Abstract

Long-term stable entanglement is a crucial aspect in the implementation of reliable quantum information processes. However, long-term continuous variable entanglement generation, especially in type-II non-degenerate optical parametric amplifier, has yet to be reported on. Here, we derive the relationship between entanglement and temperature fluctuations in the crystal of a type-II non-degenerate optical parametric amplifier, and propose a novel method for long-term stable entanglement generation by locking the temperature of the crystal. In the experiment, we obtain a 5.4 dB entanglement lasting two hours. The method holds promise in the generation of a truly usable above 10 dB entanglement and brings us closer to continuous-variable quantum information processing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Continuous-variable (CV) entanglement is attracting much attention because of its apparent usefulness in quantum information processing, such as quantum computation [1,2], quantum key distribution [3,4], quantum teleportation [5,6], quantum metrology [79].

Degenerate and non-degenerate optical parametric amplifiers (DOPAs and NOPAs), which employ type-I and type-II nonlinear crystals are two kinds of optical devices for successfully generating CV entanglement of optical field, to date, the maximum CV entanglement are around 10 dB and 8.4 dB, respectively [10,11].

Currently, the gravitational wave detectors GEO 600 is undergoing an upgrade. Permanent deployment has imposed further enhancements of the GEO 600 squeezed light laser. A (preferably high) squeezing factor must be provided continuously on timescales of hours to days [1215]. Furthermore, long-term data acquisitions and information processing are required in practical quantum information protocols based on CV entanglement. Generating a long-term stable quantum entanglement is crucial if a reliable quantum information processing is to be implemented [1618].

Using type-I DOPA to generate long-term stable squeezed light has been demonstrated in the laboratory [1923]. However, there has been no report concerning the generation of long-term entanglement, especially in type-II NOPA. The generation of long-term stable squeezed light is used with a singly resonant DOPA, which has a broad phase matching condition and a wide full-width at half-maximum (FWHM) temperature of the parametric gain [24]. For type-I DOPA , the subharmonic fields are degenerate, so the change in crystal temperature has the same effect on the subharmonic fields. Compared with type-I DOPA, type-II NOPA is a compact source of CV entanglement, however, the subharmonic fields are non-degenerate. Within the type-II NOPA, the detuning of the cavity is determined by the difference in the refractive indices and constant of thermal expansion between the signal and idler fields when the crystal temperature changes. Therefore, type-II NOPA is highly sensitive to fluctuations in crystal temperature [25,26].

In this paper, we derive the entanglement as a function of the fluctuation in crystal temperature of a type-II NOPA and show that entanglement is significantly sensitive to the crystal temperature, thus motivating its strict control. The photothermal effect can be extremely fast compared when using temperature actuation external to the crystal [2729]. McKenzie et al used the photothermal effect to achieve nonlinear phase matching locking in type-I DOPA [24], Pysher et al used the photothermal effect to phaselocking the signal fields emitted above threshold in a type-II NOPO [30]. We propose therefore a method, also exploiting this effect, to feedback the locking error signal of the crystal temperature by modulating the amplitude of the pump field. When passed through the crystal, the pump field has a frequency shift and a polarization that does not participate in the nonlinear process. Thus, a fast and accurate temperature actuation is achieved without adverse effect on the nonlinear interaction. Long-term stable entanglement of 5.4 dB lasting up to 2 hours is achieved via crystal temperature locking. This paper reports the first experimental generation of long-term stable CV entanglement.

2. Theory

The type-II NOPA device is pumped by a harmonic field and injected with two subharmonic fields with degenerate frequencies but orthogonal polarizations. The equations of motion for the intracavity fields with the rotating wave approximation are as follows [31,32],

$${{\dot {\hat a}}_s} ={-} \gamma {{\hat a}_s} + \chi {a_p}\hat a_i^{\dagger \;} + \sqrt {2\gamma } {{\hat a}^{in}_s}$$
$${{\dot {\hat a}}_i} ={-} \gamma \left( {1 - i\Delta } \right){{\hat a}_i} + \chi {a_p}\hat a_s^\dagger + \sqrt {2\gamma } {{\hat a}^{in}_i}.$$
where ${\hat a}_p$, ${\hat a}_s$ and ${\hat a}_i$ denote the cavity modes for pump, signal and idler fields, respectively. $\Delta$ denote the detuning from nearby cavity resonances of the idler field, and $\gamma$ denote the cavity decay rates of signal and idler fields, assumed here to be identical.

Whereas the system in [31,32] is an optical parametric oscillator operating above the oscillation threshold and for which the two subharmonic fields have equal detuning, our system differs in that the doubly-resonant NOPA operates below the threshold. Hence, different detunings for the signal and idler modes may appear. The cavity length is locked by the signal field in the experiment and there is no detuning for the signal field. In consequence, we only consider detuning for the idler field.

Field linearization allows for an analytic solution of the noise properties of the quadratures. When NOPA is operated in the state of de-amplification, the correlation noise spectrum as a function of cavity detuning is expressed as

$$\left\langle {{{\left| {\delta {\hat X}_i^{out} + \delta {\hat X}_s^{out}} \right|}^2}} \right\rangle = \left\langle {{{\left| {\delta {\hat Y}_i^{out} - \delta {\hat Y}_s^{out}} \right|}^2}} \right\rangle = 1 - \frac{{4\sqrt \sigma {{(\sqrt \sigma - 1)}^2}}}{{{\Delta ^2} + {{(\sigma - 1)}^2}}}$$
where ${\hat X}^{out}_{s(i)}$ and ${\hat Y}^{out}_{s(i)}$ denote the amplitude and phase quadrature of the signal (idler) field, respectively, and $\sigma$ denote the pump parametric normalized to the threshold of NOPA.

