similar to MoS2, we can also change the operating wavelength by altering the geometrical parameters to achieve the wavelength selectivity of the system, such as period of Au NPs array, radii of Au NPs, and period numbers of the DBR or Au@Si NPs core-shell ratios. Consequently, the proposed TMDCs-based nanostructure with its unique design principle can provide a new approach to improve light absorption of various monolayer 2D materials.

 figure: Fig. 7

Fig. 7 Normal absorption spectra Aλ of monolayer (a) WS2, (b) MoSe2 and (c) WSe2 introduced into our nanostructure, where the blue, red and black lines, respectively, represent the absorption spectra of Au NPs/TMDCs/DBR, Au NPs/TMDCs and monolayer suspended TMDCs. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.

Download Full Size | PPT Slide | PDF

4. Conclusions

In this study, a hybrid novel MoS2-based nanostructure is proposed to utilize LSPRs supported by Au NPs to obtain high-efficiency broadband localized absorption for a monolayer MoS2. It is proved that the combined influence of DBR and Au NPs array can increase the light pass through monolayer MoS2 and achieves localized field concentration to enhance the absorption of monolayer MoS2. The absorption of the MoS2-based nanostructure can reach above 99%, and the corresponding localized absorption of MoS2 at the resonant wavelengths of 467.6 nm and 557.8 nm can be respectively improved from about 18.3% and 4.6% to about 55.2% and 84.8%. The significant enhancement of monolayer MoS2 absorption in the MoS2-based nanostructure can be acquired for both TM and TE polarizations. In addition, a further investigation reveals that the absorption of the MoS2-based nanostructure can be flexibly tailored by altering the geometrical parameters and incident angle, which is of great practical significance to improve the efficiency and selectivity of the absorption in monolayer MoS2. Similar results can also be acquired for other TMDCs, such as WS2, MoSe2 and WSe2. This work will contribute to the design of TMDCs-based nanophotonic and optoelectronic devices.

Funding

National Natural Science Foundation of China (NSFC) (51676077, 51776078, 51827808, 51806070); Fundamental Research Funds for the Central Universities (2016YXZD009); China Postdoctoral Science Foundation (2018M632849); Shenzhen Basic Research Project (JCYJ20170307171534237); National Basic Research Program of China (2015CB251505).

References

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef]   [PubMed]  

2. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011). [CrossRef]   [PubMed]  

3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef]   [PubMed]  

4. J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016). [CrossRef]   [PubMed]  

5. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013). [CrossRef]   [PubMed]  

6. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012). [CrossRef]   [PubMed]  

7. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016). [CrossRef]  

8. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013). [CrossRef]   [PubMed]  

9. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011). [CrossRef]   [PubMed]  

10. E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012). [CrossRef]  

11. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012). [CrossRef]   [PubMed]  

12. D. Krasnozhon, D. Lembke, C. B. Nyffeler, Y. Leblebici, and A. Kis, “ MoS2 transistors operating at gigahertz frequencies,” in Materials Research Society Mrs Spring Meeting(2015).

13. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010). [CrossRef]   [PubMed]  

14. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011). [CrossRef]   [PubMed]  

15. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014). [CrossRef]   [PubMed]  

16. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013). [CrossRef]   [PubMed]  

17. J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014). [CrossRef]  

18. M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014). [CrossRef]   [PubMed]  

19. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014). [CrossRef]  

20. K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018). [CrossRef]   [PubMed]  

21. Z. Jia, Q. Cheng, J. Song, Y. Zhou, and Y. Liu, “Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics,” Appl. Opt. 55(31), 8821–8828 (2016). [CrossRef]   [PubMed]  

22. Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016). [CrossRef]  

23. Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014). [CrossRef]  

24. J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018). [CrossRef]  

25. J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016). [CrossRef]   [PubMed]  

26. B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014). [CrossRef]  

27. D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017). [CrossRef]   [PubMed]  

28. J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014). [CrossRef]  

29. Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, W. Huang, W. Peng, L. Li, H. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100 (2017). [CrossRef]  

30. L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017). [CrossRef]  

31. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017). [CrossRef]   [PubMed]  

32. X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018). [CrossRef]   [PubMed]  

33. H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017). [CrossRef]   [PubMed]  

34. H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018). [CrossRef]  

35. S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014). [CrossRef]   [PubMed]  

36. T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018). [CrossRef]  

37. W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016). [CrossRef]   [PubMed]  

38. X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

39. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013). [CrossRef]   [PubMed]  

40. A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014). [CrossRef]  

41. Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017). [CrossRef]  

42. E. D. Palik, “Handbook of optical constants of solids II,” Boston Academic Press 39 (1), 189–189 (1985).

43. K. H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18(10), 10369–10376 (2010). [CrossRef]   [PubMed]  

44. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014). [CrossRef]  

45. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005). [CrossRef]   [PubMed]  

