Abstract

In this work, we show a proof-of-principle benchtop single-photon light detection and ranging (LIDAR) depth imager at 2.3µm, utilizing superconducting nanowire single-photon detectors (SNSPDs). We fabricate and fiber-couple SNSPDs to exhibit enhanced photon counting performance in the mid-infrared. We present characterization results using an optical parametric oscillator source and deploy these detectors in a scanning LIDAR setup at 2.3µm wavelength. This demonstrates the viability of these detectors for future free-space photon counting applications in the mid-infrared where atmospheric absorption and background solar flux are low.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

1. Introduction

Photon counting light detection and ranging (LIDAR) is an accurate and fast optical measurement method for obtaining range information of targets [1]. Time-of-flight LIDAR is an elegant technique where a pulsed light source is used to deliver light pulses to the target. A start (sync) signal is measured when the pulse leaves the transceiver and a stop signal taken when returns from the target are recorded. In this way, by using elementary calculation, the distance of the reflected returns can be computed. The addition of a scanning transceiver or moveable target stage then makes high accuracy three dimensional depth images possible using this scheme [2]. The availability of high sensitivity detectors for these systems allows short integration times per pixel and the ability to pick targets out of the noise in photon sparse returns.

Detectors for single-photon counting applications have been an area of intense research in recent years. Conventional semiconductor technologies such as Si photomultiplier tubes (PMTs) [3] and Si single-photon avalanche photodiodes (SPADs) [4] offer good efficiency and detection characteristics but their cut off wavelength is low and are not suitable for use in the near to mid-infrared. SiGe SPADs offer improved spectral range but this still does not yet extend beyond 1.55µm [5]. InGaAs SPADs extend this spectral range further to 1.7µm and provide good detection efficiencies while suffering from afterpulsing effects and large dark count rates [6,7]. Near IR InGaAs PMTs are also available for wavelengths up to 1.7µm but suffer from low detection efficiencies, less than 2% for commercially available units. For wavelengths in the 2 to 10 µm range both InAs and HgCdTe are small bandgap materials suitable for low energy photon detection [8,9] however the single-photon detection capability is still to be shown. A different approach to longer wavelengths is to frequency upconvert the mid-infrared photons to shorter wavelengths, thereby allowing detection with, for example, an Si SPAD. Efficiencies have been demonstrated of up to 20% for schemes such as this [10].

Superconducting nanowire single-photon detectors (SNSPDs or SSPDs) [11] have established themselves in the last decade as the gold standard for infrared single-photon counting applications. They have demonstrated near unity system detection efficiency at 1.55µm [12], dark count rates as low as 10$^{-3}$counts per second [13], timing jitter of 3ps FWHM [14] and spectral sensitivity far into the mid-infrared [1517]. Closed cycle cooling provides a practical alternative to liquid helium systems enabling SNSPDs to be deployed in a variety of applications in the field of quantum information processing [1820], as well as a host of other uses in experiments as diverse as space to ground communication [21] and Raman fiber temperature sensing [19].

LIDAR imaging systems utilizing SNSPDs have been demonstrated at 1.55µm wavelength, achieving up to km ranges [22] and with mm scale resolution [23]. Demonstrations of sea fog monitoring with SNSPD based LIDAR schemes have been shown [24] and differential absorption gas sensing systems proposed [25].These systems leverage the low timing jitter to achieve excellent depth resolution for fast integration times and the high system efficiency to enable imaging with low signal returns. In this work we exploit the spectral sensitivity of the SNSPDs to extend our working wavelength above 2µm into the mid-infrared which takes advantage of lower solar irradiance and minimal atmospheric absorption.

2. Mid-infrared for free-space applications

For a wide variety of free-space optical applications, LIDAR among them, it is advantageous to move the working wavelength into the mid-infrared. For daylight operation the background solar irradiance will give a large contribution to the system background count rate. As the solar irradiance is approximately similar to a blackbody at 5778K we can see that this irradiance will tail off as the wavelength increases with the bulk of the power concentrated in the 400 to 750nm range. Figure 1 shows the solar irradiance up to 4µm wavelength. Another key consideration is that atmospheric absorption has a strong wavelength dependence due to the variety of molecular absorption lines present in the atmosphere. The atmospheric absorption bands are also plotted in Fig. 1 for the most common atmospheric components. As we can see from the highlighted area, the range between 2 and 2.5µm offers a window of low solar irradiance, three times as low as at 1.55µm, and low atmospheric absorption which can be exploited for free-space applications. Similar windows exist at longer wavelengths, for example an additional low-absorption window can be seen in Fig. 1 just below 4µm which exhibits even lower solar background. However, blackbody radiation from room temperature optical components coupling into the detector begins to dominate above 2.5µm meaning that it is not beneficial to extend to such wavelengths. For LIDAR applications, a large signal-to-noise ratio (SNR) is desirable for depth resolution [28]. As integration time is proportional to SNR$^{2}$ the reduction of background counts results in a quadratic reduction in the integration time required for a given SNR. Utilizing single-photon detectors offers unique advantages for free-space applications such as imaging or communication [29] as the range for a fixed optical power source is maximized. In addition to this, operating in the mid-infrared with low output powers allows eye-safe and covert operation.

