Abstract

Sensors for harsh environments must exhibit robust sensing response and considerable thermal and chemical stability. We report the exploration of a novel all-alumina nanostructured sapphire optical fiber (NSOF) embedded with Au nanorods (Au NRs) for plasmonics-based sensing at high temperatures. Temperature dependence of the localized surface plasmon resonance (LSPR) of Au NRs was studied in conjunction with numerical calculations using the Drude model. It was found that LSPR of Au NRs changes markedly with temperature, red shifting and increasing in transmission amplitude as the temperature increases. Furthermore, this variation is highly localized through tunneling by overlapping the near-field of thin cladding and sapphire optical fiber. The NSOF embedded with Au NRs has the potential for sensing in advanced energy generation systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

There is an increasing demand for harsh-environment sensors capable of continuously monitoring the operation of high-efficiency low-emission energy production systems such as combustion turbine engines, coal gasifiers and boilers [13]. These sensors should be cost-effective, reliable, robust, and stable over the long term. Fiber optic sensors are promising candidates owing to their electromagnetic interference immunity, elimination of electrical wiring, and availability at reasonable cost [4]. However, conventional silica-based optical fibers are limited in their ability to operate at high temperatures, particularly in chemically reactive environments [5]. Nanostructured sapphire optical fiber (NSOF), consisting of sapphire fiber as the waveguide core and nanoporous anodic aluminum oxide (AAO) coating with highly ordered pore channels aligned vertically to the fiber surface as the cladding, serves as a promising and novel sensing platform with superior chemical and thermal stability [6,7]. Apart from the obvious advantage of the same material composition as the fiber core, AAO cladding can prevent sapphire fiber from surface contaminations [8,9] and possesses the structural tunability to achieve diverse sensing modalities [10]. We report here the first demonstration of sensing at elevated temperatures using NSOF with embedded plasmonic Au nanorods.

Plasmonic nanostructures have been shown to exhibit strong response to variations in temperature and chemical composition [1118]. The working principle of plasmonic sensors is based on localized surface plasmon resonance (LSPR) of metal (e.g., Au and Ag) nanostructures, the free electrons of which oscillate in resonance with an external electromagnetic field [19]. This oscillation results in absorption or scattering of the incident field that can be observed as strong resonance peaks in absorption or reflection measurements. The LSPR of the plasmonic nanostructure can be dramatically modified by environmental conditions such as the surrounding medium and temperatures. Changes in the LSPR features can be directly associated with changing environmental conditions [19].

Au nanorods (Au NRs) that are chemically and morphologically stable at high temperatures [20] are fabricated into the pore channels of AAO cladding of NSOF. The resultant AAO cladding embedded with an array of Au NRs is also a plasmonic metamaterial with optical properties tunable in the visible and near-infrared spectral range. Such cladding configuration exhibits diverse physical properties such as hyperbolic dispersion [21], negative refraction [22], nonlocal effects [23], and light polarization shaping [24]. The optical properties of Au NRs depend strong on temperatures also. For example, the influence of cryogenic temperature down to 80 K on the low-temperature plasmonics of the Au NR-based metamaterials has been measured [25]. However, there is a dearth of experimental study of the high-temperature plasmonics of Au NRs due to their thermodynamic tendency to become spherical nanoparticles at elevated temperatures [26]. In this study, the thermal and morphological stability of Au NRs at elevated temperatures has been significantly improved by geometrical confinement inside AAO pores [27]. High temperatures can drastically alter the transmission of light through Au NRs embedded within the AAO cladding and this altered transmission was successfully observed without the effect from ambient thermal irradiation using NSOF through near-field evanescent tunneling. Numerical modeling was conducted to explain the temperature-dependent Au permittivity using the plasmon frequency and electronic collision frequency as two key parameters.

2. Experimental section

2.1 NSOF fabrication

The essence of NSOF fabrication is to coat an unclad sapphire fiber with Al followed by a simple and cost-effective growth process of porous AAO cladding from Al coating via anodization in an electrochemical cell [28]. Briefly, unclad sapphire fibers (α-Al2O3, MicroMaterials, Inc., SF200-10, 200 µm in diameter, 10 cm in length) with polished distal ends were first cleaned by sonication in acetone (C3H6O, Pharmco-Aaper) and then in Milli-Q water for 10 min. Al with varying thicknesses, which can be controlled by deposition rate and time, were coated on the fiber through thermal evaporation from a heated Al source in a thermal evaporator (Angstrom Engineering, Ontario, Canada). Coating uniformity was achieved by rotating the fiber placed in the path of the Al vapor flux. The Al-coated fibers were then electrochemically anodized to fully convert the Al coating into AAO cladding in 0.3 M oxalic acid (H2C2O4, Sigma-Aldrich, 98%) with vigorous stirring under 60 V for 10 min at 0 °C in an ice-water bath using our home-built anodization unit [29]. The AAO pores were subsequently widened via chemical etching in 0.3 M phosphoric acid (H3PO4, J. T. Baker Chemical Co, 98%) for 50 min at room temperature, followed by thermal annealing at 800 °C for 1 hour in static air to stabilize the pore structure and remove remnant adsorbates. The resultant AAO cladding of NSOF was 5 cm in length, 100 nm in average pore depth and 50 nm in average pore diameter. Planar AAO structures with the same thickness and pore diameter as NSOF cladding were fabricated on sapphire substrates (α-Al2O3, Advalue Technology, 25 × 25 mm, C plane orientation) following the same procedures above.