The detuning of the cavity $\Delta$ arising from changes in the optical path length $\Delta {L}$ of the signal and idler fields in the crystal is given by [24,33],

$$\Delta = - 2\pi {\upsilon _{FSR}}\frac{{\Delta {L}}}{{{\lambda}\gamma }}$$
where $\upsilon _{FSR}$ denote the free spectral range (FSR) of the cavity, and $\lambda$ is the wavelength. The change in $\Delta {L}$ arising from two mechanisms, thermal expansion and refractive index change, in the following form [34],
$$\Delta {L} = n{L_c}\left[ {\left( {\frac{1}{n}\left( {\frac{{d{n_i}}}{{dT}} - \frac{{d{n_s}}}{{dT}}} \right) + \left( {{b_i} - {b_s}} \right)} \right)} \right]\delta T$$
Where $\frac {{d{n_{s(i)}}}}{{dT}}$ and ${b_{s(i)}}$ represent the photorefractive constant of the crystal and thermal expansion constant of the signal (idler) field, ${n}$ is the crystal refractive index, ${L_c}$ is the crystal length, $\delta T$ is the fluctuation in crystal temperature. Hence, the resulting detuning is further written as
$$\Delta = - 2\pi {\upsilon _{FSR}}\frac{1}{{\lambda \gamma }}n{L_c}\left[ {\left( {\frac{1}{n}\left( {\frac{{d{n_i}}}{{dT}} - \frac{{d{n_s}}}{{dT}}} \right) + \left( {{b_i} - {b_s}} \right)} \right)} \right]\delta T$$
Using Eq. (3), the entanglement as a function of temperature fluctuation (Fig. 1) yields the stability requirements for entanglement and temperature in the comparison between 10 dB (solid curve), 5.4 dB (dashed curve), and 3 dB (dash-dotted curve). Specifically, when the temperature drifts 1 mK, the degree of entanglement decreases by 20 %, 12 %, and 9 % respectively. Therefore, a key factor of long-term stability and a high degree of CV entanglement is maintaining the crystal temperature.

 

Fig. 1. Entanglement as a function of crystal temperature fluctuation. The solid curve, dashed curve and dash-dotted curve indicate that the entanglement is 10 dB, 5.4 dB and 3 dB respectively when there is no crystal temperature fluctuation. The parameter values used are: $\lambda = 1080 nm$, $n = 1.7$, ${L_c} = 10 mm$, $\gamma = 6.0 \times {10^7}{s^{ - 1}}$, $\frac {{d{n_s}}}{{dT}} = 1.6 \times {10^{ - 5}}{K^{ - 1}}$, $\frac {{d{n_i}}}{{dT}} = 1.3 \times {10^{ - 5}}{K^{ - 1}}$, ${b_s} = 0.6 \times {10^{ - 6}}{K^{ - 1}}$, ${b_i} = 9 \times {10^{ - 6}}{K^{ - 1}}$, and $\sigma = 0.8$

Download Full Size | PPT Slide | PDF

In many experiments, the crystal temperature is maintained via an off-the-shelf temperature controller with a temperature sensor. Traditional temperature controllers have inherent disadvantages. First, these controllers, which have accuracies of approximately 1 mK, from previous analysis, cannot meet our experimental requirements (Fig. 1). Second, the external sensor reads out the external crystal temperature, rather than the temperature of the optical path through the crystal where the nonlinear interaction occurs [24].

As a temperature actuator for this nonlinear interaction region, the photothermal effect is extremely fast compared with the effect from temperature actuation applied externally to the crystal.

3. Experimental setup

Regarding the experimental setup (Fig. 2), a continuous-wave all-solid-state laser source emits both infrared at 1080 nm and green light at 540 nm. A part of the 1080 nm light is injected into the NOPA as a seed beam. The signal field (s-polarization) transmitted from the NOPA is demodulated to produce an error signal for the cavity length using the Pound-Drever-Hall technique [35,36]. The remainder is used as a local oscillator for homodyne detection. The 540 nm light with p-polarization is injected into the NOPA as the pump field. By employing the temperature feedback loop (TFL), a part of 540 nm light, referred to as the control field, is used to lock the crystal temperature.

 

Fig. 2. Schematic of the experimental setup. RF: Radio frequency source; PM: Phase modulator; PID: Proportional integral derivative controller; VCO: Voltage controlled oscillator; AOM: Acousto-optic modulator; PD: Photoelectric detector; TFL: temperature feedback loop; SA: spectrum analyzer; BHD: balanced homodyne detector; HWP: Half wave plate.

Download Full Size | PPT Slide | PDF

The NOPA consists of a doubly resonant standing wave cavity, having two mirrors (M1 and M2) of the same radius of curvature of 30 mm. The input mirror M1 is highly reflective (R>99.95 %) at 1080 nm and 540 nm, the output mirror M2 has a transmission of 5.4 % at 1080 nm and high transmittance at 540 nm. The measured finesse of the NOPA is 103, that is, the total extra loss of the NOPA is 0.6 %. An $\alpha$-cut type-II KTP crystal is housed in a Peltier-driven oven made of copper. The temperature of the crystal oven is actively controlled at the temperature for phase matching (about 61 °C), using a temperature controller (YG-2S-RA) having approximately 1 mK accuracy.

The TFL consists of a proportional integral derivative (PID) controller, a home-made voltage-controlled oscillator (VCO) and an acousto-optic modulator (AOM). The control field is frequency shifted (100 MHz) by the AOM to ensure that it does not participate in the nonlinear process. The change in phase of the idler field is more sensitive to the crystal temperature than the signal field. Thus, the locking error signal of the crystal temperature is derived from the reflected idler field (p-polarization) and is fed into the TFL. In our setup, the NOPO threshold is 400 mW, with a pump power of 280 mW and an injected seed beam of 5 mW. The maximum power of the control field is 150 mW.