 

Fig. 1. Solar irradiance and atmospheric absorption. The red line shows the solar irradiance variation (left y-axis) with wavelength and the blue shows the combined absorption spectra of the most common molecules in the earth’s atmosphere - H$_{2}$O, CO$_{2}$, O$_{2}$ and Ozone (right y-axis). The absorption is presented in dB per meter at 1 atmosphere and 296K temperature. The saturation at the top of the scale indicates 100% absorption for that wavelength. The solar data is from ASTM [26] and the spectral line data from HITRAN 2016 [27]. The highlighted region spans the 2 to 2.5µm range and shows a window of low absorption and lower background irradiance when compared to shorter wavelengths.

Download Full Size | PPT Slide | PDF

3. Device design

As stated in section 1, SNSPDs have demonstrated spectral sensitivity far into the mid-infrared. That said, it remains an engineering challenge to optimize the device design parameters to fabricate devices with high system detection efficiency (SDE) as has been achieved for the best 1.55µm devices. Off the shelf in-fiber optical components are not generally available commercially and standard silica fiber has a cut off wavelength at 2.3µm. Devices coupled to silica fiber with system detection efficiencies of 20% at 2µm have been reported [30] and others have been successfully coupled with chalcogenide infrared fiber [31]. For this work the devices were based on a 6nm NbTiN film ($T_{\mathrm {c}}$ of 7K) patterned into a 60nm wide nanowire with an 80nm gap meandering over a 15µm by 15µm active-area. This nanowire was embedded in an optical cavity designed to enhance absorption in the mid-infrared and the device is then capped with an Ag mirror on top. Figure 2(b) shows a schematic of the device design. 2.3µm was chosen as the operational wavelength as it is the cut off for easily available and robust SM2000 single-mode silica fiber [32] as well as sitting in the agreeable transmission window shown in Fig. 1. In order to deliver photons onto the nanowire an SM2000 fiber with ceramic ferrule is first glued into a copper fiber holding piece. The device is then mounted into a sample mount and and the tip of the fiber is aligned with the the active-area through the back of the substrate using an InGaAs camera and 1.55µm laser to ensure photons are delivered to the active-area. The backside coupling approach does lead to losses due to the broadening of the beam radius as it travels through the substrate - these are discussed in section 5.

 

Fig. 2. a): Simulation of the absorption in the SNSPD cavity design. b): Schematic of the device design showing the nanowire (green) embedded in the optical stack. The device is optically fiber-coupled from the underside of the device (bottom of figure). c): Photo showing the mounted device and the fiber aligned through the underside of the device.

Download Full Size | PPT Slide | PDF

The device was characterized at 2.3µm by utilizing an optical parametric oscillator (Spark OPO from Chromacity Ltd) to generate short pulses ($\sim$ps) at 110MHz. As the output of the OPO was spectrally broad we coupled it into a free-space filtering setup through a narrow bandpass filter (Spectrogon, CW 2328+/-43nm) and then re-coupled it back into single-mode fiber to give us a narrow linewidth fast source. The OPO is tuneable from 1.5 to 4.2µm and all of the free-space components have been chosen for their wide spectral range allowing the overall source to be tuneable in this range by substituting the bandpass filter for one at the desired wavelength. For characterization of the detectors we then attenuated this output down to single-photon level by constructing another free-space filtering setup similar to the first but utilizing neutral density (ND) filters for attenuation. With the output power of the OPO (tens of mWs), the flat response of our ND filters across the infrared spectrum and a standard off the shelf power meter (Thorlabs S148C) we could calibrate up to 45dB of fixed attenuation. For efficiency measurements we attenuated the output of the OPO down to 0.5 photons per pulse using this setup. With the 30% coupling efficiency and 50% absorption efficiency estimated in section 5 this gives us 0.075 absorbed photons per pulse. Following Poisson statistics, the probability of a detector click being caused by multiple photons being absorbed is therefore <0.3% so it is reasonable to conclude that the detector is single-photon sensitive. The SDE was then computed by subtracting the dark count rate from the photon count rate and dividing by the input photon flux. It should be noted here that the reference point for the SDE was an FC/PC connector on the outside of the cryostat therefore the SDE figures calculated will include bend-induced fiber losses, splice losses (of which there are two in the cryostat) and the loss of the FC/PC connector that the photons are input to. The photon count rate (PCR) and dark count rate (DCR) are shown in Fig. 3(a). It is interesting to note in Fig. 3(a) the DCR does not follow the expected curve for the best devices at 1.55µm, exhibiting a slow onset of dark counts in the 6 to 8µA range before the expected exponential increase as the current approaches $I_{\mathrm {c}}$. This has been observed in similar devices designed for longer wavelengths [31] and is due to blackbody photons being coupled into the IR fiber from optical components at room temperature. Cold optical filtering [33] will be useful in suppression of this blackbody radiation in future work. For these characterization results, polarization was controlled using a manual polarization controller to maximize the count rate of the SNSPD. Once the SDE against bias data was taken we selected an optimum bias point of 7.5µA, giving us a reasonable dark count rate of 1000 counts per second and just over 1% SDE. This point was used for the rest of the experiments including the IRF data and the LIDAR experiment. The maximum count rate of the device was estimated from the recovery time of the detector (100ns) to be 10MHz.

 

Fig. 3. a) Photon count rate (red) and dark count rate (blue) for 2.3µm wavelength photons incident on the device at 2.5K. The early onset of the DCR before the exponential increase as the current approaches the critical current is caused by black body radiation coupling into the fiber from room temperature. b) Calculated system detection efficiency (SDE) against bias current. For these devices at an operating temperature of 2.5K we do not observe the characteristic plateau associated with saturation of the internal detection efficiency. The relatively low overall SDE observed is discussed in section 5.

