Abstract

We demonstrate the transmission of a 30-GBd polarization-multiplexed probabilistically shaped 4096-ary quadrature amplitude modulation (QAM) signal over 50.9-km standard signal-mode fiber (SSMF), with a net single-carrier bit rate of 484.4 Gb/s carrying 16.1 information bits per symbol (a potential spectral efficiency of 15.9 bits/s/Hz when taking into account a 0.01 spectral roll-off). The signal is generated from 28-nm complementary metal-oxide-semiconductor (CMOS) digital-to-analog converters (DACs) with 8-bit nominal resolution and is received by an intradyne coherent receiver with a laser that has a linewidth of ∼1 kHz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical transmission systems show a general trade-off between symbol rate and information rate (IR), i.e., the net data rate divided by the symbol rate [1]. One can use low symbol rates with each symbol carrying more information bits, or one can employ high-symbol-rate signals with each symbol carrying less information bits. This trade-off is not fundamental in terms of modulation, but rather comes from the fact that increasing the symbol rate in practice results in a lower end-to-end electrical signal-to-noise ratio (SNR).

Figure 1 shows recent record experiments at high IRs versus the demonstrated all-electronically generated symbol rates [215]. Note that these measurements are taken under very different experimental conditions, e.g. different amplification schemes (Raman amplifiers or Erbium-doped fiber amplifiers/EDFAs), different laser linewidths, different transmission fiber types and transmission distances. Nevertheless, the trade-off between symbol rate and IR can be clearly observed. For example, using integrated digital-to-analog converters (DACs), it is possible to achieve IRs of 19.9 bits/symbol with probabilistically shaped (PS) 4096-ary quadrature amplitude modulation (4096-QAM) at 3 GBd [2], 15.8 bits/symbol with 1024-QAM at 10 GBd [3], or 10 bits/symbol with 64-QAM at 100 GBd [10]. By externally multiplexing two or more DAC-generated signals in the time or frequency domain [11,1315], IRs of 11.3 bits/symbol at 90 GBd [13] and 3.3 bits/symbol at 192 GBd [14] have been achieved. Typically, systems demonstrating high IRs (e.g. > 15 bits/symbol) use high-resolution DACs (10 bits or 14 bits) and narrow-linewidth lasers (< 400 Hz) and/or utilize analog phase locked loops (PLLs) [4].

 figure: Fig. 1.

Fig. 1. Information rate and symbol rates of various demonstrated high-speed system experiments. The information bits/symbol are defined as the dual-polarization net data rate per carrier and per spatial path divided by the symbol rate.

Download Full Size | PPT Slide | PDF

In this paper, we demonstrate 16.1 bits/symbol with a 30-GBd PS-4096-QAM signal using standard 28-nm CMOS DACs with 8 bits of nominal resolution and 1-kHz-linewidth lasers. We transmit this signal over 50.9-km standard single mode fiber (SSMF) and receive it by an intradyne receiver without analog optical phase locking. The line rate [16] of our single-channel signal is 599.5 Gb/s and the net data rate after taking into account forward error correction (FEC) is 484.4 Gb/s. The signal uses root-raised-cosine (RRC) pulse shaping with a roll-off factor of 0.01 and consequently occupies an optical bandwidth of 30.3 GHz, potentially allowing for a spectral efficiency (SE) of 15.9 bits/s/Hz.

