Abstract

Low-frequency conversion efficiency severely limits the 3ω ultraviolet energy density at the target of inertial confinement fusion facilities. Here, we present a bio-inspired surface aberration mitigation (SAM) technique that could significantly reduce the crystal surface aberration and realize high frequency conversion efficiency over a clear aperture of 400 mm × 400 mm. Numerical models are utilized to optimize and verify the mechanical properties and physical performance of the SAM technique. In addition, the influences of various operation conditions on surface aberration, angle-detuning magnitude, and frequency conversion efficiency are illustrated. Finally, the process stability and online feasibility of this new approach are validated by the established offline characterization system and in situ imaging system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

High-peak-power Nd:glass laser drives are essential components of inertial confinement fusion (ICF) facilities built to study high-energy-density science [1]. At the National Ignition Facility (NIF), the world’s largest ICF facility, 192 beam large-aperture laser drives are capable of delivering up to 2.6 MJ/ 480 TW energy at 3ω [2–4]. One way to further increase the effective laser energy and achieve high-gain fusion ignition is to improve the harmonic generation efficiency of the frequency converter in final optics assembly (FOA). Generally, the cascaded frequency converter consists of a Type-I KDP doubler with the size of 410 mm × 410 mm × 12 mm and a Type-II dKDP tripler with the size of 410 mm × 410 mm × 9 mm, which converts the fundamental wave at 3ω (λ = 1053 nm) to the ultraviolet wave at ω (λ = 351 nm) through two-step harmonic generation [5]. As key transmission optics in high-peak-power laser drives, actual performance of KDP and dKDP crystals highly depend on their surface condition. However, mechanical sensitivity of crystals with large diameter-to-thickness ratios always results in severe surface aberration, which will subsequently generate a significant reduction in the frequency conversion efficiency [6]. Subject to a variety of complex operational conditions, it is difficult to realize small flatness error (<5 μm) and global detuning angle on a 410-mm-aperture crystal surface in real practice. Although multiple technologies have been implemented, a great need to further improve the crystal service performance still exists. In particular, a high-efficiency and low-cost surface aberration mitigation technique is demanded in next-generation high -peak-power laser drives. (Note that the term “surface aberration” in this article denotes the deviation of the crystal surface from the absolute planarity.)

In fact, there has been a copious amount of research on surface control techniques of large optics. Hu et al. optimized the flexure support design of the primary mirror of a large-aperture space telescope [7]. Li et al. put forward an adjustable radial support for a large-aperture prism [8]. Banyal et al. developed a physically realistic heat-transfer model to study thermally induced surface distortion of a lightweight solar telescope mirror [9]. Furthermore, Harber et al. proposed a predictive control method of thermally induced wavefront aberrations with a deformable mirror [10]. Reinlein advanced a temporally stable active mount to compensate for manufacturing-induced deformation of reflective optical components [11]. Actually, such adaptive optics methods are widely used in laser, optical imaging, and communication systems [12–14]. In general, the aforementioned surface control methods mostly enhance the stiffness of the component itself or generate active displacement compensation by designing support structures or manipulating actuator arrays on the backside of refection optics [10]. However, these methods cannot be used to control transmission optics surface conditions in practice. Regarding the KDP crystal, Hibbard et al. introduced an initial frequency converter design and manufacturing consideration for the NIF [15]. Later, Auerbach performed theoretical modeling of frequency doubling and tripling with a non-uniform refractive index due to gravitational sag [16]. They also compared three types of mounting configurations, which indicates that the full-perimeter compliant clamping scheme could help counteract the gravity-sag that would occur with three-point or corner clamping configurations [17]. According to Wegner’s report, the large-aperture crystals in NIF were mounted with a full-perimeter support that could maintain crystal surface flatness to better than 10 μm [18]. Moreover, Su et al. studied the influence of mounting force on frequency conversion of mounted nonlinear optics [19]. Recently, Qin et al. put forward a force-moment mounting technology and theoretically validated its surface control capability [20].

However, most of the published works regarding the surface control technique of such large crystals are limited to theoretical or simulation level due to the difficulty and cost of experiments on such large crystals. Therefore, we conducted more research for practical applications based on field experiments. Inspired by the morphologies of lotus leaves in different growth periods, we first propose a surface aberration mitigation (SAM) technique including a support and clamping method for 410-mm-aperture low-stiffness crystals. Furthermore, a numerical model is utilized to optimize and verify the mechanical properties and physical performance of the SAM technique. The change trends of surface aberration, angle-detuning magnitude, and frequency conversion efficiency under various operational conditions are investigated. Moreover, to simulate more realistic online operational attitudes, an offline characterization system is established to precisely measure and quantitatively analyze the surface topographies of the crystals under different installation attitudes and clamping conditions. In addition, we build up an in situ imaging system in the main laser beam path of the SG-III facility to qualitatively evaluate online service performance of the optics in the FOA. Finally, both offline and online experiments validate the surface control capacity, process stability, and online feasibility of the SAM technique.

2. Method

2.1 Bio-inspired SAM technique

Previous researchers have illustrated that 410-mm-aperture crystals are extremely sensitive to their own weights [21–23]. When horizontally placed on a simple four-corner support, the maximum deflection of the KDP doubler is 28 μm and that of the dKDP tripler is 40 μm [24]. Although the aforementioned full-perimeter compliant clamping scheme could maintain the overall surface aberration to better than 10 μm, a nearly 8-μm gravity-sag still exists on the crystal surface. As a typical surface support scheme, the opto-mechanical joint surface of a full-perimeter mounting configuration must be well polished to minimize its flatness error. This means that the cost of the crystal mounting configuration is very high. Therefore, we have been working on new support solutions to further improve the crystal surface quality and enhance the crystal online service performance efficiently and economically.