2.2 Synthesis of Au NRs

The AAO on sapphire substrate or as part of the NSOF was first infiltrated with an aqueous solution of 0.2 mg/ml poly(allylamine hydrochloride) (PAH, Sigma-Aldrich, Mw = 15,000) polymer at pH 9 for 30 min to functionalize the AAO surface. Upon rinsing three times with Milli-Q water to remove any free or loosely bound PAH molecules, the PAH-coated AAO was then immersed into a 5 nm Au NP solution (Nanocomposix, citrate surface, 0.05 mg/mL) for 13 hours, followed by rinsing three times with Milli-Q water to remove any free or loosely bound Au NPs. The Au NPs were immobilized onto the PAH-functionalized AAO top surface and pore walls through electrostatic interactions with PAH and binding between the Au NPs and amino groups of PAH. Subsequently, the 5 nm Au NPs-coated AAO was exposed to a fluorine-based reactive ion etching (RIE, Oxford PlasmaPro NPG80) process to remove any Au NPs on the top surface. Finally, the AAO, with Au NPs only anchored on the pore channel walls, was immersed into an Au plating solution containing 0.079 M gold sodium sulphite (Na3Au(SO3)2, Alfa chemistry, 100 g/L), 0.127 M sodium sulfite (Na2SO3, Sigma-Aldrich, 98%), 0.025 M sodium bicarbonate (NaHCO3, Sigma-Aldrich, 99.7%, ACS reagent) and 0.0625 M formaldehyde (HCHO, Sigma-Aldrich, 36.5-38% in H2O) for 20 hours at 4 °C until Au NRs formed. The pH of the Au plating solution was adjusted to 8 by dropwise addition of 1 M H2SO4 (H2SO4, Sigma-Aldrich, 95-98%). An additional annealing procedure at 250 °C for 1 hour was conducted to densify the Au NRs. The geometry of the resultant Au NRs in AAO was measured via scanning electron microscopy (SEM, Zeiss Auriga).

2.3 NSOF embedded with Au NRs for high-temperature plasmonics

To characterize the high-temperature plasmonics of Au NRs in NSOF under harsh environment conditions, NSOF was first fusion spliced with silica fiber (Thorlabs FGA105-LCA, 105 µm in diameter) on both ends and placed in a tube furnace (Thermo Scientific Lindberg Blue M) with the cladding section in the hot zone as shown in Fig. 1. Tube end caps were custom-built to enable programmable gas flow at elevated temperatures, and the N2 gas flow was maintained at a fixed flow rate of 100 sccm. Optical characterization was performed by coupling light from a broadband halogen light source (Ocean Optics, DH-2000-BAL) into the silica fiber and measuring the transmission spectrum with a UV-VIS spectrometer (Ocean Optics Jaz Spectrometer, JAZA2166-2048 pixels) connected to the other silica fiber. The transmission spectra were taken as temperature increased from room temperature to 800 °C at a ramping rate of 1 °C per minute.

 

Fig. 1. Schematic illustration of the reactor system for transmission measurements through NSOF embedded with Au NRs.

Download Full Size | PPT Slide | PDF

Planar AAO embedded with Au NRs on the sapphire substrate was placed in a high-temperature optical transmission cell with sapphire windows (Specac FT-NIR). The sample was illuminated with collimated light from a halogen lamp, vertical to the substrate surface and parallel to the longitudinal axis of Au NRs such that only the transverse LSPR modes would be excited. This is in contrast to the Au NRs integrated NSOF for which both modes would be excited to some extent dependent upon the details of light propagation and polarization state within the fiber. The transmission spectra in response to temperature were also recorded following the same ramping profile as NSOF for direct comparison. The transmission spectra were measured relative to an empty cell under ambient conditions, with both windows in place.

2.4 FDTD simulation

Lumerical FDTD solution of version 8.19 was used to simulate the transmission spectra of Au NRs in planar AAO at elevated temperatures. Periodic Au NR arrays (50 nm in diameter, 100 nm in interrod separation, 22.7% in porosity) in hexagonal arrangement were built using the Cartesian coordinate system. Periodic boundary conditions were defined in the draw mode. For comparison with temperature dependent optical property measurements reported, the complex refractive index of Au NRs at different temperatures was calculated using the Drude model [25]. AAO was treated as an effective homogeneous medium with the effective refractive index modified by porosity as well as being temperature-insensitive. The mesh grid size is 0.5 nm.

3. Results and discussion

There were considerable changes in the transmission spectra through NSOF embedded with Au NRs in response to changing temperature in the environment according to our measurements. Scanning electron micrograph in Fig. 2 shows that the Au NRs are 50 nm in average diameter after 800 °C treatments, and this size has been widely explored regarding the LSPR activity in the literature [12]. The relative change in the transmission spectral energy density (Δuλ=(uλ,T-uλ, 800)/uλ, 800) at different temperatures with respect to 800 °C in nitrogen is presented in Fig. 3(a). A strong wavelength-dependent relative spectral energy density change is observed. The localized feature in the UV-Vis range can be attributed to be the LSPR of Au NRs, red shifting and decreasing in peak intensity as temperature is incrementally increased from 100 to 800 °C. The maximum relative change is observed to be 17.5% for 100 °C compared to 800 °C at a wavelength of 500 nm and the rapid variations in transmission with wavelength are asserted to results from the complex optical anisotropy and periodicity of the Au NR integrated AAO NSOFs. A parallel study on NSOF without embedded Au NRs was conducted with the transmission results illustrated in Fig. 3(b). Additional measurements were also carried out using unclad sapphire fiber, whose transmission spectra exhibited no temperature dependence (results not shown here). The temperature-insensitivity of both bare NSOF and unclad sapphire fiber, relative to NSOF with Au NRs, serves to confirm that the temperature-induced variations shown in Fig. 3(a) originated principally from the response of the LSPR of Au NRs to changing environment temperature. Our work offers the first observation that NSOF embedded with Au NRs can be utilized to investigate plasmonic characteristics of metal nanostructures at high temperatures through near-field evanescent tunneling. These results demonstrate the significant potential of the novel NSOF/Au NRs platform for sensing in harsh environments not suitable for their silica optic fiber counterpart [5,13].

 

Fig. 2. SEM images of (a) Au NRs in AAO cladding, (b) cross-sectional view of NSOF embedded with Au NRs and (c) plan view of Au NRs in AAO cladding.

Download Full Size | PPT Slide | PDF

 

Fig. 3. Relative transmission spectral energy density change (Δuλ=(uλ,T-uλ, 800)/uλ, 800) at different temperatures with respect to 800 °C in N2 for NSOF embedded (a) with and (b) without Au NRs.