46. D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017). [CrossRef]   [PubMed]  

47. J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017). [CrossRef]  

48. P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  4. J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
    [Crossref] [PubMed]
  5. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref] [PubMed]
  6. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  7. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
    [Crossref]
  8. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [Crossref] [PubMed]
  9. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  10. E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
    [Crossref]
  11. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
    [Crossref] [PubMed]
  12. D. Krasnozhon, D. Lembke, C. B. Nyffeler, Y. Leblebici, and A. Kis, “ MoS2 transistors operating at gigahertz frequencies,” in Materials Research Society Mrs Spring Meeting(2015).
  13. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
    [Crossref] [PubMed]
  14. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
    [Crossref] [PubMed]
  15. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
    [Crossref] [PubMed]
  16. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  17. J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
    [Crossref]
  18. M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
    [Crossref] [PubMed]
  19. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
    [Crossref]
  20. K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018).
    [Crossref] [PubMed]
  21. Z. Jia, Q. Cheng, J. Song, Y. Zhou, and Y. Liu, “Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics,” Appl. Opt. 55(31), 8821–8828 (2016).
    [Crossref] [PubMed]
  22. Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
    [Crossref]
  23. Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
    [Crossref]
  24. J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
    [Crossref]
  25. J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
    [Crossref] [PubMed]
  26. B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
    [Crossref]
  27. D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
    [Crossref] [PubMed]
  28. J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
    [Crossref]
  29. Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, W. Huang, W. Peng, L. Li, H. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100 (2017).
    [Crossref]
  30. L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
    [Crossref]
  31. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
    [Crossref] [PubMed]
  32. X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
    [Crossref] [PubMed]
  33. H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
    [Crossref] [PubMed]
  34. H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018).
    [Crossref]
  35. S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
    [Crossref] [PubMed]
  36. T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
    [Crossref]
  37. W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
    [Crossref] [PubMed]
  38. X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).
  39. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
    [Crossref] [PubMed]
  40. A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
    [Crossref]
  41. Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
    [Crossref]
  42. E. D. Palik, “Handbook of optical constants of solids II,” Boston Academic Press 39 (1), 189–189 (1985).
  43. K. H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18(10), 10369–10376 (2010).
    [Crossref] [PubMed]
  44. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
    [Crossref]
  45. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  46. D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017).
    [Crossref] [PubMed]
  47. J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
    [Crossref]
  48. P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
    [Crossref] [PubMed]

2018 (5)

K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018).
[Crossref] [PubMed]

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018).
[Crossref]

T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
[Crossref]

2017 (10)

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, W. Huang, W. Peng, L. Li, H. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100 (2017).
[Crossref]

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref] [PubMed]

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017).
[Crossref] [PubMed]

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

2016 (6)

J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
[Crossref] [PubMed]

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, Y. Zhou, and Y. Liu, “Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics,” Appl. Opt. 55(31), 8821–8828 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref] [PubMed]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

2014 (10)

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

2013 (4)

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

2012 (3)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

2011 (3)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

2010 (2)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

K. H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18(10), 10369–10376 (2010).
[Crossref] [PubMed]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Afanas’ev, V.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Arbouet, A.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Ayala-Orozco, C.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Barton, R. A.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Belle, B. D.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Brenner, K. H.

Britnell, L.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Cao, J.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Casiraghi, C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Castro Neto, A. H.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Chang, H.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

Chang, J. K.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, C. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, K. P.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Chen, L.

Chen, L. J.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Chen, Y. B.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Chenet, D. A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Cheng, L.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Cheng, Q.

K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018).
[Crossref] [PubMed]

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, Y. Zhou, and Y. Liu, “Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics,” Appl. Opt. 55(31), 8821–8828 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Chingsungnoen, A.

T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
[Crossref]

Chiu, F. C.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Dai, X.

Dao, T. D.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Dasri, T.

T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
[Crossref]

Deng, H.

Ding, Q.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Eckmann, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Eda, G.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Englund, D.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Fan, Y.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fujita, T.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Gan, X.

Gao, S.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Geim, A. K.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Georgiou, T.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Girard, C.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Giustiniano, F.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Gorbachev, R. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Grigorenko, A. N.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, C.

Guo, J.

Guo, W.

Guo, X.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Halas, N. J.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Han, S.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

He, J. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Hone, J.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Houssa, M.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Hu, J.

Huang, W.

Huo, D.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Ishii, S.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Jalil, R.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Jia, Z.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, L.

Jiang, X.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Kim, Y. J.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Kozawa, D.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Lauchner, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Lee, B. J.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Lee, H. J.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Léotin, J.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Li, H.

Li, H. J.

Li, J.

Li, L.

Li, L. J.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Li, P.

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Li, S.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Li, X. J.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

Li, Y.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Liang, W.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Lin, H.

Liu, B.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Liu, C.

Liu, J. T.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

Liu, N. H.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

Liu, Y.

Loh, K. P.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Long, L.

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Long, Y.

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Lou, J.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Lu, H.

Lu, J.

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Lu, L.