First, we accidentally noticed that lotus leaves in different growth periods have different surface features. Specifically, a lotus leaf in the vigorous growth period presents a bowl-like surface, as shown in Fig. 1(a), which is similar to the crystal surface at horizontal attitude. The reason that the leaf surface assumes such a shape is that the strong veins extend like ribs to the leaf edge so that the entire leaf extends upward. However, for a lotus leaf in the decay period, the veins gradually shrink from the edge to the center. At this time, the vein-based support effect will change. As shown in Fig. 1(b), the dashed line connected by the end of each vein is called the virtual axis. Obviously, the leaf surface outside the virtual axis will fall down under the effect of self-weight due to the loss of vein-based support, while the leaf surface within the virtual axis, if there is no connection with the petiole, should be lifted up. Moreover, this trend will increase with the virtual axial contraction. Compared to a lotus leaf in the vigorous growth period, the overall surface gradient of that in the decay period is significantly smaller.

 figure: Fig. 1

Fig. 1 Principle and design method of the bio-inspired surface aberration mitigation (SAM) technique: (a) lotus leaf character in vigorous growth period; (b) lotus leaf character in decay period; (c) schematic showing initial point support and clamping layout; and (d), (e), and (f) show different support forms that may occur during optimization of support point position.

Download Full Size | PPT Slide | PDF

This phenomenon inspires us to construct a virtual axis to reduce gravity-induced crystal surface aberration. Since the crystal is a laser transmission component, the vein end-like support points can only be placed within the clamping regions (10-mm width from the edge). Therefore, the initial point support layout is presented in Fig. 1(c). There are two support points on each of the clamping edges of the crystal. Obviously, the dotted line between two adjacent points constitutes the so-called virtual axis. After the crystal is placed on the support points, the virtual axes act as the levers. Specifically, like a lotus leaf in the decay period, the area outside the virtual axis is supposed to naturally hang, and the inner region in which the gravity-sag is severe will withstand the reverse moment Mi = 1,2,3,4 at this time. Therefore, this kind of support layout actually is supposed to have gravity-sag self-inhibition capacity. To determine the optimal layout of each support point, the genetic algorithm (GA) is applied. The minimum peak-to-valley value of crystal surface is set as the objective, and the displacements Xi = 1,2,…,8∈[10, 205] between each support point and its adjacent edge [see Fig. 1(c)] are set as independent variables. When the eight displacement variables change independently, the initial eight-point support can actually evolve into a variety of support schemes with less than eight points. For example, when two points on the same side coincide, a four-point support is formed [Fig. 1(d)]; when two points on the three sides coincide and the two points on the fourth side are separated, a five-point support is formed [Fig. 1(e)]. Similarly, as long as the number of combinations of eight displacement variables is sufficient, six- [Fig. 1(f)] and seven-point support can be formed as well. This process is performed in ANSYS Workbench 19.0, where the number of initial samples is 100, the maximum allowable Pareto percentage is 70%, and the convergence stability percentage is 2%. Afterward, five candidate optimized solution sets [X1, X2, …, X8] will be worked out through multiple iterations. These results will offer crucial reference for final determination of crystal support layout. Moreover, four types of clamping schemes are also compared quantitatively, and the optimal positions of the clamping points are determined. Subsequently, according to specific operational conditions and crystal surface topographies, the load at each clamping point is optimized to further mitigate the crystal surface aberration as much as possible.

2.2 Offline characterization system

The offline characterization is performed on a φ600-mm near-infrared phase-shifting interferometer (λ = 1055 nm, σPV = 0.003λ, σRMS = 0.0005λ) as shown in Fig. 2(a). Actually, most of the large-aperture optical components are mounted and calibrated with this equipment before being transferred to the online beam path. As shown in Fig. 2(b), the optomechanical unit is usually placed vertically in front of the interferometer after pre-tightening. Subsequently, mounting forces will be adjusted carefully according to interferometric surface topographies until surface specifications satisfy the rigid tolerances. Therefore, we apply the same method to measure the surface topography of the KDP doubler at 90°, which serves as a control group. At this time, the gravity-induced surface aberration is so small that it can be ignored reasonably. However, to ensure that dozens of high-peak-power lasers can be uniformly irradiated on the target capsule (see Fig. 3), FOAs are actually installed at various spatial attitudes, which results in severe gravitational effects on frequency converters. Previous research works seldom report spatial measuring scheme for large-aperture crystals [20–22]. Accordingly, the original interferometric optical path is modified in our work. Figure 2(c) presents the updated experimental setup in which the KDP doubler can be placed on the oblique truss, thus simulating a typical online operation state (installation attitude γ = 45°). In addition, the adjustable plane is used to change the attitude angle of the testing component, including pitch and yaw, to obtain high-quality interference fringes. To measure the surface topography of the obliquely installed crystal, another reference mirror is added and placed horizontally on the vibration-isolation platform. As shown in Fig. 3, both the original measurement setup and the updated measurement scheme follow the Fizeau measurement principle. As for the new one, the wavefront of the measuring laser beam can carry the surface information back to the interferometer after three reflections, twice on the crystal surface and once on the reference mirror. Obviously, the measured surface matrix (zm) actually contains redundant information; that is, the surface aberration of the reference mirror (δz), which can be regarded as a systematic error. Thus, the reference mirror is first calibrated on a vertical interferometer (λ = 632.8 nm) by a sub-aperture stitching technique, and the surface peak-to-valley (PV) value of the testing crystal is