Download Full Size | PPT Slide | PDF

To better understand the temperature induced LSPR-based activity of NSOF embedded with Au NRs, the optical transmission of planar AAO embedded with Au NRs as a function of temperature was measured and presented in Fig. 4(a). In this case, the collective plasmonic transverse mode associated with electron movement perpendicular to the long axis of nanorods was directly stimulated with incident light vertical to the substrate, along with electromagnetic field vector parallel to the short axis of the rods. The transverse mode is observed as a strong LSPR extinction peak in the transmission spectra and the transmission extinction peak shows appreciable red shifting from 529 nm to 539 nm and LSPR broadening as temperature increases. The response is also fully reversible as the temperature decreases, which further corroborates the improved thermal and morphological stability of Au NRs entrapped in AAO pores. The relatively smooth wavelength dependence for planar AAO embedded with Au NRs in a normal incidence geometry, can be attributed to predominant excitation of the transverse LSPR of Au NRs as compared with the results obtained for the NSOFs.

 

Fig. 4. (a) Experimental and (b) simulated transmission spectra of planar AAO embedded with Au NRs on sapphire substrate at different temperatures in N2.

Download Full Size | PPT Slide | PDF

In addition to the free electron density dependence, LSPR frequency of metal is also highly dependent on changes in the dielectric permittivity due to temperature. The complex dielectric permittivity ε(T) of metal nanostructures due to temperature effects can be approximated by the Drude model [13,30]:

$${\varepsilon _r}(T) = {\varepsilon _\infty } - \frac{{\omega _p^2(T)}}{{\omega [\omega + i{\omega _c}(T)]}}$$
where ω is the angular frequency of the electromagnetic wave and ε = 11.5 is the high-frequency permittivity of the Au nanoparticles [25,31]. Assuming the relative temperature dependence of effective mass of the electrons can be neglected, plasmon frequency ωp(T) at a given temperature can be calculated by referring to room temperature using the following equation [32]:
$${\omega _p}(T) = \frac{{{\omega _p}({T_0})}}{{\sqrt {1 + 3\gamma (T - {T_0})} }}$$
where ωp(T0) = 1.372 × 1016 s−1 at room temperature [33]. γ is the thermal linear expansion coefficient of Au. Considering the motion of electrons in the conduction band of Au NRs, temperature-dependent collision frequency ωc(T) results from electron-phonon ωe-p(T) and electron-electron ωe-e(T) scattering with ωc(T) = ωe-p(T) + ωe-e(T) as illustrated [30]:
$${\omega _{e - p}} = {\omega _0}\left[ {\frac{2}{5} + \frac{{4{T^5}}}{{\theta_D^5}}\int_0^{{\theta_D}/T} {\frac{{{z^4}}}{{{e^4} - 1}}dz} } \right]$$
$${\omega _{e - e}}(T )= \frac{{{\pi ^3}\Gamma \varDelta }}{{12\hbar {E_F}}}\left[ {{{({{k_B}T} )}^2} + {{\left( {\frac{{\hbar \omega }}{{2\pi }}} \right)}^2}} \right]$$
The complex permittivity εr(T), with real and imaginary part εr(T) and $\tilde{\varepsilon}_{r}(T)$, and the complex refractive index n, with real and imaginary parts n and κ, follow the relations:
$${\underline \varepsilon _r}(T )= {\varepsilon _r}(T )+ i\widetilde {{\varepsilon _r}}(T )= {\underline n ^2} = {({n + i\kappa } )^2}$$
$${\varepsilon _r}(T )= {n^2} - {\kappa ^2} = {\varepsilon _\infty } - \frac{{\omega _p^2(T)}}{{{\omega ^2} + \omega _c^2(T)}}$$
$${\widetilde \varepsilon _r}(T )= 2n\kappa = \frac{{{\omega _c}(T)\omega _p^2(T)}}{{\omega [{{\omega^2} + \omega_c^2(T)} ]}}$$
Together with all the parameters required for the above calculations in Table 1, the real and imaginary part of complex refractive index can be calculated for different temperatures by the following equations:
$$n = \sqrt {\frac{{|{{{\underline \varepsilon }_r}(T )} |+ {\varepsilon _r}(T )}}{2}}$$
$$\kappa = \sqrt {\frac{{|{{{\underline \varepsilon }_r}(T )} |- {\varepsilon _r}(T )}}{2}}$$
$$|{{{\underline \varepsilon }_r}(T )} |= \sqrt {\varepsilon _r^2(T )+ \widetilde \varepsilon _r^2(T )}$$

Tables Icon

Table 1. Parameters for the calculation of temperature-dependent Au complex refractive index

It should be noted that the reported thermal expansion coefficient of Au (14.2 × 10−6 K−1) is similar to that of the AAO (16.71 × 10−6 K−1) matrix and hence corrections were not made for the constraints imposed by the surrounding AAO matrix [34]. The size effects of materials due to thermal expansion were not taken into consideration in our simulation. The refractive index was estimated for different temperatures using the Drude model. The key experimental high-temperature plasmonics features in Fig. 4(a) can be reproduced using Finite Element Method in FDTD with temperature dependent optical constants as presented in Fig. 4(b). The simulated extinction peak at around 529 nm also increases in transmission and broadens in width as the temperature increases. The change in extinction is also accompanied by the red shift of the resonance peak. The high-energy band in Fig. 4(a) results from the interband electron transitions in Au, [30,35] not explicitly taken into account in the Drude model calculations. However, while the inclusion of additional interband details in a more sophisticated model would improve agreement between the experimental findings and simulation results at short wavelengths, they would not significantly alter the basic conclusions in the wavelength range of primary interest for the Au NR LSPR since ε∞ = 11.5 used in the Drude model is a reasonable assumption for wavelengths above 516 nm [30].

The relative changes of Au refractive index at high temperatures with respect to room temperature based on the Drude model are shown in Fig. 5 for comparison. While the imaginary part of the refractive index decreases less than 6% in the UV-Vis range as temperature reaches 700 °C, the change of the real part is much more significant, approximately a 2X increment as compared to room temperature. The absorption cross section (σabs) for Au nanorods is determined by the following equation [36]:

$${\sigma _{abs}}(\omega )= \frac{V}{{3C}}\sigma _m^{\frac{3}{2}}\sum\limits_{i = 1}^3 {{{({{Y_i} + 1} )}^2}\frac{{\omega {\varepsilon _2}}}{{{{({{\varepsilon_2} + {Y_i}{\varepsilon_m}} )}^2} + \varepsilon _2^2}}}$$
The resonance frequency corresponds to the condition when ε1 = -Yiεm with ε1 being the real part of the dielectric function, εm is the matrix dielectric function (assumed to be real), and Yi is the shape factor for the rod longitudinal axis. The substantial increase of the real part of Au dielectric permittivity in Eq. (6) with temperature leads to red shifting of its spectral position for AAO cladding embedded with Au NRs to fulfill the resonance condition based on the model calculation. The increased scattering as the electron and phonon temperature increases causes the LSPR peak to broaden, accompanied with reduced peak absorption intensity. Some red-shifting of the LSPR peak is also observed. The increased optical loss in NSOF with Au NRs embedded in the AAO cladding at elevated temperatures leads to the red shift of LSPR and decrease of its amplitude. These responses can readily be measured through near-field evanescent tunneling in the robust NSOF/Au NRs platform.