Download Full Size | PPT Slide | PDF

The instrument response function (IRF) used to determine the system timing jitter and also to calculate the peak position in the LIDAR returns was measured using the filtered OPO source described above. The sync output of the OPO was fed into a fast photodetector (Thorlabs DET08CFC) to give a sync pulse for the HydraHarp time correlated single-photon counting (TCSPC) module. The idler output was sent through the LIDAR setup described in section 4 and reflected from a metallic flat surface. A histogram was built up and the timing jitter FWHM was calculated by fitting a Gaussian distribution to the data. This is presented in Fig. 4(b). There is noticeable asymmetry in the data with the IRF exhibiting an exponential tail. This is in line with other observed results [3436] though the origin of the tail is still unclear.

 

Fig. 4. a): Results from two cardboard squares separated by 40mm and co-illuminated with a 2mm beam. The data is fitted with a double Gaussian function to determine the peak positions. The integration time was 10s for this measurement. Below 4cm separation the two peaks become difficult to distinguish. b): Instrument response function of the entire LIDAR setup described in section 4 showing a system timing jitter of 280ps FWHM fitted with a Gaussian function. Blue dots show data points and the red line is the fit.

Download Full Size | PPT Slide | PDF

4. Single-photon LIDAR

These devices were cooled to 2.5K in a closed-cycle Gifford-McMahon type cryostat and deployed into a basic tabletop LIDAR setup, a schematic of which is shown in Fig. 5. The OPO provided 2.3µm photons by passing the output through the bandpass filtering setup outlined in section 3 and the output power was adjusted either using neutral density filters in the filtering setup or by misalignment of the output coupler. An initial test was performed where two non-reflective surfaces (white cardboard sheets) were illuminated by the outgoing beam and the returns collected. A simple double Gaussian was fitted to the data to determine the separation of the targets. The separation was slowly decreased until the two surfaces could no longer be distinguished by the fitting - thus giving us a measure of the depth resolution of the system. Figure 4(a) shows a separation of 40mm being measured by this method. If we take the peak positions from the Gaussian fitting at 3910ps and 4153ps respectively we can see that the separation of the two targets is 37mm, well aligned with the manual measurement of 40mm. Next we placed two motorized translation stages mounted in an XY configuration at a distance of 350mm from the beam output. By placing the target on a stage attached to this setup we could scan the target through the beam to give a 50x50mm image. A LEGO model of Big Ben was chosen as it gave an easily recognizable feature with a variety of shaped edges and corners. Figure 6(b) shows a depth image of the model. Although the scan area was smaller than the total model, key features can easily be picked out including the raised clock face, edges of the tower and holes below the spire. This image was taken with an average emitted power of $<$12µW and an integration time of 1s per pixel. For this test each pixel was computed by simple cross correlation of the instrument response function (IRF) shown in Fig. 4(b) to give the peak position. In the image presented here the cardboard background was scaled to provide finer detail in the image. All of the above data was taken in a brightly lit lab.

 

Fig. 5. LIDAR schematic. The OPO provides a sync pulse which is fed into a fast photodetector (Thorlabs DET08CFC) to provide the sync signal (START) for the HydraHarp TCSPC module. The idler pulse travels through the free-space filtering system described in the text (seen at the top of the figure) and is then directed through the central hole of an off-axis parabolic (OAP) mirror with a 3.2mm through hole to the target. An aperture before this hole controls the beam size. Once reflected from the target (LEGO figure) returns are collected and focussed into fiber with two OAP mirrors and a plano-convex lens and then delivered to the SNSPD. Electrical response signals from the SNSPD are then amplified and sent to the TCSPC to provide the STOP signal. SM2000 fiber is shown in yellow, electrical connections in black. Arrows indicate free-space transmission with red being output and blue the target returns.

Download Full Size | PPT Slide | PDF

 

Fig. 6. a) Photos of LEGO Big Ben model on motorized stages scanning in X and Y. The main photo shows the target as viewed by the LIDAR apparatus and the inset shows the depth profile from the side. b) LIDAR depth image acquired with a 1s integration time per pixel. The whole area of the model has not been scanned. Key features such as the raised clock face (3mm depth from next surface), holes in the model and curved cutout of the moving stage can be easily picked out. The scale bar shows depth in mm.

Download Full Size | PPT Slide | PDF

5. Discussion

As is shown in section 4 reasonable depth images can be obtained using a simple and fast cross correlation of the IRF with the returns histogram. As has been demonstrated in other work, deploying more advanced algorithms such as a reversible jump Markov chain Monte Carlo (RJMCMC) or Maximum Likelihood Estimates(MLE) [37,38] would result in enhanced multi peak detection in few-photon returns but the implementation of such an algorithm is out with the scope of this work.

The cavity design presented here has been simulated using the Essential Macleod software package to have a peak optical absorption at around 2.8µm (simulated at 100% absorptance), somewhat higher than the operating wavelength of 2.3µm (simulated at 50%). For these simulations the n and k values were measured for a NbTiN thin film using variable angle spectroscopic ellipsometry (VASE), see [39]. This low absorption efficiency is a contribution to the low SDE observed for these devices. Another issue with working at 2.3µm is that the bending losses of SM2000 fiber at this wavelength are, although better than for standard telecom fiber, still significant ($>$5dB for $<$10mm bend radius). Although care was taken to avoid bends in the fiber outside the cryostat, the bare fiber coupling the detector at 2.5K to the outside at 300K had some unavoidable bends due to the small area available inside. In a separate test 1m of bare fiber was placed into a cryostat configuration and the loss measured was 0.7dB at 2.3µm. Taking into account the length of fiber used inside the cryostat for the LIDAR experiments (2m) and some non-negligible splicing loss it is not unreasonable that the fiber loss approaches 2dB.