PV={Max[zm]Min[zm]}{Max[δz]Min[δz]}2sinγ.
Furthermore, the root-mean-square (RMS) modulus of the angular displacement at each node also changes to
ΔθI=1(M-1)(N-1)k=1M1l=1N1([z(xk+1,yl)-z(xk1,yl)δx]2+[z(xk,yl1)-z(xk,yl+1)sinγδy]2)2.
In addition, a flexible force monitor system is employed to measure the mounting force exerted on the optics, which is one of the crucial operational conditions [23]. This allows us to quantitatively characterize the relationship between the mounting force and crystal surface aberration. As the KDP doubler is deliquescent and sensitive to temperature, the entire system operates in an ISO 100 clean room with constant temperature (23° ± 1°) and low humidity (<50%).

 figure: Fig. 2

Fig. 2 Schematic showing offline characterization system: (a) φ600-mm near-infrared phase-shifting interferometer; (b) vertical fixture for 90° measurement of optics surface; and (c) tilt fixture for 45° measurement of optics surface.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3

Fig. 3 Schematic showing principles of two experimental setups used for characterization of surface topography of large-aperture crystal at different spatial installation attitudes.

Download Full Size | PPT Slide | PDF

2.3 In situ imaging system

A schematic of the main laser optical system in an inertial confinement fusion facility is shown in Fig. 4, in which the in situ imaging system is marked by a dotted box. Generally, the fundamental wave at 1053 nm generated from the pre-amplifier (PAM) is injected into the main laser beam path near the focus of the transport spatial filter (TSF). The beam is collimated as it exits the TSF and heads toward the main amplifier (AMP). After four amplifications, the laser beam passes through the TSF and heads toward the FOA. In the FOA, the 1ω fundamental wave is converted to 3ω third harmonics as mentioned above and is then converged onto the target by a large-aperture wedge mirror. Owing to the compact installation space in the target area and the large aperture of the crystal plate, conventional surface measurement methods are difficult to employ directly in crystal performance online characterization. Therefore, an online in situ imaging system is established in the main laser beam path of the SG-III facility. According to the beam propagation theory for a Gaussian beam with perturbation, wavefront aberration has direct impacts on its far-field energy distribution [25]. Specifically, in a focusing optical system, the low-frequency wavefront aberration determines the central core of the focal spot. The high-frequency wavefront aberration forms the fringe of the focal spot [26,27]. Generally, wavefront aberration is generated when the plane wave passes through nonideal optics with surface distortion. Thus, the focal spot formed by the reflection of the crystal incident surface near the small hole of the TSF is collected by a charge-coupled-device (CCD) camera and utilized as a characterization of the crystal performance. According to the morphology of the focal spot, surface aberration of the online crystal can be evaluated. Furthermore, we can compare the effects of different surface control methods on the crystal physical performance by replacing the frequency conversion unit in the FOA.

 figure: Fig. 4

Fig. 4 Schematic showing in situ imaging system established in long-distance high-peak-power laser beam path.

Download Full Size | PPT Slide | PDF

2.4 Numerical modeling

To predict and compare the performances of the frequency converter under varying operational conditions, we apply the optomechanical numerical modeling method, which correlates the geometric, material, and mechanical factors with the nonlinear-optical properties of the frequency converter quantitatively. At first, the three-dimensional (3D) model of the frequency converter module including the anisotropic crystal plate and other mechanical components is established in Solidworks. As the low-stiffness crystal plate is very sensitive to the external effects, the flatness error of the mechanical support surface or support points is considered in order to accurately simulate the behavior of the crystal plate under actual operational conditions and evaluate the error resistivity of different supporting schemes. Moreover, except for the crystal and support points, all other mechanical components are made of aluminum (Al 6061). The material properties used for this modeling, including Young’s modulus, Poisson’s ratio, and density, are obtained from the literature [20–23]. Furthermore, the deflection of the mid-plane of the crystal plate, ω, is defined as the fundamental variable. According to the thin-plate theory and the generalized Hooke’s law, the differential equation of the edge-clamped crystal plate can be expressed as