 

Fig. 5. The calculated (a) real and (b) imaginary part of Au refractive index in terms of fractional change at different temperatures with respect to room temperature (RT).

Download Full Size | PPT Slide | PDF

4. Conclusions

In summary, we have explored a specialty all-alumina NSOF embedded with Au NRs for high-temperature plasmonics study in harsh environments. We have shown that the AAO cladding serves to improve the thermal and morphological stability of Au NRs at elevated temperatures. The optical properties of Au NRs exhibit a strong dependence on temperature. Specifically, the LSPR of Au NRs underwent red shift as well as reduced peak intensity as temperature was raised from 100 to 800 °C. Such dependence can be monitored in the near field via the evanescent tunneling mechanism without interference from other environment variables such as black-body thermal irradiation and floating particulates in a thermal chamber. The NSOF embedded with Au NRs sensing platform offers a potential solution to the decades-old challenges associated with utilization of sapphire optical fiber sensors by virtue of the high thermal and chemical stability of the unique cladding structures in harsh environments.

Funding

National Science Foundation (DMR-1506179).

Acknowledgments

This work was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. The authors thank Dr. Vishal Narang for supporting the RIE etching process at the City University of New York Advanced Science Research Center (ASRC) nanofabrication facility.

Disclosures

The authors declare no competing financial interest.

References

1. Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018). [CrossRef]  

2. D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review,” IEEE Sens. J. 9(11), 1472–1478 (2009). [CrossRef]  

3. G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017). [CrossRef]  

4. T. Wei, X. Lan, H. Xiao, Y. Han, and H.L. Tsai, Optical fiber sensors for high temperature harsh environment sensing, in 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011.

5. H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018). [CrossRef]  

6. H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106(11), 111102 (2015). [CrossRef]  

7. H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).

8. B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

9. B. A. Wilson, C. M. Petrie, and T. E. Blue, “High-temperature effects on the light transmission through sapphire optical fiber,” J. Am. Ceram. Soc. 101(8), 3452–3459 (2018). [CrossRef]  

10. H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016). [CrossRef]  

11. G. Dharmalingam and M. A. Carpenter, “Chemical sensing dependence on metal oxide thickness for high temperature plasmonics-based sensors,” Sens. Actuators, B 251, 1104–1111 (2017). [CrossRef]  

12. K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017). [CrossRef]  

13. P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013). [CrossRef]  

14. P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012). [CrossRef]  

15. P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014). [CrossRef]  

16. P.R. Ohodnicki Jr, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).

17. C. Sun, P. Lu, R. Wright, and P.R. Ohodnicki, “Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature,” Proc. SPIE 10654, 1065405 (2018).

18. P.R. Ohodnicki, T.D. Brown, M.P. Buric, and C. Matranga, Nanocomposite thin films for optical temperature sensing. 2017, ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). p. Medium: ED.

19. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef]  

20. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005). [CrossRef]  

21. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009). [CrossRef]  

22. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008). [CrossRef]  

23. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011). [CrossRef]  

24. L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017). [CrossRef]  

25. J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012). [CrossRef]  

26. H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006). [CrossRef]  

27. K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019). [CrossRef]  

28. K. Liu, Y. Ma, and H. Du, “Tailoring the nanostructure of anodic aluminum oxide cladding on optical fiber,” J. Am. Ceram. Soc. 101(12), 5836–5845 (2018). [CrossRef]  

29. H. Chen, F. Tian, K. Liu, J. Kanka, and H. Du, “Strategy and method for nanoporous cladding formation on silica optical fiber,” Opt. Lett. 41(12), 2831–2834 (2016). [CrossRef]  

30. A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013). [CrossRef]  

31. H. S. Sehmi, W. Langbein, and E. A. Muljarov, “Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper,” Phys. Rev. B 95(11), 115444 (2017). [CrossRef]  

32. S. K. Ozdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21(3), 805–814 (2003). [CrossRef]  

33. M. E. Barghouti, A. Akjouj, and A. Mir, “Effect of MoS2 layer on the LSPR in periodic nanostructures,” Optik 171, 237–246 (2018). [CrossRef]  

34. X. R. Zhang, T. S. Fisher, A. Raman, and T. D. Sands, “Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy,” Nanoscale Microscale Thermophys. Eng. 13(4), 243–252 (2009). [CrossRef]  