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018).
[Crossref] [PubMed]

Lu, Y.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Luo, Z.

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

Ma, R.

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Mao, D.

Matsuda, K.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Mishchenko, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Mlayah, A.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Morozov, S. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nagao, T.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Najmaei, S.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Niu, X.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Novoselov, K. S.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Okamoto, K.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Oulton, R. F.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Pankin, P. S.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Peng, W.

Peres, N. M.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Pourtois, G.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Pullerits, T.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Qin, M.

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Ren, R.

Ren, X.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Ren, Y. Z.

Ribeiro, R. M.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Rogach, A. L.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Scalise, E.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Shen, L.

Shih, E.-M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Si, M.

J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Sobhani, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Song, J.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Stesmans, A.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Su, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Su, S. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Sun, M.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Sun, M. G.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Sun, R.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Sun, Z.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

Timofeev, I. V.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Tsai, D. S.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Tsai, M. L.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Verzhbitskiy, I.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Voiry, D.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Wang, C.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Wang, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Wang, J.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Wang, L.

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

Wang, L. L.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, R.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Wang, S.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Wang, T.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Wang, T. B.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

Wang, Z.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Wen, F.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Wen, S.

Wu, C. I.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Wu, D.

Wu, J.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref] [PubMed]

Xiang, Y.

Xiao, S.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Xu, H.

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Yan, P.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Yan, X.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Yang, D.

Yang, G.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Yang, X.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Yang, Y.

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Yang, Z. Y.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yao, Y.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Ye, H.

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017).
[Crossref] [PubMed]

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Yokoyama, T.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yu, H.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Yu, L.

Yu, P.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Yu, X.

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Yu, Z.

Zhai, X.

Zhang, G.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Zhang, H.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Zhang, J.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Zhang, X.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Zhang, Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, B.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Zhao, J.

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, W.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Zheng, J.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Zhong, Q.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Zhou, H.

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Zhou, K.

Zhou, Y.

ACS Nano (4)

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Adv. Mater. (1)

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

J. Appl. Phys. (1)

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

J. Heat Transfer (1)

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Magn. Magn. Mater. (1)

T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (3)

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

Nano Lett. (2)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Nano Res. (1)

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Nanoscale Res. Lett. (1)

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Science (4)

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Other (2)

E. D. Palik, “Handbook of optical constants of solids II,” Boston Academic Press 39 (1), 189–189 (1985).

D. Krasnozhon, D. Lembke, C. B. Nyffeler, Y. Leblebici, and A. Kis, “ MoS2 transistors operating at gigahertz frequencies,” in Materials Research Society Mrs Spring Meeting(2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the MoS2-based nanostructure. r represents the radii of the Au NPs; Px and Py stand for the periods in the x- and y-directions; d1 (d2) stands for the thickness of Si (SiO2) layer in the DBR with a period number of N.
Fig. 2
Fig. 2 (a) Normal absorption spectra A λ of Au NPs/MoS2/DBR, Au NPs array, Au NPs/MoS2 and monolayer suspended MoS2 for TM-polarized light. (b) Normal reflection spectra R λ of DBR for different period numbers N. (c) Impedance of the MoS2-based nanostructure. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 3
Fig. 3 Electric field (|E|) and magnetic field (|H|) amplitude distributions of the proposed MoS2-based nanostructure for normal TM-polarized light. (a) |E| and (b) |H| at the resonant wavelength of λ = 467.7 nm. (c) |E| and (d) |H| at the resonant wavelength of λ = 557.8 nm. White lines denote the profile of MoS2. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 4
Fig. 4 Normal absorption spectra A λ of the proposed MoS2-based nanostructure with (a) different period numbers (N) of the DBR, (b) different radii (r) of Au NPs and (c) different periods (P) of Au NPs array. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 5
Fig. 5 Effect of incident angle on the absorption spectra A λ of the proposed MoS2-based nanostructure for (a) TM polarization and (b) TE polarization. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 6
Fig. 6 Normal absorption spectra A λ of the MoS2-based nanostructure using Au@Si NPs at different core-shell ratios. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 7
Fig. 7 Normal absorption spectra A λ of monolayer (a) WS2, (b) MoSe2 and (c) WSe2 introduced into our nanostructure, where the blue, red and black lines, respectively, represent the absorption spectra of Au NPs/TMDCs/DBR, Au NPs/TMDCs and monolayer suspended TMDCs. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w ( x , z ) = 1 2 ε 0 ω ε ( x , z ) | Ε ( x , z ) | 2 ,
α = w ( x , z ) d V 0.5 c 0 ε 0 | Ε inc | 2 S area cos θ .
S 21 = S 12 = 1 cos ( n k d ) i 2 ( Z + 1 2 ) sin ( n k d ) ,
S 11 = S 22 = i 2 ( 1 Z Z ) sin ( n k d ) ,
Z = ± ( 1 + S 11 ) 2 S 21 2 ( 1 S 1 1 ) 2 S 21 2 .

Metrics