4. Derivation of the crystal temperature locking error signal

Near the phase matching temperature, the cavity resonance conditions can be monitored using standard cavity readout techniques, and this readout is used to produce a locking error signal of the crystal temperature. The amplitude transmissivity $\Gamma (\Delta )$ and reflectivity $\Upsilon (\Delta )$ of the idler field are defined by two parameters [37];

$$\Gamma (\Delta ) = {{2\sqrt {\frac{{{t_1}}}{{2\tau }}*\frac{{{t_2}}}{{2\tau }}} } \mathord{\left/ {\vphantom {{2\sqrt {\frac{{{t_1}}}{{2\tau }}*\frac{{{t_2}}}{{2\tau }}} } {(\frac{{{t_1} + {t_2}}}{{2\tau }} + }}} \right.} {(\frac{{{t_1} + {t_2}}}{{2\tau }} + }}i\Delta )$$
$$\Upsilon (\Delta ) = {{(\frac{{{t_1}}}{\tau } - \frac{{{t_1} + {t_2}}}{{2\tau }} - i\Delta )} \mathord{\left/ {\vphantom {{(\frac{{{t_1}}}{\tau } - \frac{{{t_1} + {t_2}}}{{2\tau }} - i\Delta )} {(\frac{{{t_1} + {t_2}}}{{2\tau }} + }}} \right.} {(\frac{{{t_1} + {t_2}}}{{2\tau }} + }}i\Delta )$$
Where ${t_{1(2)}}$ denote the transmission of the cavity mirrors, and $\tau$ is the round trip time. The crystal temperature locking error signal $V$ for the idler field is given by [36];
$$V \propto {\mathop{\textrm {Im}}\nolimits} (\Upsilon (\Delta )\Upsilon {(\Delta + {\omega _n})^ * } - \Upsilon {(\Delta )^ * }\Upsilon (\Delta - {\omega _n}))$$
Where ${\omega _n}$ is the modulate frequency (16MHz). Figure 3(a) shows the theoretical transmitted power of the idler field as a function of temperature fluctuation, and Fig. 3(c) the associated crystal temperature locking error signal. Figure 3(b) and (d) shows the experimentally measured, data taken with the signal field locked onto the resonance while the crystal temperature was varied by sweeping the power of the control field. We measured the change in power of the control field (approximately 15 mW) when swept across the FWHM of the idler field. Combined with experimental values of the parameters for the control field, we calculated the FWHM temperature of the idler field [38,39]. This calculated FWHM temperature shows a deviation from the theoretical calculation. There are two possible reasons for this, one is measurement and calculation error, and the other is an extra loss in the NOPA, resulting in an increase in the bandwidth of the NOPA.

 

Fig. 3. Transmitted power of the idler field and crystal temperature locking error signal as a function of temperature fluctuation obtained from theory and experiments: (a) and (b) transmission of the idler field, (c) and (d) associated crystal temperature locking error signal. Parameters values used are: $t_1=0.1 \%$, $t_2=5.4 \%$, absorption coefficient of KTP: 0.8 %/cm, thermal conductivity of KTP: 0.13 W/cm*K, spot size of control field: 40 $\mu m$, spot size of idler field: 56 $\mu m$. For other parameter settings, see Fig. 1.

Download Full Size | PPT Slide | PDF

5. Results

With the pump field injected into the NOPA, the relative phase of pump field and the seed field were swept with the PZT at 15 Hz. The parametric gain behavior was presented by measuring the intensity of the transmitted signal field from the NOPA normalized by the signal intensity without parametric gain (Fig. 4). A gain above and below 1 indicates parametric amplification and de-amplification, respectively. Without crystal temperature locking, the parametric gain drifted significantly and decreased from 12 to 7 during the unlocking period.

 

Fig. 4. Parametric gain behavior as a function of time, normalized by the resonant power without parametric gain.

Download Full Size | PPT Slide | PDF

Next, the relative phase between the pump field and the seed field was locked in the de-amplification state, and the generated entanglement was measured using dual balanced homodyne detectors. From a comparison of the stability performance for entanglement with and without crystal temperature locking over a 10 minute duration (Fig. 5), we find that without crystal temperature locking, the amplitude-sum squeezing and phase-difference squeezing appear with a significant drift, whereas, with crystal temperature locking, they are both optimized. A significantly enhanced stability is present with crystal temperature locking.

 

Fig. 5. Comparison of stability performance for entanglement without and with the crystal temperature locking. (a) amplitude-sum squeezing. (b) phase-difference squeezing. The measurement parameters of spectrum analyzer: RBW: 100 kHz, VBW: 100 Hz. Analysis frequency: 3 MHz.

Download Full Size | PPT Slide | PDF

An assessment of the temperature stability was made by comparing the entanglement with and without crystal temperature locking. For the latter, the degree of entanglement produced a mean fluctuation of 1.53 dB, that is, the mean temperature fluctuation was 1.73 mK. For the former, the degree of entanglement yielded a mean fluctuation of 0.12 dB, which translates to a mean temperature fluctuation of 0.40 mK. The results were calculated at one-minute intervals using the data for entanglement versus temperature fluctuation (Fig. 1).

We next measured both the magnitude and phase of the transfer function of the TFL (Fig. 6). For larger value of the magnitude, a stronger noise suppression at the corresponding frequency. As seen in Fig. 5, with crystal temperature locking, the low frequency noise in the entanglement fluctuation is well suppressed. The control bandwidth of the TFL is approximately 17 Hz, which is the zero-point of the magnitude of the transfer function. The control bandwidth of the TFL is limited by the photothermal response bandwidth [24], this response of the crystal being approximately 200 Hz in our system. Normally, the electronic components in the TFL, such as the AOM, PD, and mixer contribute to the bandwidths each being above 1 MHz.

 

Fig. 6. Measured transfer function of the TFL. (a) Magnitude and (b) Phase of the transfer function.