2. Optical measurement setup

The experimental setup for our 30-GBd PS-4096-QAM transmission system is shown in Fig. 2. The transmitter consists of a laser with a linewidth of 1 kHz operating at 1550.1 nm [17], and a LiNbO3 single-polarization I/Q Mach-Zehnder modulator (MZM) with a 3-dB bandwidth of 35 GHz and a Vπ of ∼3.5 V. The modulator uses a laser input power of 23.3 dBm and is driven by 28-nm CMOS DACs. The DACs have a nominal resolution of 8 bits, operate at 88 GSa/s, and have a 3-dB bandwidth of ∼18 GHz. The DACs’ differential outputs (∼700 mV differential peak-to-peak swing) are converted to a single-ended signal via radio frequency (RF) baluns with 6-dB insertion loss to produce a single-ended signal of ∼350-mV peak-to-peak voltage. The electrical driver amplifiers have a gain of 23 dB, followed by RF attenuators with 13-dB attenuation. The signal used for driving the modulator has a peak-to-peak voltage of ∼1.1 V, allowing operation of the MZM in its linear region (drive voltage swing ∼Vπ/3). The delay mismatch between in-phase (I) and quadrature (Q) components is measured and digitally compensated within the transmitter. The modulated light is amplified by an EDFA. Polarization-division multiplexing (PDM) is realized by a fiber-delay based PDM emulator with 10.9 meters of decorrelation delay (i.e., 54.5 ns or 1635 symbols). The transmission fiber is a single, dispersion-uncompensated 50.9-km span of SSMF with a loss of 0.2 dB/km and a chromatic dispersion of 17 ps/km/nm. We use an optimized launch power of -2 dBm, by varying the signal launch power from -5 dBm to 5 dBm and find the power level that gives the best normalized generalized mutual information (NGMI). The inset of Fig. 2 shows the signal spectrum at the transmitter (blue) and the receiver (orange). The received signal is amplified by an EDFA and detected by a standard intradyne coherent receiver. The optical signal-to-noise ratio (OSNR) before and after fiber transmission is 40 dB and 37.1 dB, respectively. The free-running local oscillator has a linewidth of 1 kHz and is kept to within a frequency offset of ∼900 MHz relative to the transmit laser. The signal is down-converted to the electrical domain via 4 balanced photodiodes (Finisar BPDV2150R) which have a 3-dB bandwidth of ∼45 GHz. The electrical signal is sampled by a 4-channel real-time oscilloscope operating at 256 GSa/s. The ∼8.5 $\times $ [ = 256 GSa/s /30 GBd] oversampled signal is down-sampled by a factor of ∼4.25 to a 2 $\times $ oversampling ratio before performing adaptive filter equalization. A digital anti-aliasing filter is used as part of the down-sampling process. As the down-sampling process averages the received signal across ∼4.25 samples, the digitizer’s effective number of bits (ENOB) is increased by ∼1 bit [18].

 figure: Fig. 2.

Fig. 2. Experimental setup for 30-GBd PDM-PS-4096-QAM transmission. PBC: polarization beam combiner. EDFA: erbium-doped fiber amplifier. SSMF: standard single mode fiber.

Download Full Size | PPT Slide | PDF

Probabilistic constellation shaping is realized within the framework of the real-time implementable probabilistic amplitude shaping (PAS) architecture [19]. 64-level amplitude shaping is independently performed for the I and Q components of the 4096-QAM signal, in a block of 89364 symbols. We use a family of Maxwell-Boltzmann (MB) distributions with varying shaping parameter β to adjust the PS-4096-QAM signal, where β is the entropy of the positive half of the 64-level amplitudes that are made symmetric around zero through multiplication with the sign bit as part of the PAS architecture. Using a distribution matcher (DM) that produces a negligible shaping gap to the ideal DM, such as the constant composition DM [20], the maximum IR supported by the constellation can be quantified by the entropy rate as

$${R_{\max }} = 2 \times ({1 + \beta } ){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} bits/symbol/pol$$
The system performance that can be achieved by ideal rate-adaptive FEC is quantified by the generalized mutual information (GMI) [21] for bit-metric decoding, which is an achievable IR (AIR) for bit-interleaved coded modulation [22,23]. To evaluate the actual system performance that can be achieved by realistic low-complexity fixed-rate FEC codes, we use a spatially-coupled low-density parity-check (SC-LDPC) code of rate 0.8469, constructed based on [24], together with an outer hard-decision BCH (8191,8126,5) code to remove possible error floors, yielding a combined code rate Rc of 0.8402 (19.02% overhead). Post-FEC bit error ratio (BER) performance of the rate-0.8469 SC-LDPC code is shown in Fig. 3. The error-free decoding of our FEC code for PS-4096-QAM can be accurately predicted by the NGMI [25]. We determine the maximum β that yields a measured NGMI greater than the NGMI threshold (NGMI*) [16,24] to maximize the net data rate with a fixed FEC rate. For our SC-LDPC code, the post-FEC BER is below the outer BCH threshold BER of $1.1 \times {10^{ - 6}}$ for NGMI $\ge \,$ 0.8798, as per the simulation results shown in Fig. 3, hence we conservatively take NGMI* = 0.8798.

 figure: Fig. 3.