35. O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013). [CrossRef]  

36. N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8(10), 10953–10962 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
    [Crossref]
  2. D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review,” IEEE Sens. J. 9(11), 1472–1478 (2009).
    [Crossref]
  3. G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
    [Crossref]
  4. T. Wei, X. Lan, H. Xiao, Y. Han, and H.L. Tsai, Optical fiber sensors for high temperature harsh environment sensing, in 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011.
  5. H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
    [Crossref]
  6. H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106(11), 111102 (2015).
    [Crossref]
  7. H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).
  8. B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).
  9. B. A. Wilson, C. M. Petrie, and T. E. Blue, “High-temperature effects on the light transmission through sapphire optical fiber,” J. Am. Ceram. Soc. 101(8), 3452–3459 (2018).
    [Crossref]
  10. H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
    [Crossref]
  11. G. Dharmalingam and M. A. Carpenter, “Chemical sensing dependence on metal oxide thickness for high temperature plasmonics-based sensors,” Sens. Actuators, B 251, 1104–1111 (2017).
    [Crossref]
  12. K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
    [Crossref]
  13. P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
    [Crossref]
  14. P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012).
    [Crossref]
  15. P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
    [Crossref]
  16. P.R. Ohodnicki, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).
  17. C. Sun, P. Lu, R. Wright, and P.R. Ohodnicki, “Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature,” Proc. SPIE 10654, 1065405 (2018).
  18. P.R. Ohodnicki, T.D. Brown, M.P. Buric, and C. Matranga, Nanocomposite thin films for optical temperature sensing. 2017, ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). p. Medium: ED.
  19. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref]
  20. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
    [Crossref]
  21. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref]
  22. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
    [Crossref]
  23. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
    [Crossref]
  24. L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
    [Crossref]
  25. J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
    [Crossref]
  26. H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
    [Crossref]
  27. K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019).
    [Crossref]
  28. K. Liu, Y. Ma, and H. Du, “Tailoring the nanostructure of anodic aluminum oxide cladding on optical fiber,” J. Am. Ceram. Soc. 101(12), 5836–5845 (2018).
    [Crossref]
  29. H. Chen, F. Tian, K. Liu, J. Kanka, and H. Du, “Strategy and method for nanoporous cladding formation on silica optical fiber,” Opt. Lett. 41(12), 2831–2834 (2016).
    [Crossref]
  30. A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
    [Crossref]
  31. H. S. Sehmi, W. Langbein, and E. A. Muljarov, “Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper,” Phys. Rev. B 95(11), 115444 (2017).
    [Crossref]
  32. S. K. Ozdemir and G. Turhan-Sayan, “Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” J. Lightwave Technol. 21(3), 805–814 (2003).
    [Crossref]
  33. M. E. Barghouti, A. Akjouj, and A. Mir, “Effect of MoS2 layer on the LSPR in periodic nanostructures,” Optik 171, 237–246 (2018).
    [Crossref]
  34. X. R. Zhang, T. S. Fisher, A. Raman, and T. D. Sands, “Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy,” Nanoscale Microscale Thermophys. Eng. 13(4), 243–252 (2009).
    [Crossref]
  35. O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
    [Crossref]
  36. N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8(10), 10953–10962 (2014).
    [Crossref]

2019 (2)

B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019).
[Crossref]

2018 (6)

K. Liu, Y. Ma, and H. Du, “Tailoring the nanostructure of anodic aluminum oxide cladding on optical fiber,” J. Am. Ceram. Soc. 101(12), 5836–5845 (2018).
[Crossref]

M. E. Barghouti, A. Akjouj, and A. Mir, “Effect of MoS2 layer on the LSPR in periodic nanostructures,” Optik 171, 237–246 (2018).
[Crossref]

B. A. Wilson, C. M. Petrie, and T. E. Blue, “High-temperature effects on the light transmission through sapphire optical fiber,” J. Am. Ceram. Soc. 101(8), 3452–3459 (2018).
[Crossref]

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
[Crossref]

C. Sun, P. Lu, R. Wright, and P.R. Ohodnicki, “Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature,” Proc. SPIE 10654, 1065405 (2018).

2017 (6)

G. Dharmalingam and M. A. Carpenter, “Chemical sensing dependence on metal oxide thickness for high temperature plasmonics-based sensors,” Sens. Actuators, B 251, 1104–1111 (2017).
[Crossref]

K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
[Crossref]

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref]

H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).

H. S. Sehmi, W. Langbein, and E. A. Muljarov, “Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper,” Phys. Rev. B 95(11), 115444 (2017).
[Crossref]

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

2016 (2)

H. Chen, F. Tian, K. Liu, J. Kanka, and H. Du, “Strategy and method for nanoporous cladding formation on silica optical fiber,” Opt. Lett. 41(12), 2831–2834 (2016).
[Crossref]

H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
[Crossref]

2015 (1)

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106(11), 111102 (2015).
[Crossref]

2014 (2)

P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
[Crossref]

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8(10), 10953–10962 (2014).
[Crossref]

2013 (3)

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

2012 (3)

P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012).
[Crossref]

P.R. Ohodnicki, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).

J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref]

2011 (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

2009 (3)

X. R. Zhang, T. S. Fisher, A. Raman, and T. D. Sands, “Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy,” Nanoscale Microscale Thermophys. Eng. 13(4), 243–252 (2009).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review,” IEEE Sens. J. 9(11), 1472–1478 (2009).
[Crossref]

2008 (1)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

2006 (1)

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[Crossref]

2005 (1)

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref]

2003 (1)

Abernathy, H. W.

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

Akjouj, A.

M. E. Barghouti, A. Akjouj, and A. Mir, “Effect of MoS2 layer on the LSPR in periodic nanostructures,” Optik 171, 237–246 (2018).
[Crossref]

Alabastri, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Albrecht, G.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref]

Andio, M.

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

Angelis, F.D.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Baltrus, J.

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

Baltrus, J. P.

H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
[Crossref]

P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
[Crossref]

P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012).
[Crossref]

Baltrus, J.P.

P.R. Ohodnicki, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).

Barghouti, M. E.

M. E. Barghouti, A. Akjouj, and A. Mir, “Effect of MoS2 layer on the LSPR in periodic nanostructures,” Optik 171, 237–246 (2018).
[Crossref]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Bera, S.

B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

Blue, T. E.

B. A. Wilson, C. M. Petrie, and T. E. Blue, “High-temperature effects on the light transmission through sapphire optical fiber,” J. Am. Ceram. Soc. 101(8), 3452–3459 (2018).
[Crossref]

Bondarchuk, I. S.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Bouillard, J. S. G.

J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref]

Brown, T. D.

P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
[Crossref]

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012).
[Crossref]

Brown, T.D.

P.R. Ohodnicki, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).

P.R. Ohodnicki, T.D. Brown, M.P. Buric, and C. Matranga, Nanocomposite thin films for optical temperature sensing. 2017, ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). p. Medium: ED.

Buric, M.

B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
[Crossref]

Buric, M. P.

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

Buric, M.P.

P.R. Ohodnicki, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).

P.R. Ohodnicki, T.D. Brown, M.P. Buric, and C. Matranga, Nanocomposite thin films for optical temperature sensing. 2017, ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). p. Medium: ED.

Carpenter, M. A.

G. Dharmalingam and M. A. Carpenter, “Chemical sensing dependence on metal oxide thickness for high temperature plasmonics-based sensors,” Sens. Actuators, B 251, 1104–1111 (2017).
[Crossref]

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8(10), 10953–10962 (2014).
[Crossref]

Chen, H.

H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
[Crossref]

H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).