Download Full Size | PPT Slide | PDF

To evaluate the effect of crystal temperature locking further, the long-term stability of the entanglement was recorded continuously for two hours. The measured amplitude-sum squeezing and phase-difference squeezing (Fig. 7) are 5.50 $\pm$ 0.09 dB and 5.40 $\pm$ 0.13 dB, respectively. The test run was terminated by losing lock of the mode cleaner in the 1080 nm light path. The mode cleaner is used to improve mode quality and stability of the injected signal of the NOPA and the local oscillator beams.

 

Fig. 7. Long-term entanglement recorded continuously for 2 hours. (a) amplitude-sum squeezing, (b) phase-difference squeezing. The measurement parameters of spectrum analyzer: RBW: 100 kHz, VBW: 100 Hz. Analysis frequency: 3 MHz.

Download Full Size | PPT Slide | PDF

The measured entanglement is affected by various inefficiencies in the experiment. The total detection efficiency is ${\eta _{total}} = {\eta _{prop}}{\eta _{phot}}\eta _{hd}^2 = 0.89 \pm 0.02$, where ${\eta _{prop}} = 0.97 \pm 0.02$, ${\eta _{phot}} = 0.96 \pm 0.02$, and ${\eta _{hd}} = 0.98 \pm 0.01$ are the measured propagation efficiency, the quantum efficiency of the photodiode, and the spatial overlap efficiency in the balanced homodyne detectors, respectively.

In future work, we look to decrease the intracavity loss of the NOPA and increase transmissivity of the output coupler of the NOPA, which promises to achieve a 10 dB entanglement, and as inferred by Fig. 1, the fluctuation of the degree of entanglement could be smaller than 0.4 dB using crystal temperature locking, when the mean temperature fluctuation is 0.40 mK. Crystal temperature locking can effectively improve the long-term stability performance of the entanglement generation system. Stable entanglement sources then become suitable for practical applications in quantum information science and technology.

6. Conclusion

We presented a detailed study of entanglement and crystal temperature fluctuation in type-II NOPA, and introduced a novel method employing crystal temperature locking to generate long-term entanglement. An experimental demonstration with crystal temperature locking was performed in which we obtained a substantial improvement in entanglement stability. Faster and more accurate temperature control was accomplished compared with current temperature controllers. A long-term stable entanglement source at 5.4 dB lasting up to 2 hours was achieved.

Long-term entanglement is a key resource in establishing quantum information processes that need long-term date acquisition and processing, such as quantum communication based on post-selection [40], gate sequencing for CV one-way quantum computation [2] and LIGO interferometry based on CV entanglement [9]. The method holds promise in applications to the generation of truly usable entanglement of above 10 dB, paving the way towards CV quantum information processing.

Funding

Ministry of Science and Technology of the People's Republic of China (2016Y-FA0301404); National Natural Science Foundation of China (11674205, 91536222); Program for OIT of Shanxi; Shanxi 1331 Project.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

1. N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006). [CrossRef]  

2. X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013). [CrossRef]  

3. R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102(13), 130501 (2009). [CrossRef]  

4. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012). [CrossRef]  

5. H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables,” Nature 431(7007), 430–433 (2004). [CrossRef]  

6. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998). [CrossRef]  

7. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004). [CrossRef]  

8. V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013). [CrossRef]  

9. Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017). [CrossRef]  

10. T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011). [CrossRef]  

11. Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 db entangled state with an optical cavity involving a wedged type-ii nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015). [CrossRef]  

12. R. Schnabel, “Gravitational wave detectors: Squeezing up the sensitivity,” Nat. Phys. 4(6), 440–441 (2008). [CrossRef]  

13. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008). [CrossRef]  

14. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005). [CrossRef]  

15. K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002). [CrossRef]  

16. P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018). [CrossRef]  

17. B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413(6854), 400–403 (2001). [CrossRef]  

18. G.-f. Zhang, S.-s. Li, and J.-q. Liang, “Thermal entanglement in spin-1 biparticle system,” Opt. Commun. 245(1-6), 457–463 (2005). [CrossRef]  

19. K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, “Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier,” Opt. Lett. 21(17), 1396–1398 (1996). [CrossRef]  

20. R. Bruckmeier, H. Hansen, and S. Schiller, “Repeated quantum nondemolition measurements of continuous optical waves,” Phys. Rev. Lett. 79(8), 1463–1466 (1997). [CrossRef]  

21. A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012). [CrossRef]  

22. F. Feng, S. wen Bi, B. zhu Lu, and M. hua Kang, “Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging,” Optik (Munich, Ger.) 124(11), 1070–1073 (2013). [CrossRef]  

23. W. Yang, S. Shi, Y. Wang, W. Ma, Y. Zheng, and K. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 db by mutually compensating the phase fluctuations,” Opt. Lett. 42(21), 4553–4556 (2017). [CrossRef]  

24. K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Nonlinear phase matching locking via optical readout,” Opt. Express 14(23), 11256–11264 (2006). [CrossRef]  

25. A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995). [CrossRef]  

26. M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal–idler degeneracy,” Opt. Lett. 36(4), 475–477 (2011). [CrossRef]  

27. V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264(1), 1–10 (1999). [CrossRef]  

28. Y. T. Liu and K. S. Thorne, “Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses,” Phys. Rev. D 62(12), 122002 (2000). [CrossRef]  

29. K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005). [CrossRef]  

30. M. Pysher, Y. Miwa, R. Shahrokhshahi, D. Xie, and O. Pfister, “A new method for locking the signal-field phase difference in a type-ii optical parametric oscillator above threshold,” Opt. Express 18(26), 27858–27871 (2010). [CrossRef]  

31. T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, “Type-ii continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics,” J. Opt. Soc. Am. B 10(9), 1668–1680 (1993). [CrossRef]  

32. C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990). [CrossRef]  

33. A. E. Siegman, “Lasers university science books,” Mill Val. CA 37, 169 (1986).

34. M. C. Gupta and J. Ballato, The handbook of photonics (Taylor & Francis, New York, 2018).

35. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983). [CrossRef]  