F(ω,x,y)=h312[D114ωx4+(2D16+D61)4ωx3y+(2D66+D12+D21)2ωx2y2+(2D26+D62)4ωxy4+(D22+D62)4ωy4]
where Dij denotes the component in the crystal stiffness matrix, D11=D22=75.083, D12=-7.156, D13=D23=16.094, D33=60.697, D44=D55=13.401, and D66=6.474(in units of GPa). In this case, the force boundary condition is described as F(ω,x,y)=G(x,y)+Fi/Si (x,ySi), where G(x,y) is the gravity that the crystal plate is subjected to, Fi represents the clamping force, and Si denotes the clamping area. As the crystal is constrained by the support points and polytetrafluoroethylene (PTFE) staples in the Z-direction and X/Y-directions, respectively, the displacement boundary conditions are expressed as ω(x,y)x,yLi=0, (Mx)x,yL1,L3=0, and(My)x,yL2,L4=0. In general, the differential equation is difficult to solve analytically. Therefore, the finite-element method is employed to numerically work it out. Specific procedures are referred to the literature [28] and operated in ANSYS 19.0. In the aftermath of the finite-element calculation, we obtain the displacement component in the Z-direction of each node, z(x,y), with which some general optical surface specifications like PV, RMS, and GRMS can be determined. Subsequently, the local detuning angle of the crystal, which can be used to evaluate the crystal phase mismatch condition, is calculated by the angular displacements in the X- and Y-directions, respectively [29],
{Δθx(k,l)=z(xk+1,yl)-z(xk1,yl)δxΔθy(k,l)=z(xk,yl1)-z(xk,yl+1)δy,
where Δθx denotes the detuning angle along the ordinary optical axis, and Δθy denotes the detuning angle along the extraordinary optical axis. Moreover, the angle-detuning magnitude |θ(x,y)| at one node is expressed as Δθx(k,l)2+Δθy(k,l)2. In addition, the local phase mismatch factor Δk is calculated from
Δk=ωcsin(2θm)(noω)3[(ne2ω)2(no2ω)2]|θ(x,y)|,
where θm is the phase-matching angle. For a Type-I doubler, the ideal phase-matching angle is 41.19°. In addition, noω=1.49 is the ordinary refractive index of the fundamental wave, no2ω=1.51 is the ordinary refractive index of the second harmonic, and ne2ω=1.47 is the extraordinary refractive index of the second harmonic [21]. Furthermore, the RMS values of |θ(x,y)| and Δk are utilized to specify the overall angle-detuning magnitude and phase mismatch condition of the full aperture crystal, respectively. To clarify the influence of the KDP doubler’s surface aberration on the 3ω conversion efficiency, it is reasonable to assume that the input field is a flat-in-time plane wave, the drive irradiance is 4 GW/cm2, and the angle-detuning of the Type-II tripler is zero [29]. Furthermore, the phase mismatch factor Δk is substituted into the coupled wave equations, which could be numerically solved using the Runge-Kutta method [20]. Afterward, the change trend of the 3ω conversion (THG) efficiencies corresponding to varying doubler detuning angles can be obtained.

3. Results and discussion

3.1 Optimized support layout

In the aftermath of the GA optimization, five groups of candidate optimum solutions are obtained (Table 1). The point-support layouts corresponding to the first three sets of solutions are shown in Figs. 5(a) –5(c). It can be seen that even if there are slight differences between these solutions, they are all very close to the four-point support layout, and the surface aberration values corresponding to five solution sets are all approximately 3.5 μm. From our perspective, the reason the final results do not converge to the four-point support layout may be that the algorithm falls into the local optimal solution. However, we also demonstrate the evolution of the eight-point support directly into the four-point support. As shown in Fig. 5(d), eight support points are moved from their initial positions to the opposite sides simultaneously. When Xi = 1,2,…,8 = 10 mm, like a type of corner support layout, the initial surface figure of the large-aperture crystal is similar to a lotus leaf as shown in Fig. 1(a), and the gravity-induced surface aberration at this time is approximately 25 μm. Later, as two support points moving along the same edge approach each other, the crystal surface aberration can be greatly reduced. When the offset of support point reaches 190 mm, the crystal surface aberration achieves the minimum value of 3.24 μm. Continued increase in Xi = 1,2,…,8 has little impact on the crystal surface. Comparing Figs. 5(e) –5(g), it can be seen that as the area outside the virtual axis increases, the gravity-induced sag inside the virtual axis will be continuously compensated so that the crystal global surface becomes flatter as well. Accordingly, in this paper, the four-point support layout is utilized to resist severe gravity-induced surface sag.

Tables Icon

Table 1. Five groups of candidate optimized solutions of specific offsets of eight support points.

 figure: Fig. 5

Fig. 5 (a)–(c) Schematics showing three types of support layouts corresponding to first three groups of candidate optimization solutions presented in Table 1; (d) change trend of crystal surface aberration (PV) during the evolution of eight-point support uniformly to four-point support; (e)–(g) crystal surface diagrams corresponding to 10-, 100-, and 190-mm offsets of support points, respectively.

Download Full Size | PPT Slide | PDF

Moreover, we also investigate the influences of the four-point support layout on crystal physical performance. At first, the distribution of the local angle-detuning magnitude |θ(x,y)| is applied to analyze the phase-matching capacity of the frequency converter. Figure 6 presents the histograms of |θ(x,y)| on the crystal incident surface, which correspond to four support layouts mentioned in Fig. 5(d). It is obvious that, as the offset of support point Xi = 1,2,…,8 increases, the distribution of the angle-detuning magnitude moves to the left-hand side: meanwhile, the number of the surface nodes with small detuning angle dramatically grows. Specifically, when Xi = 1,2,…,8 is equal to 10 mm, 86.68% angle-detuning magnitudes of all surface nodes are distributed between 0.03 and 0.13 mrad. However, when it approaches 190 mm, 89.37% angle-detuning magnitudes are distributed between 0.006 and 0.023 mrad. Moreover, the increase in the concentration of |θ(x,y)| distribution also reflects a better uniformity of the crystal detuning angle, which is consistent with the above-mentioned trend of crystal surface aberration during the evolution of the eight-point support uniformly to the four-point support. Thereby, it is indicated that the global phase-matching condition can be effectively improved by changing the support layout. Finally, THG efficiencies corresponding to different support layouts are presented in Fig. 7, which also illustrates that the arrangement of the support points near the midpoint of crystal edges is more conducive to improving the frequency conversion efficiency of the crystals.

 figure: Fig. 6

Fig. 6 Distributions of local angle-detuning magnitude |θ(x,y)| of crystals under different support layouts.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7

Fig. 7 Change trend of THG efficiency with the increase of offset of support point Xi = 1,2,…,8.