Lastly, as the fiber is aligned with the backside of the device and the nanowire is illuminated through the substrate, there is a 450µm gap between the fiber end face and the nanowire. Following calculations outlined in [40] using values for SM2000 fiber at 2.3µm we find that the beam radius is $\sim$51µm after the 450µm of substrate. Given the active-area of the device is 15µm by 15µm then only $\sim$30% of the beam will be incident on the active-area. A solution shown in [41] for similar devices was to implement a gradient index (GRIN) lens on the fiber endface to focus the output onto the active-area. This approach could be implemented here though commercial on-fiber GRIN lenses for the mid-infrared are not readily available. Other solutions could include a larger active-area device to negate the effect of the beam broadening but this would come with the cost of lower maximum count rate as the size increases. Recent work on large area detectors to improve the count rate shows promise [42]. A simpler approach could be to switch to frontside coupled detectors [43] as then gap between the fiber end face and the nanowire would be negligible. This approach works well for other research groups and is the focus of future work as we can minimize coupling losses while retaining the ease and deployability of fiber-coupled detectors.

The above absorption efficiency, coupling efficiency and fiber losses all add up to give an estimated efficiency of 9%, still higher than our experimentally measured value of <2%. If we examine the efficiency vs bias curve shown in Fig. 3(b) we see that the efficiency does not saturate or exhibit a plateau as bias current increases. This indicates that we have not achieved saturated internal detection efficiency within the nanowire for this wavelength and this is where the disparity between the measured and estimated efficiency values arises. Possible solutions to this could be to optimize nanowire geometry, film growth and material selection as discussed below. Other post fabrication techniques such as ion implantation designed to suppress the superconducting energy gap and enhance the internal efficiency have also recently been demonstrated [44].

The low SDE observed will be addressed in future work which will concentrate on frontside coupling these devices with mid-infrared chalcogenide or fluoride based fibers to enable access to the higher absorption area while minimizing the bend losses. The wavelength range closer to 3µm covers the absorption lines of many greenhouse and industrial gases that hold interest for environmental monitoring purposes. Characterization of our detectors in this regime would hold enormous potential for future remote sensing applications such as differential absorption LIDAR (DIAL) for gas monitoring [45].

The low critical currents ($I_{\mathrm {c}}$=8 to 9µA) observed for these devices contribute to the relatively high timing jitter observed. The low $I_{\mathrm {c}}$ results in low pulse height and poor signal-to-noise which has been shown to give a higher jitter device [46]. This could be attributed to fabrication imperfections in the narrow nanowires causing constrictions in the wire and square bends used on the ends of the meander - there is significant evidence to show that rounded meander bends minimize current constriction effects in the corners [47]. The uniformity of the superconducting film over the active-area could also contribute to this effect.

With the discussion of the deficiencies of the detectors addressed above we shall now consider what design parameters we will look to optimize for future fabrication of mid-infrared SNSPDs. SDE is the current focus for future detectors as, as shown in section 3, detectors with SDE over around 20% have not yet been demonstrated and SDE figures for wavelengths above 2.3µm are scarce. Minimization of the cross-section of the nanowires is a key controllable fabrication parameter to increase SDE as photon energy lowers at longer wavelengths - the probability of a smaller hotspot turning the entire nanowire resistive will scale with cross section. However, as discussed above, this will result in a smaller $I_{\mathrm {c}}$ - even if fabrication is perfect - leading to a higher timing jitter and worse SNR. This can be somewhat mitigated by the use of low noise cryogenic amplification as shown by other groups [14] and these amplifiers will be implemented in future work. In tandem with minimization of cross section, material selection will play a crucial role. The amorphous materials WSi and MoSi have been the usual choice for longer wavelength devices as the smaller superconducting energy gap (MoSi=2.28meV, WSi=1.52meV when compared to NbN=4.9meV. Values are for bulk [48]) leads to a higher probability of triggering for lower energy photons, although this comes with a lower critical temperature meaning that high effiency WSi or MoSi devices at 2.5K are unlikely. With carefully selected high quality films, fabrication of small cross-section nanowires and coupling with specialist mid-infrared fibers development of SNSPDs for mid-infrared will result in fast, high efficiency detectors for a large range of wavelengths currently not covered by semiconductor single-photon detectors alternatives.

6. Conclusion

We have presented a first proof-of-principle single-photon LIDAR system at 2.3µm wavelength using SNSPDs. We have demonstrated the potential of SNSPDs for few-photon mid-infrared free-space applications such as the imaging work presented here. We have also constructed and utilized a tuneable characterization setup for 1.5 to 4.2µm wavelength photons which will be scalable as we move to detectors optimized for longer wavelengths. In future work we will look to enhance the SDE and timing jitter in the mid-infrared by fabrication of ultra-narrow (sub 50nm width) constriction-free nanowires embedded in optical cavities and coupled with specialist infrared optical fiber. We will also incorporate cryogenic amplifiers in a differential readout scheme [49] to remove the geometric component of the timing jitter from the large nanowire meanders. These improved devices can be installed in the current LIDAR setup to give improved depth resolution at smaller pixel integration times and also deployed in outdoor field trials to demonstrate their improved operation in broad daylight when compared to shorter wavelength systems.