Fig. 3. Post-FEC BER performance of the rate-0.8469 SC-LDPC code.

Download Full Size | PPT Slide | PDF

The receiver digital signal processing (DSP) consists of chromatic dispersion compensation, frequency offset compensation, frame synchronization, and 2 $\times $ oversampled least mean square (LMS)-based 4 $\times $ 4 real-valued multiple-input multiple-output (MIMO) channel equalization [2627]. The equalizer uses pilot-assisted pre-convergence followed by blind equalization. Only the blindly recovered data are used for subsequent NGMI calculation from the digitally recovered symbols. Clock recovery and carrier phase recovery are done by a digital PLL inside the LMS equalizer. The LMS filters have 281 taps (4.68 ns), which is significantly shorter than our PDM delay (54.5 ns). A total of 1.18 $\times $ 106 recovered symbols are used for NGMI estimation.

For the success of PS-4096-QAM transmission, it is critical to optimize transmitter and receiver settings. In particular, the following three aspects are important: (i) Electrical distortions are avoided as much as possible. For instance, both differential outputs from the CMOS DAC are used to minimize degradations from clock leakage and other distortions. This may either be done using a differential-input RF amplifier, or (as in our setup) by an RF balun converting the differential DAC output signals to a single-ended signal, followed by a single-ended RF amplifier. Our setup uses discrete components, and RF cables are kept as short as possible to minimize RF loss at higher frequencies; (ii) Any I/Q time skew in the transmitter and receiver must be carefully compensated. In particular, to compensate for the transmitter I/Q skew, we digitally vary the transmitter I/Q delay of a single-sideband test signal until we observe a maximum image-band suppression ratio on an optical spectrum analyzer (OSA). We minimize the receiver I/Q skew by bypassing the PDM emulator and loading a binary signal on only one of the two DAC channels, and varying the receiver channel delays until the cross correlations of the received four tributaries are maximized; (iii) The I/Q amplitude balance is also critical to the performance. We adjust the amplitudes of the transmitter’s I and Q branches by tuning the gain of our RF drivers; (iv) the modulator bias positions are precisely adjusted. In our setup, we vary the modulator DC bias in 1-mV steps to find the optimal bias position.

The tolerance to 1-kHz laser phase noise comes naturally from the high symbol rate. Compared with a symbol rate of 3 GBd [2], a 30-GBd signal has a 10-times higher tolerance to laser linewidth [28].

3. Results and discussion

With 50.9-km fiber transmission, we vary the shaping factor β to maximize the data rate under the best available OSNR (37.1 dB) and find a shaping factor that still yields an NGMI greater than the FEC’s NGMI threshold. We use target values for β of 3.9, 4.0, 4.1, and 4.2, which yield actually implemented values for β of 3.896, 3.996, 4.096, and 4.198, with a discrepancy of < 0.004 between the target and implemented β values because of the finite block length due to limited memory of our DACs. The measured NGMI with different shaping factors after 50.9-km transmission is plotted in Fig. 4(a). As can be seen, a shaping factor of β=3.996 yields an NGMI of 0.8903, which is comfortably above the NGMI threshold. The measured pre-FEC BER is shown for reference as a function of β in Fig. 4(b). The recovered raw BER is 3.1 $\times $ 10−2 and the measured constellation SNR is 26.2 dB. The electrical SNR derived solely from amplified spontaneous emission (ASE) noise as per the measured 37.1-dB OSNR is 33.3 dB [ = 37.1 dB – 10 $\times $ log10(30 GBd/12.5 GHz)]. Therefore, we observe a ∼7-dB penalty from back-to-back implementation penalty plus uncompensated nonlinear distortions from fiber transmission.

 figure: Fig. 4.

Fig. 4. (a) Measured NGMI and (b) measured BER after 50.9-km SSMF as a function of the shaping factor β. The inset to Fig. 3(a) shows the received digital spectrum with β=3.996.