36. E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001). [CrossRef]  

37. D. F. Walls and G. J. Milburn, Quantum optics (Springer, 2007).

38. M. N. Azisik, M. N. Özísík, and M. N. Özíşík, Heat conduction (John Wiley, 1993).

39. M. Innocenzi, H. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990). [CrossRef]  

40. H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
    [Crossref]
  2. X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
    [Crossref]
  3. R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102(13), 130501 (2009).
    [Crossref]
  4. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
    [Crossref]
  5. H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables,” Nature 431(7007), 430–433 (2004).
    [Crossref]
  6. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
    [Crossref]
  7. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
    [Crossref]
  8. V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
    [Crossref]
  9. Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
    [Crossref]
  10. T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
    [Crossref]
  11. Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 db entangled state with an optical cavity involving a wedged type-ii nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
    [Crossref]
  12. R. Schnabel, “Gravitational wave detectors: Squeezing up the sensitivity,” Nat. Phys. 4(6), 440–441 (2008).
    [Crossref]
  13. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
    [Crossref]
  14. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
    [Crossref]
  15. K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002).
    [Crossref]
  16. P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
    [Crossref]
  17. B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413(6854), 400–403 (2001).
    [Crossref]
  18. G.-f. Zhang, S.-s. Li, and J.-q. Liang, “Thermal entanglement in spin-1 biparticle system,” Opt. Commun. 245(1-6), 457–463 (2005).
    [Crossref]
  19. K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, “Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier,” Opt. Lett. 21(17), 1396–1398 (1996).
    [Crossref]
  20. R. Bruckmeier, H. Hansen, and S. Schiller, “Repeated quantum nondemolition measurements of continuous optical waves,” Phys. Rev. Lett. 79(8), 1463–1466 (1997).
    [Crossref]
  21. A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
    [Crossref]
  22. F. Feng, S. wen Bi, B. zhu Lu, and M. hua Kang, “Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging,” Optik (Munich, Ger.) 124(11), 1070–1073 (2013).
    [Crossref]
  23. W. Yang, S. Shi, Y. Wang, W. Ma, Y. Zheng, and K. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 db by mutually compensating the phase fluctuations,” Opt. Lett. 42(21), 4553–4556 (2017).
    [Crossref]
  24. K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Nonlinear phase matching locking via optical readout,” Opt. Express 14(23), 11256–11264 (2006).
    [Crossref]
  25. A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
    [Crossref]
  26. M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal–idler degeneracy,” Opt. Lett. 36(4), 475–477 (2011).
    [Crossref]
  27. V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264(1), 1–10 (1999).
    [Crossref]
  28. Y. T. Liu and K. S. Thorne, “Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses,” Phys. Rev. D 62(12), 122002 (2000).
    [Crossref]
  29. K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
    [Crossref]
  30. M. Pysher, Y. Miwa, R. Shahrokhshahi, D. Xie, and O. Pfister, “A new method for locking the signal-field phase difference in a type-ii optical parametric oscillator above threshold,” Opt. Express 18(26), 27858–27871 (2010).
    [Crossref]
  31. T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, “Type-ii continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics,” J. Opt. Soc. Am. B 10(9), 1668–1680 (1993).
    [Crossref]
  32. C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
    [Crossref]
  33. A. E. Siegman, “Lasers university science books,” Mill Val. CA 37, 169 (1986).
  34. M. C. Gupta and J. Ballato, The handbook of photonics (Taylor & Francis, New York, 2018).
  35. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
    [Crossref]
  36. E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  37. D. F. Walls and G. J. Milburn, Quantum optics (Springer, 2007).
  38. M. N. Ã-zisik, M. N. Özísík, and M. N. Özíşík, Heat conduction (John Wiley, 1993).
  39. M. Innocenzi, H. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]
  40. H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
    [Crossref]

2018 (1)

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

2017 (2)

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

W. Yang, S. Shi, Y. Wang, W. Ma, Y. Zheng, and K. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 db by mutually compensating the phase fluctuations,” Opt. Lett. 42(21), 4553–4556 (2017).
[Crossref]

2015 (1)

2014 (1)

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

2013 (3)

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

F. Feng, S. wen Bi, B. zhu Lu, and M. hua Kang, “Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging,” Optik (Munich, Ger.) 124(11), 1070–1073 (2013).
[Crossref]

2012 (2)

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

2011 (2)

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal–idler degeneracy,” Opt. Lett. 36(4), 475–477 (2011).
[Crossref]

2010 (1)

2009 (1)

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102(13), 130501 (2009).
[Crossref]

2008 (2)

R. Schnabel, “Gravitational wave detectors: Squeezing up the sensitivity,” Nat. Phys. 4(6), 440–441 (2008).
[Crossref]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

2006 (2)

N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
[Crossref]

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Nonlinear phase matching locking via optical readout,” Opt. Express 14(23), 11256–11264 (2006).
[Crossref]

2005 (3)

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
[Crossref]

G.-f. Zhang, S.-s. Li, and J.-q. Liang, “Thermal entanglement in spin-1 biparticle system,” Opt. Commun. 245(1-6), 457–463 (2005).
[Crossref]

2004 (2)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables,” Nature 431(7007), 430–433 (2004).
[Crossref]

2002 (1)

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002).
[Crossref]

2001 (2)

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413(6854), 400–403 (2001).
[Crossref]

E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

2000 (1)

Y. T. Liu and K. S. Thorne, “Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses,” Phys. Rev. D 62(12), 122002 (2000).
[Crossref]

1999 (1)

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264(1), 1–10 (1999).
[Crossref]

1998 (1)

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref]

1997 (1)

R. Bruckmeier, H. Hansen, and S. Schiller, “Repeated quantum nondemolition measurements of continuous optical waves,” Phys. Rev. Lett. 79(8), 1463–1466 (1997).
[Crossref]

1996 (1)

1995 (1)

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

1993 (1)

1990 (2)

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

M. Innocenzi, H. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

1986 (1)

A. E. Siegman, “Lasers university science books,” Mill Val. CA 37, 169 (1986).

1983 (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Adhikari, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

Andersen, U. L.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Aoki, T.