H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
[Crossref]

H. Chen, F. Tian, K. Liu, J. Kanka, and H. Du, “Strategy and method for nanoporous cladding formation on silica optical fiber,” Opt. Lett. 41(12), 2831–2834 (2016).
[Crossref]

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106(11), 111102 (2015).
[Crossref]

Chen, T.

K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
[Crossref]

Cheng, K. B.

D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review,” IEEE Sens. J. 9(11), 1472–1478 (2009).
[Crossref]

Chorpening, B.

B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

P.R. Ohodnicki, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).

Chorpening, B. T.

H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
[Crossref]

Córdova-Castro, R. M.

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

Das, G.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Dharmalingam, G.

G. Dharmalingam and M. A. Carpenter, “Chemical sensing dependence on metal oxide thickness for high temperature plasmonics-based sensors,” Sens. Actuators, B 251, 1104–1111 (2017).
[Crossref]

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8(10), 10953–10962 (2014).
[Crossref]

Dickson, W.

J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref]

Dmitruk, I. M.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Du, H.

K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019).
[Crossref]

K. Liu, Y. Ma, and H. Du, “Tailoring the nanostructure of anodic aluminum oxide cladding on optical fiber,” J. Am. Ceram. Soc. 101(12), 5836–5845 (2018).
[Crossref]

H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).

H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
[Crossref]

H. Chen, F. Tian, K. Liu, J. Kanka, and H. Du, “Strategy and method for nanoporous cladding formation on silica optical fiber,” Opt. Lett. 41(12), 2831–2834 (2016).
[Crossref]

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106(11), 111102 (2015).
[Crossref]

El-Sayed, M. A.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Fabrizio, E.D.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Fisher, T. S.

X. R. Zhang, T. S. Fisher, A. Raman, and T. D. Sands, “Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy,” Nanoscale Microscale Thermophys. Eng. 13(4), 243–252 (2009).
[Crossref]

Giessen, H.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref]

Giugni, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

Gurin, V. S.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Hackett, G. A.

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

Han, Y.

T. Wei, X. Lan, H. Xiao, Y. Han, and H.L. Tsai, Optical fiber sensors for high temperature harsh environment sensing, in 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011.

Hartland, G. V.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[Crossref]

He, S.

K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
[Crossref]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Hentschel, M.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref]

Holcomb, G.

H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
[Crossref]

Holcomb, G. R.

P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
[Crossref]

Jamshidi, B.

D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review,” IEEE Sens. J. 9(11), 1472–1478 (2009).
[Crossref]

Jee, Y.

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

Juste, J. P.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Kaiser, S.

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref]

Kalapos, T. L.

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

Kanka, J.

H. Chen, F. Tian, K. Liu, J. Kanka, and H. Du, “Strategy and method for nanoporous cladding formation on silica optical fiber,” Opt. Lett. 41(12), 2831–2834 (2016).
[Crossref]

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106(11), 111102 (2015).
[Crossref]

Karker, N.

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8(10), 10953–10962 (2014).
[Crossref]

Kong, X.

K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019).
[Crossref]

Kotko, A. V.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Lan, X.

T. Wei, X. Lan, H. Xiao, Y. Han, and H.L. Tsai, Optical fiber sensors for high temperature harsh environment sensing, in 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011.

Langbein, W.

H. S. Sehmi, W. Langbein, and E. A. Muljarov, “Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper,” Phys. Rev. B 95(11), 115444 (2017).
[Crossref]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref]

Lee, S.

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

Lee, S. S.

K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019).
[Crossref]

Liberale, C.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Liu, B.

B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
[Crossref]

Liu, K.

K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019).
[Crossref]

K. Liu, Y. Ma, and H. Du, “Tailoring the nanostructure of anodic aluminum oxide cladding on optical fiber,” J. Am. Ceram. Soc. 101(12), 5836–5845 (2018).
[Crossref]

H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).

K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
[Crossref]

H. Chen, F. Tian, K. Liu, J. Kanka, and H. Du, “Strategy and method for nanoporous cladding formation on silica optical fiber,” Opt. Lett. 41(12), 2831–2834 (2016).
[Crossref]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Liz-Marzán, L. M.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[Crossref]

Lu, P.

C. Sun, P. Lu, R. Wright, and P.R. Ohodnicki, “Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature,” Proc. SPIE 10654, 1065405 (2018).

Ma, Y.

K. Liu, Y. Ma, and H. Du, “Tailoring the nanostructure of anodic aluminum oxide cladding on optical fiber,” J. Am. Ceram. Soc. 101(12), 5836–5845 (2018).
[Crossref]

H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).

Matranga, C.

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

P.R. Ohodnicki, T.D. Brown, M.P. Buric, and C. Matranga, Nanocomposite thin films for optical temperature sensing. 2017, ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). p. Medium: ED.

Mir, A.

M. E. Barghouti, A. Akjouj, and A. Mir, “Effect of MoS2 layer on the LSPR in periodic nanostructures,” Optik 171, 237–246 (2018).
[Crossref]

Muljarov, E. A.

H. S. Sehmi, W. Langbein, and E. A. Muljarov, “Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper,” Phys. Rev. B 95(11), 115444 (2017).
[Crossref]

Mulvaney, P.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[Crossref]

Nakano, J.

H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
[Crossref]

Nasir, M. E.

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

Natesakhawat, S.

P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012).
[Crossref]

Nicholls, L. H.

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

O’Connor, D. P.

J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref]

Ohodnicki, P.

B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
[Crossref]

Ohodnicki, P. R.

K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019).
[Crossref]

H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
[Crossref]

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012).
[Crossref]

Ohodnicki, P.R.

C. Sun, P. Lu, R. Wright, and P.R. Ohodnicki, “Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature,” Proc. SPIE 10654, 1065405 (2018).

P.R. Ohodnicki, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).

P.R. Ohodnicki, T.D. Brown, M.P. Buric, and C. Matranga, Nanocomposite thin films for optical temperature sensing. 2017, ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). p. Medium: ED.

Ohodnicki Jr, P. R.

P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
[Crossref]

Olivier, N.

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

Ozdemir, S. K.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Pastoriza-Santos, I.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[Crossref]

Petrie, C. M.