Download Full Size | PPT Slide | PDF

It is important to mention that although PS-4096-QAM with β=3.996 has an entropy rate (9.99 bits/symbol/pol) very close to uniform (U)-1024-QAM (10 bits/symbol/pol), it is still beneficial to use PS-4096-QAM, as constellation shaping offers a gain over U-1024-QAM of the same entropy rate. To see this, we plot in Fig. 5 the AIRs of bit-metric decoding for four relevant modulation formats (PS-4096-QAM, U-4096-QAM, PS-1024-QAM, and U-1024-QAM) in the additive white Gaussian noise (AWGN) channel, estimated by their GMI as mentioned in Sec. 2. The AIRs shown in this figure are achievable, meaning that the post-FEC BER can be made arbitrarily low when information is transmitted at a rate of the AIR, by using an ideal FEC coding scheme with an arbitrarily adjustable code rate. Here, ‘ideal FEC’ means that the coding uses infinite code length and unlimited decoding complexity, and ‘arbitrarily adjustable code rate’ means that the code rate can be adapted to perfectly match the channel SNR. More details about the operational meaning of various AIRs and their calculations can be found in, e.g., Refs. [22,23]. Assuming this, we see that at our measured constellation SNR of 26.2 dB, PS-4096-QAM (solid red curve) has an AIR of 8.70 bits/symbol/pol, which is 0.46-bits/symbol/pol higher than U-1024-QAM (dashed blue curve). In principle, we could also obtain a higher AIR of 8.60 bits/symbol/pol than U-1024-QAM using the smaller PS-1024-QAM (solid blue curve). However, in practice, it is typical to use only one or a few selected fixed FEC rates; e.g., we use a fixed code rate of 0.8402, in which case the AIR of PS-1024-QAM cannot be made greater than 8.402 using any value of β allowed for the 1024-QAM template [16]. On the contrary, PS-4096-QAM enables us to use the fixed FEC code rate of 0.8402 to maximize the AIR solely by adjusting β. Here, although the merit of PS-4096-QAM with β=3.996 over U-1024-QAM is explained in an ideal FEC scenario, the same explanation can easily be extended to a practical non-ideal FEC [29], making PS-4096-QAM the most suitable format for our experimental link.

 figure: Fig. 5.

Fig. 5. Theoretical analysis of the AIRs for four different modulation formats in AWGN: PS-4096-QAM, U-4096-QAM, PS-1024-QAM, and U-1024-QAM.

Download Full Size | PPT Slide | PDF

The transmitted probability distribution of the PS-4096-QAM constellation with β=3.996 is shown in Fig. 6(a). Figure 6(b) illustrates the histogram of the real part of the transmitted signal. The recovered constellations for the two polarizations are plotted in Fig. 6(c). With Ref. to [16] and at a code rate of ${R_c}\, = \; \,$ 0.8402, we have $\gamma $ = 0.0412 which can be calculated as

$$\gamma = 1 - \frac{{{{\log }_2}(M )}}{2} \times ({1 - {R_C}} )= 1 - {{({{{\log }_2}({4096} )} )} \mathord{\left/ {\vphantom {{({{{\log }_2}({4096} )} )} 2}} \right.} 2} \times ({1 - 0.8402} )$$
Therefore, our line rate RLine is 599.5 Gb/s, which is calculated from
$${R_{Line}} = 2 \times ({1 + \beta } )\times {r_c} \times 2pol = 2 \times ({1 + 3.996} )\times 30GBd \times 2$$
and the net data rate Rinfo is 484.4 Gb/s, which is calculated from
$${R_{\inf o}} = 2 \times ({\gamma + \beta } )\times {r_c} \times 2pol = 2 \times ({0.0412 + 3.996} )\times 30GBd \times 2.$$
The 30-GBd signal therefore has 16.15 [ = 484.4 Gb/s / 30 GBd] information bits/symbol. As our RRC filter has 0.01 roll-off, the potential SE of this system would be 15.9 bits/s/Hz [ = 484.4 Gb/s /(30 GHz × 1.01)].

 figure: Fig. 6.

Fig. 6. (a) Symbol probability distribution for the PS-4096-QAM with β=3.996; (b) Histogram of the real-part of the transmitted signal; (c) recovered PS-4096-QAM constellations on x- and y- polarizations.