H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables,” Nature 431(7007), 430–433 (2004).
[Crossref]

Aolita, L.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Assad, S. M.

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

Ã-zisik, M. N.

M. N. Ã-zisik, M. N. Özísík, and M. N. Özíşík, Heat conduction (John Wiley, 1993).

Ballato, J.

M. C. Gupta and J. Ballato, The handbook of photonics (Taylor & Francis, New York, 2018).

Black, E. D.

E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Braginsky, V.

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264(1), 1–10 (1999).
[Crossref]

Braunstein, S. L.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref]

Bruckmeier, R.

R. Bruckmeier, H. Hansen, and S. Schiller, “Repeated quantum nondemolition measurements of continuous optical waves,” Phys. Rev. Lett. 79(8), 1463–1466 (1997).
[Crossref]

K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, “Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier,” Opt. Lett. 21(17), 1396–1398 (1996).
[Crossref]

Buchler, B. C.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002).
[Crossref]

Cerf, N. J.

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102(13), 130501 (2009).
[Crossref]

Chelkowski, S.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
[Crossref]

Chen, Y.

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

Chrzanowski, H. M.

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

Colville, F.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

D’ambrosio, V.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Danzmann, K.

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
[Crossref]

Debuisschert, T.

Del Re, L.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Deng, X.

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Duhme, J.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Dunn, M.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Eberle, T.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Evans, M.

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

Fabre, C.

T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, “Type-ii continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics,” J. Opt. Soc. Am. B 10(9), 1668–1680 (1993).
[Crossref]

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

Feng, F.

F. Feng, S. wen Bi, B. zhu Lu, and M. hua Kang, “Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging,” Optik (Munich, Ger.) 124(11), 1070–1073 (2013).
[Crossref]

Fields, R.

M. Innocenzi, H. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Filip, R.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Fincher, C.

M. Innocenzi, H. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Franz, T.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Franzen, A.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
[Crossref]

Fuchs, C. A.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref]

Furusawa, A.

H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables,” Nature 431(7007), 430–433 (2004).
[Crossref]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref]

García-Patrón, R.

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102(13), 130501 (2009).
[Crossref]

Giacobino, E.

T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, “Type-ii continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics,” J. Opt. Soc. Am. B 10(9), 1668–1680 (1993).
[Crossref]

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

Goda, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
[Crossref]

Gorodetsky, M.

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264(1), 1–10 (1999).
[Crossref]

Gräf, C.

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

Gray, M. B.

Grote, H.

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

Gu, M.

N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
[Crossref]

Gupta, M. C.

M. C. Gupta and J. Ballato, The handbook of photonics (Taylor & Francis, New York, 2018).

Hage, B.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
[Crossref]

Hall, J. L.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Halonen, L.

Händchen, V.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Hansen, H.

R. Bruckmeier, H. Hansen, and S. Schiller, “Repeated quantum nondemolition measurements of continuous optical waves,” Phys. Rev. Lett. 79(8), 1463–1466 (1997).
[Crossref]

K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, “Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier,” Opt. Lett. 21(17), 1396–1398 (1996).
[Crossref]

Hanson, R.

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

Hao, S.

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

Harms, J.

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

Heidmann, A.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

Henderson, A.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Hosseini, S.

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

hua Kang, M.

F. Feng, S. wen Bi, B. zhu Lu, and M. hua Kang, “Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging,” Optik (Munich, Ger.) 124(11), 1070–1073 (2013).
[Crossref]

Humphreys, P. C.

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

Innocenzi, M.

M. Innocenzi, H. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Janousek, J.

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

Jia, X.

Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 db entangled state with an optical cavity involving a wedged type-ii nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref]

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

Julsgaard, B.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413(6854), 400–403 (2001).
[Crossref]

Kaige, W.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

Kalb, N.

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

Khalaidovski, A.

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

Kimble, H. J.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref]

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Kozhekin, A.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413(6854), 400–403 (2001).
[Crossref]

Kwek, L. C.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Lam, P. K.

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Nonlinear phase matching locking via optical readout,” Opt. Express 14(23), 11256–11264 (2006).
[Crossref]

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
[Crossref]

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002).
[Crossref]

Lassen, M.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Lastzka, N.

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

Li, F.

Li, S.-s.

G.-f. Zhang, S.-s. Li, and J.-q. Liang, “Thermal entanglement in spin-1 biparticle system,” Opt. Commun. 245(1-6), 457–463 (2005).
[Crossref]

Li, Y.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Liang, J.-q.

G.-f. Zhang, S.-s. Li, and J.-q. Liang, “Thermal entanglement in spin-1 biparticle system,” Opt. Commun. 245(1-6), 457–463 (2005).
[Crossref]

Liu, Y. T.

Y. T. Liu and K. S. Thorne, “Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses,” Phys. Rev. D 62(12), 122002 (2000).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

Lugiato, L.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

Ma, L.

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

Ma, W.

Ma, Y.

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

Madsen, L. S.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Markham, M.

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

Marrucci, L.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Mavalvala, N.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
[Crossref]

McClelland, D. E.

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Nonlinear phase matching locking via optical readout,” Opt. Express 14(23), 11256–11264 (2006).
[Crossref]

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
[Crossref]

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002).
[Crossref]

McKenzie, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Nonlinear phase matching locking via optical readout,” Opt. Express 14(23), 11256–11264 (2006).
[Crossref]

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
[Crossref]

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002).
[Crossref]

Menicucci, N. C.

N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
[Crossref]

Miao, H.

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

Mikhailov, E. E.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
[Crossref]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum optics (Springer, 2007).

Miwa, Y.

Miyakawa, O.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

Mlynek, J.