Funding

European Research Council (IRIS 648604); Engineering and Physical Sciences Research Council (EP/M01326X/1); Japan Science and Technology Agency (JPMXS0118067634).

Acknowledgments

R.H.H. acknowledges a Royal Society Leverhulme trust senior research fellowship. K.E. gratefully acknowledges an internship at NICT Japan.

Disclosures

The authors declare no conflicts of interest.

References

1. M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001). [CrossRef]  

2. G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007). [CrossRef]  

3. V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005). [CrossRef]  

4. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007). [CrossRef]  

5. A. Y. Loudon, P. A. Hiskett, G. S. Buller, R. T. Carline, D. C. Herbert, W. Leong, and J. G. Rarity, “Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers,” Opt. Lett. 27(4), 219–221 (2002). [CrossRef]  

6. F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

7. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011). [CrossRef]  

8. B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998). [CrossRef]  

9. M. B. Reine, “HgCdTe photodiodes for IR detection: A review,” in Photodetectors: Materials and Devices VI, vol. 4288 (International Society for Optics and Photonics, 2001), pp. 266–278.

10. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012). [CrossRef]  

11. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001). [CrossRef]  

12. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013). [CrossRef]  

13. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015). [CrossRef]  

14. B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

15. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012). [CrossRef]  

16. V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

17. L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018). [CrossRef]  

18. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009). [CrossRef]  

19. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012). [CrossRef]  

20. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006). [CrossRef]  

21. M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

22. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013). [CrossRef]  

23. H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015). [CrossRef]  

24. J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017). [CrossRef]  

25. D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

26. American Society for Testing and Materials. Committee G03 on Weathering and Durability, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface (ASTM international, 2003).

27. R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016). [CrossRef]  

28. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000). [CrossRef]  

29. S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

30. A. Divochiy, M. Misiaszek, Y. Vakhtomin, P. Morozov, K. Smirnov, P. Zolotov, and P. Kolenderski, “Single photon detection system for visible and infrared spectrum range,” Opt. Lett. 43(24), 6085–6088 (2018). [CrossRef]  

31. F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

32. P. S. Kuo, “Using silica fiber coupling to extend superconducting nanowire single-photon detectors into the infrared,” OSA Continuum 1(4), 1260–1266 (2018). [CrossRef]  

33. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013). [CrossRef]  

34. F. Najafi, “Timing performance of superconducting nanowire single-photon detectors,” Ph.D. thesis, Massachusetts Institute of Technology, (2015).

35. M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017). [CrossRef]  

36. R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).

37. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008). [CrossRef]  

38. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007). [CrossRef]  

39. A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072–2088 (2018). [CrossRef]  

40. A. M. Kowalevicz Jr and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).

41. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013). [CrossRef]  

42. C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019). [CrossRef]  

43. V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

44. W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019). [CrossRef]  

45. O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008). [CrossRef]  

46. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013). [CrossRef]  

47. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011). [CrossRef]  

48. A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015). [CrossRef]  

49. N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
    [Crossref]
  2. G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  3. V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
    [Crossref]
  4. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
    [Crossref]
  5. A. Y. Loudon, P. A. Hiskett, G. S. Buller, R. T. Carline, D. C. Herbert, W. Leong, and J. G. Rarity, “Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers,” Opt. Lett. 27(4), 219–221 (2002).
    [Crossref]
  6. F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.
  7. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
    [Crossref]
  8. B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
    [Crossref]
  9. M. B. Reine, “HgCdTe photodiodes for IR detection: A review,” in Photodetectors: Materials and Devices VI, vol. 4288 (International Society for Optics and Photonics, 2001), pp. 266–278.
  10. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  11. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
    [Crossref]
  12. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  13. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
    [Crossref]
  14. B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).
  15. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
    [Crossref]
  16. V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.
  17. L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
    [Crossref]
  18. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
    [Crossref]
  19. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
    [Crossref]
  20. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
    [Crossref]
  21. M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.
  22. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref]
  23. H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
    [Crossref]
  24. J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
    [Crossref]
  25. D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.
  26. American Society for Testing and Materials. Committee G03 on Weathering and Durability, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface (ASTM international, 2003).
  27. R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
    [Crossref]
  28. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [Crossref]
  29. S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).
  30. A. Divochiy, M. Misiaszek, Y. Vakhtomin, P. Morozov, K. Smirnov, P. Zolotov, and P. Kolenderski, “Single photon detection system for visible and infrared spectrum range,” Opt. Lett. 43(24), 6085–6088 (2018).
    [Crossref]
  31. F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.
  32. P. S. Kuo, “Using silica fiber coupling to extend superconducting nanowire single-photon detectors into the infrared,” OSA Continuum 1(4), 1260–1266 (2018).
    [Crossref]
  33. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
    [Crossref]
  34. F. Najafi, “Timing performance of superconducting nanowire single-photon detectors,” Ph.D. thesis, Massachusetts Institute of Technology, (2015).
  35. M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
    [Crossref]
  36. R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).
  37. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
    [Crossref]
  38. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
    [Crossref]
  39. A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072–2088 (2018).
    [Crossref]
  40. A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).
  41. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref]
  42. C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
    [Crossref]
  43. V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.
  44. W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
    [Crossref]
  45. O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008).
    [Crossref]
  46. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
    [Crossref]
  47. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
    [Crossref]
  48. A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
    [Crossref]
  49. N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
    [Crossref]

2019 (2)

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

2018 (4)

2017 (2)

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

2016 (2)

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

2015 (3)

2013 (5)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

2012 (3)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

2011 (2)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

2009 (1)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

2008 (2)

O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

2007 (3)

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

2006 (1)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

2005 (1)

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

2002 (1)

2001 (2)

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

1998 (1)

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Aidaraliev, M.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Aleksandrov, S.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Allmaras, J.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Amann, M.-C.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Autry, T.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Banerjee, A.