B. A. Wilson, C. M. Petrie, and T. E. Blue, “High-temperature effects on the light transmission through sapphire optical fiber,” J. Am. Ceram. Soc. 101(8), 3452–3459 (2018).
[Crossref]

Petrova, H.

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[Crossref]

Pisano, A. P.

D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review,” IEEE Sens. J. 9(11), 1472–1478 (2009).
[Crossref]

Podkolzin, S. G.

K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
[Crossref]

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Raman, A.

X. R. Zhang, T. S. Fisher, A. Raman, and T. D. Sands, “Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy,” Nanoscale Microscale Thermophys. Eng. 13(4), 243–252 (2009).
[Crossref]

Robbins, J. P.

K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
[Crossref]

Rodríguez-Fortuño, F. J.

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

Sands, T. D.

X. R. Zhang, T. S. Fisher, A. Raman, and T. D. Sands, “Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy,” Nanoscale Microscale Thermophys. Eng. 13(4), 243–252 (2009).
[Crossref]

Schultz, A. M.

P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
[Crossref]

Sehmi, H. S.

H. S. Sehmi, W. Langbein, and E. A. Muljarov, “Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper,” Phys. Rev. B 95(11), 115444 (2017).
[Crossref]

Senesky, D. G.

D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review,” IEEE Sens. J. 9(11), 1472–1478 (2009).
[Crossref]

Stacy, A.M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Sun, C.

C. Sun, P. Lu, R. Wright, and P.R. Ohodnicki, “Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature,” Proc. SPIE 10654, 1065405 (2018).

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Tian, F.

H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).

K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
[Crossref]

H. Chen, F. Tian, K. Liu, J. Kanka, and H. Du, “Strategy and method for nanoporous cladding formation on silica optical fiber,” Opt. Lett. 41(12), 2831–2834 (2016).
[Crossref]

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106(11), 111102 (2015).
[Crossref]

Toma, A.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Tsai, H.L.

T. Wei, X. Lan, H. Xiao, Y. Han, and H.L. Tsai, Optical fiber sensors for high temperature harsh environment sensing, in 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011.

Tuccio, S.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Turhan-Sayan, G.

Tylczak, J.

H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
[Crossref]

P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Wang, C.

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012).
[Crossref]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Wei, T.

T. Wei, X. Lan, H. Xiao, Y. Han, and H.L. Tsai, Optical fiber sensors for high temperature harsh environment sensing, in 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011.

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Wilson, B. A.

B. A. Wilson, C. M. Petrie, and T. E. Blue, “High-temperature effects on the light transmission through sapphire optical fiber,” J. Am. Ceram. Soc. 101(8), 3452–3459 (2018).
[Crossref]

Wright, R.

C. Sun, P. Lu, R. Wright, and P.R. Ohodnicki, “Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature,” Proc. SPIE 10654, 1065405 (2018).

Wuenschell, J.

B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

Wurtz, G. A.

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Xiao, H.

T. Wei, X. Lan, H. Xiao, Y. Han, and H.L. Tsai, Optical fiber sensors for high temperature harsh environment sensing, in 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011.

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Yeshchenko, O. A.

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Yu, Y.

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

Zaccaria, R.P.

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Zayats, A. V.

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Zhang, X. R.

X. R. Zhang, T. S. Fisher, A. Raman, and T. D. Sands, “Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy,” Nanoscale Microscale Thermophys. Eng. 13(4), 243–252 (2009).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Jee, Y. Yu, H. W. Abernathy, S. Lee, T. L. Kalapos, G. A. Hackett, and P. R. Ohodnicki, “Plasmonic Conducting Metal Oxide-Based Optical Fiber Sensors for Chemical and Intermediate Temperature-Sensing Applications,” ACS Appl. Mater. Interfaces 10(49), 42552–42563 (2018).
[Crossref]

ACS Nano (1)

N. Karker, G. Dharmalingam, and M. A. Carpenter, “Thermal energy harvesting plasmonic based chemical sensors,” ACS Nano 8(10), 10953–10962 (2014).
[Crossref]

Angew. Chem., Int. Ed. (1)

K. Liu, T. Chen, S. He, J. P. Robbins, S. G. Podkolzin, and F. Tian, “Observation and Identification of an Atomic Oxygen Structure on Catalytic Gold Nanoparticles,” Angew. Chem., Int. Ed. 56(42), 12952–12957 (2017).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref]

Appl. Phys. Lett. (1)

H. Chen, F. Tian, J. Kanka, and H. Du, “A scalable pathway to nanostructured sapphire optical fiber for evanescent-field sensing and beyond,” Appl. Phys. Lett. 106(11), 111102 (2015).
[Crossref]

Appl. Phys. Rev. (1)

H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, and B. T. Chorpening, “Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing,” Appl. Phys. Rev. 5(1), 011102 (2018).
[Crossref]

IEEE Sens. J. (1)

D. G. Senesky, B. Jamshidi, K. B. Cheng, and A. P. Pisano, “Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review,” IEEE Sens. J. 9(11), 1472–1478 (2009).
[Crossref]

J. Am. Ceram. Soc. (2)

B. A. Wilson, C. M. Petrie, and T. E. Blue, “High-temperature effects on the light transmission through sapphire optical fiber,” J. Am. Ceram. Soc. 101(8), 3452–3459 (2018).
[Crossref]

K. Liu, Y. Ma, and H. Du, “Tailoring the nanostructure of anodic aluminum oxide cladding on optical fiber,” J. Am. Ceram. Soc. 101(12), 5836–5845 (2018).
[Crossref]

J. Appl. Phys. (1)

P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, “In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures,” J. Appl. Phys. 111(6), 064320 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref]

Materials (1)

A. Alabastri, S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F.D. Angelis, E.D. Fabrizio, and R.P. Zaccaria, “Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature,” Materials 6(11), 4879–4910 (2013).
[Crossref]

Nano Lett. (2)

J. S. G. Bouillard, W. Dickson, D. P. O’Connor, G. A. Wurtz, and A. V. Zayats, “Low-Temperature Plasmonics of Metallic Nanostructures,” Nano Lett. 12(3), 1561–1565 (2012).
[Crossref]

G. Albrecht, S. Kaiser, H. Giessen, and M. Hentschel, “Refractory Plasmonics without Refractory Materials,” Nano Lett. 17(10), 6402–6408 (2017).
[Crossref]