Download Full Size | PPT Slide | PDF

3.2 Clamping modes

Except for the support form, the clamping force also has significant impacts on crystal performance [19,20]. Based on the optimized four-point support layout mentioned above, the properties of three clamping modes (mid-point, tripartite-point, and four-corner clamping) are compared in this section. First, we assume that the crystal is horizontally placed on four support points, and the clamping forces applied at each clamping point are equal in magnitude. Next, the responses of crystal plates to varying external loads are reflected by the curve of surface aberration versus clamping force. As shown in Fig. 8(a), the crystal surface is not sensitive to changes in clamping force under the mid-point clamping mode. Although this clamping method will not generate additional surface aberration, it also cannot further improve crystal performance. Figures 8(b) and 8(c) illustrate that crystal surface aberration can be obviously mitigated by the tripartite-point mode and four-corner clamping mode. Actually, the principle is to enhance the aforementioned self-inhibition effect of the gravity-sag by external loads. When subjected to the tripartite-point clamping mode, the crystal surface aberration can be limited to 4.318 μm at most. Since it can generate larger moments when loading, the four-corner clamping mode has better surface mitigation performance [Fig. 8(c)] than the other two clamping modes. Moreover, this type of clamping could realize more flexible surface control of such large-aperture low-stiffness transmission optics. To avoid large stress concentrations on the fragile crystal surface, the clamping force is supposed to be limited within 4 N in actual practice. Based on the optimized four-point support scheme and four-corner clamping mode, a new clamping configuration with the SAM technique of a 410-mm aperture frequency converter is put forward and presented in Fig. 8(d).

 figure: Fig. 8

Fig. 8 (a)–(c) Responses of crystal surface aberration to incremental clamping force under mid-point, tripartite-point, and four-corner clamping modes, respectively; (d) schematic showing structure and layout of new clamping configuration with the SAM technique.

Download Full Size | PPT Slide | PDF

Furthermore, as the FOAs are installed at various spatial attitudes for uniform grouping, different values of the clamping force are demanded to compensate the gravity-induced surface sags. Figure 9 demonstrates the change trends of crystal surface aberration with increasing clamping force at four typical installation attitudes. It can be seen that the larger the installation attitudes, the smaller the clamping force required to achieve the optimal surface flatness. In addition, as the installation attitude increases, the optimal surface aberration is significantly reduced. Furthermore, we determine the optimal clamping force at each installation attitude (marked in Fig. 9), which is also called the nominal clamping force. Once beyond the optimal value, the clamping force will have the opposite effects. Therefore, during the surface control process, it is supposed to first exert the nominal clamping force according to the online installation attitudes of the converter, then slightly adjust the clamping force to mitigate the surface aberration generated by some imperfect factors, such as the flatness error between four support points.

 figure: Fig. 9

Fig. 9 Responses of crystal surface aberration to incremental clamping force at different installation attitudes.

Download Full Size | PPT Slide | PDF

3.3 Physical performance

As mentioned above, the proposed configuration with the SAM technique can be used not only to hold the frequency converter but also to further modify its surface topography. Considering that the nonlinear-optical properties of the crystal are very susceptible to external factors [25–27], further investigations of the influences of the SAM technique on crystal service performance are conducted under more realistic conditions. Assuming that one KDP crystal is mounted at horizontal attitude with a support flatness error of 30 μm by the proposed clamping configuration, we first analyze the responses of local detuning angle as the clamping force changes. Figure 10 presents the distribution of angle-detuning magnitude of the crystal and corresponding colored diagrams of its surface topographies. It can be seen that changes in clamping force do not have much impact on crystal angle detuning, both in terms of magnitude or distribution. This means that the SAM technique possesses favorable accuracy stability. Furthermore, Fig. 11 presents the change trends of the THG efficiency, which indicates that the SAM technique not only has high initial physical performance (74.25%) but also makes it possible to continue to improve the frequency conversion efficiency. Specifically, uniformly exerting 1.2 N of force at four-corner clamping points can achieve 75.01% efficiency. Since both the surface topography and detuning angle distribution of the crystal after placement on the support with flatness error are generally non-uniform, we attempt to further improve crystalperformance by manipulating the clamping forces. Figures 12(a) –12(d) show the surface topographies corresponding to different clamping schemes, in which exact magnitudes of the clamping force are marked on the symbols of the clamping points. It is obvious that the surface uniformity can be further improved as the upper-side clamping forces increase. Moreover, the change trends of THG efficiency and surface aberration presented in Fig. 12(e) both illustrate that the flexible clamping scheme can realize more favorable crystal performance. Quantitatively, THG efficiency can be further increased beyond 80%. In actual practice, the initial scheme of the clamping force should be determined following the method mentioned in Section 3.2. Later, the optimal clamping scheme is supposed to be determined based on the original surface topography of crystal and the flatness error of the support, which are two factors that contribute the most to crystal surface aberration in addition to gravity.

 figure: Fig. 10

Fig. 10 Distributions of angle-detuning magnitude of crystal under SAM technique and corresponding colored diagrams of surface topographies.