Bardin, J.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Bellei, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Berggren, K.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Berggren, K. K.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

Bersin, E.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Beyer, A.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Bosch, T. M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Boselli, A.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Bucholtz, F.

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).

Buller, G. S.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

A. Y. Loudon, P. A. Hiskett, G. S. Buller, R. T. Carline, D. C. Herbert, W. Leong, and J. G. Rarity, “Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers,” Opt. Lett. 27(4), 219–221 (2002).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Calandri, N.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

Carline, R. T.

Caspani, L.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Chang, S.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Charaev, I.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Chen, J.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Chen, L.

Chen, Q.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Chen, S.

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Chen, Y.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Chulkova, G.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Clem, J. R.

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

Clerici, M.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Colangelo, M.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Cova, S.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

Cristiano, R.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Crouch, G.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Dada, A.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Dane, A.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Dane, A. E.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Dauler, E. A.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Divochiy, A.

Doerner, S.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Dorenbos, S. N.

Dzardanov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Ebrahim, M.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Ejrnaes, M.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Erotokritou, K.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Farr, W.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Feng, Z.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Frasca, S.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Gavrilov, G.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Gawith, C.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Gemmell, N. R.

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Ghioni, M.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Gibson, G. J.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

Gin, J.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Gol’tsman, G.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Gordon, I.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Gulinatti, A.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

Hadfield, R. H.

A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072–2088 (2018).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).

Hale, P.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

He, Y.

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Heath, R. M.

Hemakumara, D.

Herbert, D. C.

Hernandez-Marin, S.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

Hill, C.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Hiskett, P. A.

Horansky, R. D.

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

Huang, H.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Huang, J.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Húbers, H.-W.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Il’inskaya, N.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Jia, Q.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Jia, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Johansson, G.

R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).

Kang, L.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Karandashov, S.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Kochanov, R. V.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Kolenderski, P.

Korzh, B.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

Kovaltchouk, V.

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Kowalevicz, A. M.

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).

Krichel, N. J.

Kues, M.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Kuo, P. S.

Kuzmin, A.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Lau, J. A.

Leong, W.

Lescure, M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Li, H.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Lipatov, A.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Lita, A.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Lita, A. E.

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, D.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Liu, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Lolos, G.

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Loudon, A. Y.

lv, C.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Marsili, F.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Matveev, B.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

McCarthy, A.

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Miki, S.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Miller, A.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Mirin, R.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

Mirin, R. P.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

Misiaszek, M.

Molnar, R. J.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Moody, G.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Morozov, D.

A. Banerjee, R. M. Heath, D. Morozov, D. Hemakumara, U. Nasti, I. Thayne, and R. H. Hadfield, “Optical properties of refractory metal based thin films,” Opt. Mater. Express 8(8), 2072–2088 (2018).
[Crossref]

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Morozov, P.

Myllylae, R. A.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Najafi, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

F. Najafi, “Timing performance of superconducting nanowire single-photon detectors,” Ph.D. thesis, Massachusetts Institute of Technology, (2015).

Nam, S.

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Nam, S. W.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Nasti, U.

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

Okunev, O.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Ou, X.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Papandreou, Z.

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Parlato, L.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Patawaran, F.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Pedersen, C.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Pepe, G.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Prabhakar, S.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Ramirez, E.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Rarity, J. G.

Ravindran, P.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Rech, I.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Reine, M. B.

M. B. Reine, “HgCdTe photodiodes for IR detection: A review,” in Photodetectors: Materials and Devices VI, vol. 4288 (International Society for Optics and Photonics, 2001), pp. 266–278.

Ren, X.

Resta, G.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Rezac, J.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Rioux, M.

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Romanovskii, O.

O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008).
[Crossref]

Rothman, L.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Russell, D.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

Salvoni, D.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Sannino, A.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

Schwarzer, D.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Semenov, A.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Shainline, J. M.

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

Shaw, M.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shibata, H.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Shields, T.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Shimizu, K.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Sidorova, M.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Siegel, M.

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Silverman, K.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Smirnov, K.

A. Divochiy, M. Misiaszek, Y. Vakhtomin, P. Morozov, K. Smirnov, P. Zolotov, and P. Kolenderski, “Single photon detection system for visible and infrared spectrum range,” Opt. Lett. 43(24), 6085–6088 (2018).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Sobolewski, R.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Sotnikova, G.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Stern, J.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stevens, M.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Stevens, M. J.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

Stus, N.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Sugihara, T.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Takesue, H.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Talalakin, G.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Tanner, M. G.

Taylor, G. G.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Terai, H.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Thayne, I.

Tidemand-Lichtenberg, P.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Tokura, Y.

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40(14), 3428–3431 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Tosi, A.

F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

Vakhtomin, Y.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V.

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

Verma, V. B.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859–14868 (2018).
[Crossref]

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Voronov, B.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wallace, A.