Morits, J. P.

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Nielsen, M. A.

N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
[Crossref]

Özísík, M. N.

M. N. Ã-zisik, M. N. Özísík, and M. N. Özíşík, Heat conduction (John Wiley, 1993).

M. N. Ã-zisik, M. N. Özísík, and M. N. Özíşík, Heat conduction (John Wiley, 1993).

Padgett, M.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Pang, B. H.

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

Peng, K.

Pfister, O.

Polzik, E. S.

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413(6854), 400–403 (2001).
[Crossref]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref]

Pysher, M.

Ralph, T. C.

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
[Crossref]

Reynaud, S.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

Saraf, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

Schiller, S.

R. Bruckmeier, H. Hansen, and S. Schiller, “Repeated quantum nondemolition measurements of continuous optical waves,” Phys. Rev. Lett. 79(8), 1463–1466 (1997).
[Crossref]

K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, “Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier,” Opt. Lett. 21(17), 1396–1398 (1996).
[Crossref]

Schnabel, R.

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

R. Schnabel, “Gravitational wave detectors: Squeezing up the sensitivity,” Nat. Phys. 4(6), 440–441 (2008).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
[Crossref]

Schneider, K.

Schouten, R. N.

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

Sciarrino, F.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Shaddock, D. A.

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002).
[Crossref]

Shahrokhshahi, R.

Shi, S.

Siegman, A. E.

A. E. Siegman, “Lasers university science books,” Mill Val. CA 37, 169 (1986).

Sizmann, A.

Slussarenko, S.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Sørensen, J. L.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref]

Spagnolo, N.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Su, X.

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

Symul, T.

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

Thorne, K. S.

Y. T. Liu and K. S. Thorne, “Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses,” Phys. Rev. D 62(12), 122002 (2000).
[Crossref]

Twitchen, D. J.

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

Usenko, V. C.

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

Vadacchino, M.

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

Vahlbruch, H.

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
[Crossref]

Vainio, M.

Van Loock, P.

N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
[Crossref]

Vass, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

Vermeulen, R. F.

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

Vyatchanin, S.

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264(1), 1–10 (1999).
[Crossref]

Walborn, S. P.

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Walk, N.

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum optics (Springer, 2007).

Wang, M.

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

Wang, Y.

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Ward, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

Weedbrook, C.

N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
[Crossref]

Weinstein, A. J.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

wen Bi, S.

F. Feng, S. wen Bi, B. zhu Lu, and M. hua Kang, “Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging,” Optik (Munich, Ger.) 124(11), 1070–1073 (2013).
[Crossref]

Werner, R. F.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Xie, C.

Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 db entangled state with an optical cavity involving a wedged type-ii nonlinear crystal,” Opt. Express 23(4), 4952–4959 (2015).
[Crossref]

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

Xie, D.

Yang, W.

Yonezawa, H.

H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables,” Nature 431(7007), 430–433 (2004).
[Crossref]

Yura, H.

M. Innocenzi, H. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Zhang, G.-f.

G.-f. Zhang, S.-s. Li, and J.-q. Liang, “Thermal entanglement in spin-1 biparticle system,” Opt. Commun. 245(1-6), 457–463 (2005).
[Crossref]

Zhang, J.

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Zhao, C.

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

Zheng, Y.

Zhou, Y.

zhu Lu, B.

F. Feng, S. wen Bi, B. zhu Lu, and M. hua Kang, “Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging,” Optik (Munich, Ger.) 124(11), 1070–1073 (2013).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Phys. B: Photophys. Laser Chem. (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31(2), 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

M. Innocenzi, H. Yura, C. Fincher, and R. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Classical Quantum Gravity (1)

A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gräf, K. Danzmann, H. Grote, and R. Schnabel, “Long-term stable squeezed vacuum state of light for gravitational wave detectors,” Classical Quantum Gravity 29(7), 075001 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Mill Val. CA (1)

A. E. Siegman, “Lasers university science books,” Mill Val. CA 37, 169 (1986).

Nat. Commun. (3)

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3(1), 1083 (2012).
[Crossref]

X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, and K. Peng, “Gate sequence for continuous variable one-way quantum computation,” Nat. Commun. 4(1), 2828 (2013).
[Crossref]

V. D’ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nat. Commun. 4(1), 2432 (2013).
[Crossref]

Nat. Photonics (1)

H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph, T. Symul, and P. K. Lam, “Measurement-based noiseless linear amplification for quantum communication,” Nat. Photonics 8(4), 333–338 (2014).
[Crossref]

Nat. Phys. (3)

Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, “Proposal for gravitational-wave detection beyond the standard quantum limit through epr entanglement,” Nat. Phys. 13(8), 776–780 (2017).
[Crossref]

R. Schnabel, “Gravitational wave detectors: Squeezing up the sensitivity,” Nat. Phys. 4(6), 440–441 (2008).
[Crossref]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4(6), 472–476 (2008).
[Crossref]

Nature (3)

P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558(7709), 268–273 (2018).
[Crossref]

B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413(6854), 400–403 (2001).
[Crossref]

H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables,” Nature 431(7007), 430–433 (2004).
[Crossref]

Opt. Commun. (2)

G.-f. Zhang, S.-s. Li, and J.-q. Liang, “Thermal entanglement in spin-1 biparticle system,” Opt. Commun. 245(1-6), 457–463 (2005).
[Crossref]

A. Henderson, M. Padgett, F. Colville, J. Zhang, and M. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optik (Munich, Ger.) (1)

F. Feng, S. wen Bi, B. zhu Lu, and M. hua Kang, “Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging,” Optik (Munich, Ger.) 124(11), 1070–1073 (2013).
[Crossref]

Phys. Lett. A (1)

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264(1), 1–10 (1999).
[Crossref]

Phys. Rev. A (2)