Download Full Size | PPT Slide | PDF

 figure: Fig. 11

Fig. 11 Change trend of THG efficiency with incremental clamping force.

Download Full Size | PPT Slide | PDF

 figure: Fig. 12

Fig. 12 (a)–(d) Colored diagrams showing surface topographies corresponding to different clamping schemes; (e) THG efficiency and surface aberration (PV) change trends under different clamping modes.

Download Full Size | PPT Slide | PDF

3.4 Experimental verification

Based on the offline characterization system and in situ imaging system introduced in Section 2, the offline and online experiments are conducted to validate the performance of the SAM technique in actual operational conditions. Initially, six active frequency converters in different online installation positions are selected as the research objects, the free-state surface topographies of which are measured by the large-aperture phase-shifting interferometer with the vertical fixture [Fig. 2(b)]. Without gravity- and clamping-induced surface aberrations, the interferometric results presented in Fig. 13(a) could reflect crystal original surface aberrations generated from the machining process. As shown in Table 2, even though the surface topographies of the six crystals are very different, the magnitudes of the surface aberration PV are all approximately 2500 nm. Afterward, the selected crystals are clamped by the surface-support full-perimeter (SSFP) clamping technique and measured in sequence by the experimental setup shown in Fig. 2(c). As shown in Fig. 13(b), the reference mirror employed in the updated interferometric optical path is first calibrated by the sub-aperture stitching technique, and its surface aberration is 448 nm. When the clamped frequency converters are installed on the oblique truss shown in Fig. 2(c), we find that the surface aberrations are too large to exceed the upper limit of the interferometer [Fig. 13(c)], namely, 30 μm. Furthermore, the proposed SAM technique is applied under the same operational conditions. Figure 13(d) presents the surface topographies of six crystals. It can be first seen that gravity-induced surface sags have completely obscured the original surface topographies. This confirms that gravity contributes the most to the surface aberration of the large-aperture crystals. Most importantly, the magnitudes of the surface aberration are small enough and have a high consistency, which can be seen from Table 2 as well. In contrast to the performance of the SSFP clamping technique, the performance advantages, including the surface aberration mitigation effect and the process stability, of the SAM technique are significant.

 figure: Fig. 13

Fig. 13 Offline experimental verification results: (a) original crystal surface topographies of six selected frequency converters; (b) surface topography of reference mirror used in the offline characterization system; (c) incomplete surface measurement result corresponding to the SSFP clamping technique; (d) interferometric results of crystal surface topographies of crystal clamped by the SAM technique.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Comparison of surface aberration (PV) under different conditions.

Moreover, online experimental verification is conducted in the in situ imaging system introduced in Section 2.3 and Fig. 4. First, one KDP frequency converter (No. A2N2) clamped by the FFSP technique is inserted into the FOA. When the ICF facility is operated, a laser beam with clear apertures of 400 mm × 400 mm will be converged onto the D-T target through the FOA in 3 ns. Simultaneously, the CCD camera captures the focal spot image at the TSF. It can be clearly seen from Fig. 14(a) that the aberration is extremely large at this time, the energy concentration is low, and the spot diameter is nearly 10 mm. Afterward, the clamping configuration is changed to that with the SAM technique. Meanwhile, other optical components and operational conditions remain unchanged. Surprisingly, the focal spot quality is dramatically modified. As shown in Fig. 14(b), the focal spot becomes focused, and its diameter shrinks to 4 mm. As mentioned in Section 2.3, the focal spot morphology actually reflects the online surface condition of the frequency converter. Therefore, we can conclude that the proposed SAM technique can significantly improve both the offline and online performance of the large-aperture crystal, which also means that higher-frequency conversion efficiency can be achieved.

 figure: Fig. 14

Fig. 14 Online experimental verification of performance of the proposed SAM technique: focal spot morphology corresponding to the frequency converter clamped by (a) FFSP technique and (b) SAM technique.

Download Full Size | PPT Slide | PDF

4. Conclusions

Aimed at further improving 3ω ultraviolet energy density of high-peak-power Nd:glass laser drives and achieving high-gain fusion ignition in the next-generation ICF facility, new surface control and characterization methods for large-aperture frequency conversion crystals are investigated. Inspired by the morphologies of lotus leaves in different growth periods, the surface aberration mitigation (SAM) technique is first put forward. Therein, the bio-inspired point-support layout is proved to possess self-inhibition of gravity-induced surface aberration. In addition, corner clamping effects are studied. Results indicate that a flexible clamping scheme could generate more uniform surface topography and realize higher THG efficiency. Regarding the research object in this paper, global THG efficiency can be improved up to 81%. Furthermore, offline experimental results indicate that the comprehensive surface aberration of frequency converters can be controlled to approximately 6 μm over clear apertures of 400 mm × 400 mm by the SAM technique. Moreover, this new method is validated to have favorable process stability, which is very important in such huge optical systems with extremely high accuracy requirements. Furthermore, results of online experiments illustrate that the frequency converter still has robust physical performance when subject to actual operational conditions. In conclusion, the proposed SAM technique offers a new and effective approach for surface control of large-aperture transmission optics.