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Wallace, A. M.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Wang, X.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

Wang, Z.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Watanabe, M.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

Wcislo, P.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Williams, C.

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

Wilzewski, J.

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Wodtke, A.

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

Wodtke, A. M.

Wolbaum, K.

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Wollman, E.

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Wu, G.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Wu, J.

Wu, P.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Wu, Y.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Xie, X.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Yabuno, M.

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

Yamashita, T.

Yan, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Yang, X.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

You, L.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zappa, F.

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

Zhai, J.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Zhang, C.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Zhang, L.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhang, W.

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Zhao, Q.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Zhao, Q.-Y.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

Zhou, H.

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref]

Zhou, X.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Zhu, D.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

Zhu, J.

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Zolotov, P.

Zotova, N.

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Zwiller, V.

AIP Adv. (2)

C. Zhang, W. Zhang, J. Huang, L. You, H. Li, C. lv, T. Sugihara, M. Watanabe, H. Zhou, Z. Wang, and X. Xie, “NbN superconducting nanowire single-photon detector with an active area of 300 µm-in-diameter,” AIP Adv. 9(7), 075214 (2019).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3(7), 072135 (2013).
[Crossref]

Appl. Phys. Express (1)

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting nanowire single-photon detector with ultralow dark count rate using cold optical filters,” Appl. Phys. Express 6(7), 072801 (2013).
[Crossref]

Appl. Phys. Lett. (3)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89(3), 031109 (2006).
[Crossref]

G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

G. S. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3d lidar image construction using spatial models in a bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1028–1040 (2008).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2170–2180 (2007).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

R. V. Kochanov, I. Gordon, L. Rothman, P. Wcisło, C. Hill, and J. Wilzewski, “Hitran application programming interface (hapi): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transfer 177, 15–30 (2016).
[Crossref]

Meas. Sci. Technol. (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

MRS Online Proc. Libr. Arch. (1)

A. E. Lita, V. B. Verma, R. D. Horansky, J. M. Shainline, R. P. Mirin, and S. Nam, “Materials development for high efficiency superconducting nanowire single-photon detectors,” MRS Online Proc. Libr. Arch. 1807, 1–6 (2015).
[Crossref]

Nano Lett. (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 µm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref]

Nat. Photonics (3)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (1)

V. Kovaltchouk, G. Lolos, Z. Papandreou, and K. Wolbaum, “Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier,” Nucl. Instrum. Methods Phys. Res., Sect. A 538(1-3), 408–415 (2005).
[Crossref]

Opt. Eng. (1)

M.-C. Amann, T. M. Bosch, M. Lescure, R. A. Myllylae, and M. Rioux, “Laser ranging: a critical review of unusual techniques for distance measurement,” Opt. Eng. 40(1), 10–20 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Mem. Neural Networks (1)

O. Romanovskii, “Airborne DIAL lidar gas analysis of the atmosphere by middle IR gas lasers: Numerical modeling,” Opt. Mem. Neural Networks 17(2), 131–137 (2008).
[Crossref]

OSA Continuum (1)

Phys. Rev. Appl. (1)

W. Zhang, Q. Jia, L. You, X. Ou, H. Huang, L. Zhang, H. Li, Z. Wang, and X. Xie, “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl. 12(4), 044040 (2019).
[Crossref]

Phys. Rev. B (2)

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B 84(17), 174510 (2011).
[Crossref]

M. Sidorova, A. Semenov, H.-W. Húbers, I. Charaev, A. Kuzmin, S. Doerner, and M. Siegel, “Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires,” Phys. Rev. B 96(18), 184504 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref]

Sci. Rep. (1)

J. Zhu, Y. Chen, L. Zhang, X. Jia, Z. Feng, G. Wu, X. Yan, J. Zhai, Y. Wu, Q. Chen, X. Zhou, Z. Wang, C. Zhang, L. Kang, J. Chen, and P. Wu, “Demonstration of measuring sea fog with an SNSPD-based lidar system,” Sci. Rep. 7(1), 15113 (2017).
[Crossref]

Sens. Actuators, B (1)

B. Matveev, M. Aidaraliev, G. Gavrilov, N. Zotova, S. Karandashov, G. Sotnikova, N. Stus, G. Talalakin, N. Il’inskaya, and S. Aleksandrov, “Room temperature InAs photodiode–InGaAs led pairs for methane detection in the mid-IR,” Sens. Actuators, B 51(1-3), 233–237 (1998).
[Crossref]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 063001 (2012).
[Crossref]

Other (13)

V. Verma, A. Lita, B. Korzh, E. Wollman, M. Shaw, R. Mirin, and S. Nam, “Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire single-photon detectors,” in Advanced Photon Counting Techniques XIII, vol. 10978 (International Society for Optics and Photonics, 2019), p. 109780N.

B. Korzh, Q. Zhao, S. Frasca, J. Allmaras, T. Autry, E. Bersin, M. Colangelo, G. Crouch, A. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. Rezac, M. Stevens, E. Wollman, D. Zhu, P. Hale, K. Silverman, R. Mirin, S. Nam, M. Shaw, and K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” arXiv preprint arXiv:1804.06839 (2018).

M. B. Reine, “HgCdTe photodiodes for IR detection: A review,” in Photodetectors: Materials and Devices VI, vol. 4288 (International Society for Optics and Photonics, 2001), pp. 266–278.

F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583 (International Society for Optics and Photonics, 2007), p. 65830E.