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClelland, and N. Mavalvala, “Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator,” Phys. Rev. A 72(4), 043819 (2005).
[Crossref]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong einstein-podolsky-rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Phys. Rev. D (1)

Y. T. Liu and K. S. Thorne, “Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses,” Phys. Rev. D 62(12), 122002 (2000).
[Crossref]

Phys. Rev. Lett. (5)

N. C. Menicucci, P. Van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, “Universal quantum computation with continuous-variable cluster states,” Phys. Rev. Lett. 97(11), 110501 (2006).
[Crossref]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102(13), 130501 (2009).
[Crossref]

R. Bruckmeier, H. Hansen, and S. Schiller, “Repeated quantum nondemolition measurements of continuous optical waves,” Phys. Rev. Lett. 79(8), 1463–1466 (1997).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Demonstration of a squeezed-light-enhanced power-and signal-recycled michelson interferometer,” Phys. Rev. Lett. 95(21), 211102 (2005).
[Crossref]

K. McKenzie, D. A. Shaddock, D. E. McClelland, B. C. Buchler, and P. K. Lam, “Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection,” Phys. Rev. Lett. 88(23), 231102 (2002).
[Crossref]

Quantum Opt. (1)

C. Fabre, E. Giacobino, A. Heidmann, L. Lugiato, S. Reynaud, M. Vadacchino, and W. Kaige, “Squeezing in detuned degenerate optical parametric oscillators,” Quantum Opt. 2(2), 159–187 (1990).
[Crossref]

Science (2)

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282(5389), 706–709 (1998).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

Other (3)

M. C. Gupta and J. Ballato, The handbook of photonics (Taylor & Francis, New York, 2018).

D. F. Walls and G. J. Milburn, Quantum optics (Springer, 2007).

M. N. Ã-zisik, M. N. Özísík, and M. N. Özíşík, Heat conduction (John Wiley, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Entanglement as a function of crystal temperature fluctuation. The solid curve, dashed curve and dash-dotted curve indicate that the entanglement is 10 dB, 5.4 dB and 3 dB respectively when there is no crystal temperature fluctuation. The parameter values used are: $\lambda = 1080 nm$, $n = 1.7$, ${L_c} = 10 mm$, $\gamma = 6.0 \times {10^7}{s^{ - 1}}$, $\frac {{d{n_s}}}{{dT}} = 1.6 \times {10^{ - 5}}{K^{ - 1}}$, $\frac {{d{n_i}}}{{dT}} = 1.3 \times {10^{ - 5}}{K^{ - 1}}$, ${b_s} = 0.6 \times {10^{ - 6}}{K^{ - 1}}$, ${b_i} = 9 \times {10^{ - 6}}{K^{ - 1}}$, and $\sigma = 0.8$
Fig. 2.
Fig. 2. Schematic of the experimental setup. RF: Radio frequency source; PM: Phase modulator; PID: Proportional integral derivative controller; VCO: Voltage controlled oscillator; AOM: Acousto-optic modulator; PD: Photoelectric detector; TFL: temperature feedback loop; SA: spectrum analyzer; BHD: balanced homodyne detector; HWP: Half wave plate.
Fig. 3.
Fig. 3. Transmitted power of the idler field and crystal temperature locking error signal as a function of temperature fluctuation obtained from theory and experiments: (a) and (b) transmission of the idler field, (c) and (d) associated crystal temperature locking error signal. Parameters values used are: $t_1=0.1 \%$, $t_2=5.4 \%$, absorption coefficient of KTP: 0.8 %/cm, thermal conductivity of KTP: 0.13 W/cm*K, spot size of control field: 40 $\mu m$, spot size of idler field: 56 $\mu m$. For other parameter settings, see Fig. 1.
Fig. 4.
Fig. 4. Parametric gain behavior as a function of time, normalized by the resonant power without parametric gain.
Fig. 5.
Fig. 5. Comparison of stability performance for entanglement without and with the crystal temperature locking. (a) amplitude-sum squeezing. (b) phase-difference squeezing. The measurement parameters of spectrum analyzer: RBW: 100 kHz, VBW: 100 Hz. Analysis frequency: 3 MHz.
Fig. 6.
Fig. 6. Measured transfer function of the TFL. (a) Magnitude and (b) Phase of the transfer function.
Fig. 7.
Fig. 7. Long-term entanglement recorded continuously for 2 hours. (a) amplitude-sum squeezing, (b) phase-difference squeezing. The measurement parameters of spectrum analyzer: RBW: 100 kHz, VBW: 100 Hz. Analysis frequency: 3 MHz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

a ^ ˙ s = γ a ^ s + χ a p a ^ i + 2 γ a ^ s i n
a ^ ˙ i = γ ( 1 i Δ ) a ^ i + χ a p a ^ s + 2 γ a ^ i i n .
| δ X ^ i o u t + δ X ^ s o u t | 2 = | δ Y ^ i o u t δ Y ^ s o u t | 2 = 1 4 σ ( σ 1 ) 2 Δ 2 + ( σ 1 ) 2
Δ = 2 π υ F S R Δ L λ γ
Δ L = n L c [ ( 1 n ( d n i d T d n s d T ) + ( b i b s ) ) ] δ T
Δ = 2 π υ F S R 1 λ γ n L c [ ( 1 n ( d n i d T d n s d T ) + ( b i b s ) ) ] δ T
Γ ( Δ ) = 2 t 1 2 τ t 2 2 τ / 2 t 1 2 τ t 2 2 τ ( t 1 + t 2 2 τ + ( t 1 + t 2 2 τ + i Δ )
Υ ( Δ ) = ( t 1 τ t 1 + t 2 2 τ i Δ ) / ( t 1 τ t 1 + t 2 2 τ i Δ ) ( t 1 + t 2 2 τ + ( t 1 + t 2 2 τ + i Δ )
V Im ( Υ ( Δ ) Υ ( Δ + ω n ) Υ ( Δ ) Υ ( Δ ω n ) )

Metrics