Funding

National Natural Science Foundation of China (51575310, 51975322); National Key Research and Development Plan of China (2016YFF0101907)

References

1. R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015). [CrossRef]  

2. J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019). [CrossRef]  

3. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007). [CrossRef]   [PubMed]  

4. C. Cavailler, N. A. Fleurot, and J. M. Di Nicola, “LIL and LMJ laser facility status,” Proc. SPIE 5580, 443–454 (2005). [CrossRef]  

5. M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016). [CrossRef]  

6. Z. Zheng, Y. Lang, D. Weifeng, L. Tianye, T. Menjiya, L. Yongjie, W. Hui, and X. Xu, “Mechanical sensitivity analysis and optimization of a large-aperture KDP frequency converter for higher SHG efficiency,” Appl. Opt. 58(9), 2205–2215 (2019). [CrossRef]   [PubMed]  

7. R. Hu, S. Liu, and Q. Li, “Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope,” Appl. Opt. 56(15), 4551–4560 (2017). [CrossRef]   [PubMed]  

8. A. Li, W. Wang, Y. Bian, and L. Liu, “Dynamic characteristics analysis of a large-aperture rotating prism with adjustable radial support,” Appl. Opt. 53(10), 2220–2228 (2014). [CrossRef]   [PubMed]  

9. R. K. Banyal, B. Ravindra, and S. Chatterjee, “Opto-thermal analysis of a lightweighted mirror for solar telescope,” Opt. Express 21(6), 7065–7081 (2013). [CrossRef]   [PubMed]  

10. A. Haber, A. Polo, I. Maj, S. F. Pereira, H. P. Urbach, and M. Verhaegen, “Predictive control of thermally induced wavefront aberrations,” Opt. Express 21(18), 21530–21541 (2013). [CrossRef]   [PubMed]  

11. C. Reinlein, C. Damm, N. Lange, A. Kamm, M. Mohaupt, A. Brady, M. Goy, N. Leonhard, R. Eberhardt, U. Zeitner, and A. Tünnermann, “Temporally-stable active precision mount for large optics,” Opt. Express 24(12), 13527–13541 (2016). [CrossRef]   [PubMed]  

12. L. Sun, Y. Zheng, C. Sun, and L. Huang, “Simulational and experimental investigation on the actuator-corresponding high-frequency aberration of the piezoelectric stacked array deformable mirror,” Opt. Express 26(18), 23613–23628 (2018). [CrossRef]   [PubMed]  

13. Z. Li, J. Cao, X. Zhao, and W. Liu, “Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication,” Opt. Commun. 320, 162–168 (2014). [CrossRef]  

14. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004). [CrossRef]  

15. R. L. Hibbard, M. A. Norton, and P. J. Wegner, Design of Precision Mounts for Optimizing the Conversion Efficiency of KDP Crystals for the National Ignition Facility (Lawrence Livermore National Lab., 1998).

16. C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998). [CrossRef]  

17. J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999). [CrossRef]  

18. P. J. Wegner, J. M. Auerbach, T. A. Biesiada Jr., S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004). [CrossRef]  

19. R. Su, H. Liu, Y. Liang, and L. Lu, “Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics,” Appl. Opt. 53(2), 283–290 (2014). [CrossRef]   [PubMed]  

20. Q. Tinghai, Q. Xusong, P. Guoqing, Y. Han, X. Xu, Y. Lang, D. Weifeng, X. Zhao, and L. Changchun, “Surface control apparatus and method of optical transmission with large aperture based on self-adaptive force-moment technology,” Opt. Express 25(13), 15358–15369 (2017). [CrossRef]   [PubMed]  

21. R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014). [CrossRef]  

22. O. Lubin and C. Gouedard, “Modeling of the effects of KDP crystal gravity sag on third-harmonic generation,” Proc. SPIE 3492, 802–808 (1999). [CrossRef]  

23. Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017). [CrossRef]  

24. P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999). [CrossRef]  

25. J. M. Auerbach, D. Eimerl, D. Milam, and P. W. Milonni, “Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling,” Appl. Opt. 36(3), 606–618 (1997). [CrossRef]   [PubMed]  

26. D. Wu, Y. Dai, and L. Wang, “Influence of optical surface error on encircled energy,” Opt. Precis. Eng. 15(9), 1328–1335 (2007).

27. V. N. Mahajan, “Strehl ratio for primary aberrations: some analytical results for circular and annular pupils,” J. Opt. Soc. Am. 72(9), 1258–1266 (1982). [CrossRef]  

28. H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019). [CrossRef]  

29. P. Wegner, L. Hackel, M. Feit, T. Parham, M. Kozlowski, and P. Whitman, Ultraviolet light generation and transport in the final optics assembly of the National Ignition Facility, (Lawrence Livermore National Laboratory, 1999).