D. Salvoni, M. Ejrnaes, L. Parlato, A. Sannino, A. Boselli, G. Pepe, R. Cristiano, and X. Wang, “Lidar techniques for a SNSPD-based measurement,” in Journal of Physics: Conference Series, vol. 1182 (IOP Publishing, 2019), p. 012014.

American Society for Testing and Materials. Committee G03 on Weathering and Durability, Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface (ASTM international, 2003).

S. Prabhakar, T. Shields, A. Dada, M. Ebrahim, G. G. Taylor, D. Morozov, K. Erotokritou, S. Miki, M. Yabuno, H. Terai, C. Gawith, M. Kues, L. Caspani, R. H. Hadfield, and M. Clerici, “Two-photon quantum interference and entanglement at 2 µm,” arXiv preprint arXiv:1906.02082 (2019).

M. Shaw, F. Marsili, A. Beyer, J. Stern, G. Resta, P. Ravindran, S. Chang, J. Bardin, D. Russell, J. Gin, F. Patawaran, V. Verma, R. Mirin, S. Nam, and W. Farr, “Arrays of WSi superconducting nanowire single photon detectors for deep-space optical communications,” in 2015 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2015), pp, 1–2.

R. H. Hadfield and G. Johansson, Superconducting devices in quantum optics (Springer, 2016).

F. Najafi, “Timing performance of superconducting nanowire single-photon detectors,” Ph.D. thesis, Massachusetts Institute of Technology, (2015).

F. Marsili, V. Verma, M. Stevens, J. Stern, M. Shaw, A. Miller, D. Schwarzer, A. Wodtke, R. Mirin, and S. Nam, “Mid-infrared single-photon detection with tungsten silicide superconducting nanowires,” in CLEO: Science and Innovations, (Optical Society of America, 2013), pp. CTu1H–1.

V. Verma, F. Marsili, B. Baek, A. Lita, T. Gerrits, J. Stern, R. Mirin, and S. W. Nam, “55% system detection efficiency with self-aligned WSi superconducting nanowire single-photon detectors,” in 2012 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2012), pp. 1–2.

A. M. Kowalevicz and F. Bucholtz, “Beam divergence from an smf-28 optical fiber,” Tech. rep., Naval Research Lab, Washington DC, (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Solar irradiance and atmospheric absorption. The red line shows the solar irradiance variation (left y-axis) with wavelength and the blue shows the combined absorption spectra of the most common molecules in the earth’s atmosphere - H$_{2}$O, CO$_{2}$, O$_{2}$ and Ozone (right y-axis). The absorption is presented in dB per meter at 1 atmosphere and 296K temperature. The saturation at the top of the scale indicates 100% absorption for that wavelength. The solar data is from ASTM [26] and the spectral line data from HITRAN 2016 [27]. The highlighted region spans the 2 to 2.5µm range and shows a window of low absorption and lower background irradiance when compared to shorter wavelengths.
Fig. 2.
Fig. 2. a): Simulation of the absorption in the SNSPD cavity design. b): Schematic of the device design showing the nanowire (green) embedded in the optical stack. The device is optically fiber-coupled from the underside of the device (bottom of figure). c): Photo showing the mounted device and the fiber aligned through the underside of the device.
Fig. 3.
Fig. 3. a) Photon count rate (red) and dark count rate (blue) for 2.3µm wavelength photons incident on the device at 2.5K. The early onset of the DCR before the exponential increase as the current approaches the critical current is caused by black body radiation coupling into the fiber from room temperature. b) Calculated system detection efficiency (SDE) against bias current. For these devices at an operating temperature of 2.5K we do not observe the characteristic plateau associated with saturation of the internal detection efficiency. The relatively low overall SDE observed is discussed in section 5.
Fig. 4.
Fig. 4. a): Results from two cardboard squares separated by 40mm and co-illuminated with a 2mm beam. The data is fitted with a double Gaussian function to determine the peak positions. The integration time was 10s for this measurement. Below 4cm separation the two peaks become difficult to distinguish. b): Instrument response function of the entire LIDAR setup described in section 4 showing a system timing jitter of 280ps FWHM fitted with a Gaussian function. Blue dots show data points and the red line is the fit.
Fig. 5.
Fig. 5. LIDAR schematic. The OPO provides a sync pulse which is fed into a fast photodetector (Thorlabs DET08CFC) to provide the sync signal (START) for the HydraHarp TCSPC module. The idler pulse travels through the free-space filtering system described in the text (seen at the top of the figure) and is then directed through the central hole of an off-axis parabolic (OAP) mirror with a 3.2mm through hole to the target. An aperture before this hole controls the beam size. Once reflected from the target (LEGO figure) returns are collected and focussed into fiber with two OAP mirrors and a plano-convex lens and then delivered to the SNSPD. Electrical response signals from the SNSPD are then amplified and sent to the TCSPC to provide the STOP signal. SM2000 fiber is shown in yellow, electrical connections in black. Arrows indicate free-space transmission with red being output and blue the target returns.
Fig. 6.
Fig. 6. a) Photos of LEGO Big Ben model on motorized stages scanning in X and Y. The main photo shows the target as viewed by the LIDAR apparatus and the inset shows the depth profile from the side. b) LIDAR depth image acquired with a 1s integration time per pixel. The whole area of the model has not been scanned. Key features such as the raised clock face (3mm depth from next surface), holes in the model and curved cutout of the moving stage can be easily picked out. The scale bar shows depth in mm.

Metrics