Download Full Size | PPT Slide | PDF

4. Conclusions

We have demonstrated the transmission of 30-GBd PDM PS-4096-QAM signals over 50.9-km SSMF with an optimum shaping factor of β=3.996. The line rate of our single-channel signal is 599.5 Gb/s and the net data rate is 484.4 Gb/s. The signals are generated via standard 28-nm CMOS DACs with a nominal resolution of 8 bits and received by an intradyne coherent receiver.

References

1. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012). [CrossRef]  

2. S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

3. Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer,” Opt. Express 26(13), 17015–17024 (2018). [CrossRef]  

4. M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.

5. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015). [CrossRef]  

6. D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

7. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012). [CrossRef]  

8. E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

9. R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

10. K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

11. T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

12. M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

13. G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

14. M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

15. X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

16. J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018). [CrossRef]  

17. http://www.rio-lasers.com/_products/orion.html

18. “Oversampling the ADC for higher resolution” http://www.ti.com/lit/an/slaa323a/slaa323a.pdf

19. G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015). [CrossRef]  

20. P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016). [CrossRef]  

21. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33(20), 4338–4352 (2015). [CrossRef]  

22. J. Cho and P. Winzer, “Probabilistic constellation shaping for optical fiber communications,” J. Lightwave Technol. 37(6), 1590–1607 (2019). [CrossRef]  

23. A. Alvarado, T. Fehenberger, B. Chen, and F. M. J. Willems, “Achievable information rates for fiber optics: Applications and computations,” J. Lightwave Technol. 36(2), 424–439 (2018). [CrossRef]  

24. J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.

25. J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

26. S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

27. M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013). [CrossRef]  

28. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009). [CrossRef]  

29. J. Cho, “Balancing probabilistic shaping and forward error correction for optimal system performance,” in Proc. Optical Fiber Communication Conference2018, paper M3C.2.

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  2. S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.
  3. Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer,” Opt. Express 26(13), 17015–17024 (2018).
    [Crossref]
  4. M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.
  5. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref]
  6. D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.
  7. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
    [Crossref]
  8. E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.
  9. R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.
  10. K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.
  11. T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.
  12. M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.
  13. G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.
  14. M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.
  15. X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.
  16. J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
    [Crossref]
  17. http://www.rio-lasers.com/_products/orion.html
  18. “Oversampling the ADC for higher resolution” http://www.ti.com/lit/an/slaa323a/slaa323a.pdf
  19. G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
    [Crossref]
  20. P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
    [Crossref]
  21. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33(20), 4338–4352 (2015).
    [Crossref]
  22. J. Cho and P. Winzer, “Probabilistic constellation shaping for optical fiber communications,” J. Lightwave Technol. 37(6), 1590–1607 (2019).
    [Crossref]
  23. A. Alvarado, T. Fehenberger, B. Chen, and F. M. J. Willems, “Achievable information rates for fiber optics: Applications and computations,” J. Lightwave Technol. 36(2), 424–439 (2018).
    [Crossref]
  24. J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.
  25. J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.
  26. S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.
  27. M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
    [Crossref]
  28. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  29. J. Cho, “Balancing probabilistic shaping and forward error correction for optimal system performance,” in Proc. Optical Fiber Communication Conference2018, paper M3C.2.

2019 (1)

2018 (3)

2016 (1)

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

2015 (3)

2013 (1)

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

2012 (2)

2009 (1)

Adamiecki, A.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Agrell, E.

Altenhain, L.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Alvarado, A.

Ashiq, I.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Bayvel, P.

Beppu, S.

Böcherer, G.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Buchali, F.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Burrows, E. C.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Chandrasekhar, S.

J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
[Crossref]

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

Chen, B.

Chen, X.

J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
[Crossref]

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

Cho, J.

J. Cho and P. Winzer, “Probabilistic constellation shaping for optical fiber communications,” J. Lightwave Technol. 37(6), 1590–1607 (2019).
[Crossref]

J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
[Crossref]

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

J. Cho, “Balancing probabilistic shaping and forward error correction for optimal system performance,” in Proc. Optical Fiber Communication Conference2018, paper M3C.2.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

Croussore, K.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

da Silva, E. P.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Diniz, J. C. M.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Dümler, U.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Dupuy, J-Y.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Duval, B.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Engenhardt, K.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Eriksson, T. A.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Essiambre, R-J.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Faruk, M. S.