Nanoscale (1)

P. R. Ohodnicki, M. P. Buric, T. D. Brown, C. Matranga, C. Wang, J. Baltrus, and M. Andio, “Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures,” Nanoscale 5(19), 9030–9039 (2013).
[Crossref]

Nanoscale Microscale Thermophys. Eng. (1)

X. R. Zhang, T. S. Fisher, A. Raman, and T. D. Sands, “Linear coefficient of thermal expansion of porous anodic alumina thin films from atomic force microscopy,” Nanoscale Microscale Thermophys. Eng. 13(4), 243–252 (2009).
[Crossref]

Nanotechnology (1)

K. Liu, P. R. Ohodnicki, X. Kong, S. S. Lee, and H. Du, “Plasmonic Au nanorods stabilized within anodic aluminum oxide pore channels against high-temperature treatment,” Nanotechnology 30(40), 405704 (2019).
[Crossref]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Nat. Nanotechnol. (1)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[Crossref]

Nat. Photonics (1)

L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials,” Nat. Photonics 11(10), 628–633 (2017).
[Crossref]

Opt. Lett. (1)

Optik (1)

M. E. Barghouti, A. Akjouj, and A. Mir, “Effect of MoS2 layer on the LSPR in periodic nanostructures,” Optik 171, 237–246 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (1)

H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006).
[Crossref]

Phys. Rev. B (1)

H. S. Sehmi, W. Langbein, and E. A. Muljarov, “Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper,” Phys. Rev. B 95(11), 115444 (2017).
[Crossref]

Proc. SPIE (4)

P.R. Ohodnicki, T.D. Brown, M.P. Buric, J.P. Baltrus, and B. Chorpening, “Plasmon resonance at extreme temperatures in sputtered Au nanoparticle incorporated TiO2 films,” Proc. SPIE 8456, 845608 (2012).

C. Sun, P. Lu, R. Wright, and P.R. Ohodnicki, “Low-cost fiber optic sensor array for simultaneous detection of hydrogen and temperature,” Proc. SPIE 10654, 1065405 (2018).

H. Chen, K. Liu, Y. Ma, F. Tian, and H. Du, “Nanostructured sapphire optical fiber for sensing in harsh environments,” Proc. SPIE 10194, 101941P (2017).

B. Liu, M. Buric, J. Wuenschell, S. Bera, B. Chorpening, and P. Ohodnicki, “Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments,” Proc. SPIE 10914, 109140Z (2019).

RSC Adv. (1)

H. Chen, P. Ohodnicki, J. P. Baltrus, G. Holcomb, J. Tylczak, and H. Du, “High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environments,” RSC Adv. 6(90), 86930–86937 (2016).
[Crossref]

Science (1)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science 321(5891), 930 (2008).
[Crossref]

Sens. Actuators, B (2)

P. R. Ohodnicki Jr, T. D. Brown, G. R. Holcomb, J. Tylczak, A. M. Schultz, and J. P. Baltrus, “High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides,” Sens. Actuators, B 202, 489–499 (2014).
[Crossref]

G. Dharmalingam and M. A. Carpenter, “Chemical sensing dependence on metal oxide thickness for high temperature plasmonics-based sensors,” Sens. Actuators, B 251, 1104–1111 (2017).
[Crossref]

Surf. Sci. (1)

O. A. Yeshchenko, I. S. Bondarchuk, V. S. Gurin, I. M. Dmitruk, and A. V. Kotko, “Temperature dependence of the surface plasmon resonance in gold nanoparticles,” Surf. Sci. 608, 275–281 (2013).
[Crossref]

Other (2)

P.R. Ohodnicki, T.D. Brown, M.P. Buric, and C. Matranga, Nanocomposite thin films for optical temperature sensing. 2017, ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). p. Medium: ED.

T. Wei, X. Lan, H. Xiao, Y. Han, and H.L. Tsai, Optical fiber sensors for high temperature harsh environment sensing, in 2011 IEEE International Instrumentation and Measurement Technology Conference. 2011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic illustration of the reactor system for transmission measurements through NSOF embedded with Au NRs.
Fig. 2.
Fig. 2. SEM images of (a) Au NRs in AAO cladding, (b) cross-sectional view of NSOF embedded with Au NRs and (c) plan view of Au NRs in AAO cladding.
Fig. 3.
Fig. 3. Relative transmission spectral energy density change (Δuλ=(uλ,T-uλ, 800)/uλ, 800) at different temperatures with respect to 800 °C in N2 for NSOF embedded (a) with and (b) without Au NRs.
Fig. 4.
Fig. 4. (a) Experimental and (b) simulated transmission spectra of planar AAO embedded with Au NRs on sapphire substrate at different temperatures in N2.
Fig. 5.
Fig. 5. The calculated (a) real and (b) imaginary part of Au refractive index in terms of fractional change at different temperatures with respect to room temperature (RT).

Tables (1)

Tables Icon

Table 1. Parameters for the calculation of temperature-dependent Au complex refractive index

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε r ( T ) = ε ω p 2 ( T ) ω [ ω + i ω c ( T ) ]
ω p ( T ) = ω p ( T 0 ) 1 + 3 γ ( T T 0 )
ω e p = ω 0 [ 2 5 + 4 T 5 θ D 5 0 θ D / T z 4 e 4 1 d z ]
ω e e ( T ) = π 3 Γ Δ 12 E F [ ( k B T ) 2 + ( ω 2 π ) 2 ]
ε _ r ( T ) = ε r ( T ) + i ε r ~ ( T ) = n _ 2 = ( n + i κ ) 2
ε r ( T ) = n 2 κ 2 = ε ω p 2 ( T ) ω 2 + ω c 2 ( T )
ε ~ r ( T ) = 2 n κ = ω c ( T ) ω p 2 ( T ) ω [ ω 2 + ω c 2 ( T ) ]
n = | ε _ r ( T ) | + ε r ( T ) 2
κ = | ε _ r ( T ) | ε r ( T ) 2
| ε _ r ( T ) | = ε r 2 ( T ) + ε ~ r 2 ( T )
σ a b s ( ω ) = V 3 C σ m 3 2 i = 1 3 ( Y i + 1 ) 2 ω ε 2 ( ε 2 + Y i ε m ) 2 + ε 2 2

Metrics