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Fehenberger, T.

Fontaine, N.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Galili, M.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Going, R.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Guan, B.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Hamaoka, F.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Hirano, A.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Hoffmann, S.

Huang, M.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Ida, M.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Idler, W.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Ip, E.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Iqbal, S.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Jorge, F.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Kasai, K.

Khanna, A.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Kikuchi, K.

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Kim, K.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Klejs, F.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Kobayashi, T.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Koizumi, Y.

Konczykowska, A.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Lauermann, M.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Lavery, D.

Li, M.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Lillieholm, M.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Maher, R.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33(20), 4338–4352 (2015).
[Crossref]

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Matsushita, A.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Miyamoto, Y.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Möller, M.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Morioka, T.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Nagatani, M.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Nakamura, M.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Nakazawa, M.

Noé, R.

Nosaka, H.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

Ogiso, Y.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Okamoto, S.

Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer,” Opt. Express 26(13), 17015–17024 (2018).
[Crossref]

M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.

Olsson, S.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

Oxenløwe, L. K.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Pfau, T.

Pilori, D.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Pupalaikis, P.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Qian, D.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Rahn, J.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Randel, S.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Raybon, G.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Riet, M.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Ryf, R.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Sano, A.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Schmalen, L.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.

Schmid, R.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Schuh, K.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Schulte, P.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Steffan, A.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Steiner, F.

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Templ, W.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Terayama, M.

M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.

Toyoda, K.

Umbach, A.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Umeki, T.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

Wakita, H.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Wang, T.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Wang, Y.

Willems, F. M. J.

Winzer, P.

J. Cho and P. Winzer, “Probabilistic constellation shaping for optical fiber communications,” J. Lightwave Technol. 37(6), 1590–1607 (2019).
[Crossref]

J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
[Crossref]

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Winzer, P. J.

P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
[Crossref]

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Xu, X.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Yamazaki, H.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Yankov, M. P.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Yoshida, M.

IEEE Photonics J. (1)

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

IEEE Trans. Commun. (1)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

IEEE Trans. Inf. Theory (1)

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (4)

Other (17)

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

http://www.rio-lasers.com/_products/orion.html

“Oversampling the ADC for higher resolution” http://www.ti.com/lit/an/slaa323a/slaa323a.pdf

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

J. Cho, “Balancing probabilistic shaping and forward error correction for optimal system performance,” in Proc. Optical Fiber Communication Conference2018, paper M3C.2.

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Information rate and symbol rates of various demonstrated high-speed system experiments. The information bits/symbol are defined as the dual-polarization net data rate per carrier and per spatial path divided by the symbol rate.
Fig. 2.
Fig. 2. Experimental setup for 30-GBd PDM-PS-4096-QAM transmission. PBC: polarization beam combiner. EDFA: erbium-doped fiber amplifier. SSMF: standard single mode fiber.
Fig. 3.
Fig. 3. Post-FEC BER performance of the rate-0.8469 SC-LDPC code.
Fig. 4.
Fig. 4. (a) Measured NGMI and (b) measured BER after 50.9-km SSMF as a function of the shaping factor β. The inset to Fig. 3(a) shows the received digital spectrum with β=3.996.
Fig. 5.
Fig. 5. Theoretical analysis of the AIRs for four different modulation formats in AWGN: PS-4096-QAM, U-4096-QAM, PS-1024-QAM, and U-1024-QAM.
Fig. 6.
Fig. 6. (a) Symbol probability distribution for the PS-4096-QAM with β=3.996; (b) Histogram of the real-part of the transmitted signal; (c) recovered PS-4096-QAM constellations on x- and y- polarizations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R max = 2 × ( 1 + β ) b i t s / s y m b o l / p o l
γ = 1 log 2 ( M ) 2 × ( 1 R C ) = 1 ( log 2 ( 4096 ) ) / ( log 2 ( 4096 ) ) 2 2 × ( 1 0.8402 )
R L i n e = 2 × ( 1 + β ) × r c × 2 p o l = 2 × ( 1 + 3.996 ) × 30 G B d × 2
R inf o = 2 × ( γ + β ) × r c × 2 p o l = 2 × ( 0.0412 + 3.996 ) × 30 G B d × 2.

Metrics