References

  • View by:

  1. R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
    [Crossref]
  2. J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
    [Crossref]
  3. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
    [Crossref] [PubMed]
  4. C. Cavailler, N. A. Fleurot, and J. M. Di Nicola, “LIL and LMJ laser facility status,” Proc. SPIE 5580, 443–454 (2005).
    [Crossref]
  5. M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
    [Crossref]
  6. Z. Zheng, Y. Lang, D. Weifeng, L. Tianye, T. Menjiya, L. Yongjie, W. Hui, and X. Xu, “Mechanical sensitivity analysis and optimization of a large-aperture KDP frequency converter for higher SHG efficiency,” Appl. Opt. 58(9), 2205–2215 (2019).
    [Crossref] [PubMed]
  7. R. Hu, S. Liu, and Q. Li, “Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope,” Appl. Opt. 56(15), 4551–4560 (2017).
    [Crossref] [PubMed]
  8. A. Li, W. Wang, Y. Bian, and L. Liu, “Dynamic characteristics analysis of a large-aperture rotating prism with adjustable radial support,” Appl. Opt. 53(10), 2220–2228 (2014).
    [Crossref] [PubMed]
  9. R. K. Banyal, B. Ravindra, and S. Chatterjee, “Opto-thermal analysis of a lightweighted mirror for solar telescope,” Opt. Express 21(6), 7065–7081 (2013).
    [Crossref] [PubMed]
  10. A. Haber, A. Polo, I. Maj, S. F. Pereira, H. P. Urbach, and M. Verhaegen, “Predictive control of thermally induced wavefront aberrations,” Opt. Express 21(18), 21530–21541 (2013).
    [Crossref] [PubMed]
  11. C. Reinlein, C. Damm, N. Lange, A. Kamm, M. Mohaupt, A. Brady, M. Goy, N. Leonhard, R. Eberhardt, U. Zeitner, and A. Tünnermann, “Temporally-stable active precision mount for large optics,” Opt. Express 24(12), 13527–13541 (2016).
    [Crossref] [PubMed]
  12. L. Sun, Y. Zheng, C. Sun, and L. Huang, “Simulational and experimental investigation on the actuator-corresponding high-frequency aberration of the piezoelectric stacked array deformable mirror,” Opt. Express 26(18), 23613–23628 (2018).
    [Crossref] [PubMed]
  13. Z. Li, J. Cao, X. Zhao, and W. Liu, “Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication,” Opt. Commun. 320, 162–168 (2014).
    [Crossref]
  14. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
    [Crossref]
  15. R. L. Hibbard, M. A. Norton, and P. J. Wegner, Design of Precision Mounts for Optimizing the Conversion Efficiency of KDP Crystals for the National Ignition Facility (Lawrence Livermore National Lab., 1998).
  16. C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
    [Crossref]
  17. J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
    [Crossref]
  18. P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
    [Crossref]
  19. R. Su, H. Liu, Y. Liang, and L. Lu, “Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics,” Appl. Opt. 53(2), 283–290 (2014).
    [Crossref] [PubMed]
  20. Q. Tinghai, Q. Xusong, P. Guoqing, Y. Han, X. Xu, Y. Lang, D. Weifeng, X. Zhao, and L. Changchun, “Surface control apparatus and method of optical transmission with large aperture based on self-adaptive force-moment technology,” Opt. Express 25(13), 15358–15369 (2017).
    [Crossref] [PubMed]
  21. R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
    [Crossref]
  22. O. Lubin and C. Gouedard, “Modeling of the effects of KDP crystal gravity sag on third-harmonic generation,” Proc. SPIE 3492, 802–808 (1999).
    [Crossref]
  23. Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
    [Crossref]
  24. P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
    [Crossref]
  25. J. M. Auerbach, D. Eimerl, D. Milam, and P. W. Milonni, “Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling,” Appl. Opt. 36(3), 606–618 (1997).
    [Crossref] [PubMed]
  26. D. Wu, Y. Dai, and L. Wang, “Influence of optical surface error on encircled energy,” Opt. Precis. Eng. 15(9), 1328–1335 (2007).
  27. V. N. Mahajan, “Strehl ratio for primary aberrations: some analytical results for circular and annular pupils,” J. Opt. Soc. Am. 72(9), 1258–1266 (1982).
    [Crossref]
  28. H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019).
    [Crossref]
  29. P. Wegner, L. Hackel, M. Feit, T. Parham, M. Kozlowski, and P. Whitman, Ultraviolet light generation and transport in the final optics assembly of the National Ignition Facility, (Lawrence Livermore National Laboratory, 1999).

2019 (3)

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Z. Zheng, Y. Lang, D. Weifeng, L. Tianye, T. Menjiya, L. Yongjie, W. Hui, and X. Xu, “Mechanical sensitivity analysis and optimization of a large-aperture KDP frequency converter for higher SHG efficiency,” Appl. Opt. 58(9), 2205–2215 (2019).
[Crossref] [PubMed]

H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019).
[Crossref]

2018 (1)

2017 (3)

2016 (2)

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. Reinlein, C. Damm, N. Lange, A. Kamm, M. Mohaupt, A. Brady, M. Goy, N. Leonhard, R. Eberhardt, U. Zeitner, and A. Tünnermann, “Temporally-stable active precision mount for large optics,” Opt. Express 24(12), 13527–13541 (2016).
[Crossref] [PubMed]

2015 (1)

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

2014 (4)

A. Li, W. Wang, Y. Bian, and L. Liu, “Dynamic characteristics analysis of a large-aperture rotating prism with adjustable radial support,” Appl. Opt. 53(10), 2220–2228 (2014).
[Crossref] [PubMed]

R. Su, H. Liu, Y. Liang, and L. Lu, “Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics,” Appl. Opt. 53(2), 283–290 (2014).
[Crossref] [PubMed]

Z. Li, J. Cao, X. Zhao, and W. Liu, “Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication,” Opt. Commun. 320, 162–168 (2014).
[Crossref]

R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
[Crossref]

2013 (2)

2007 (2)

2005 (1)

C. Cavailler, N. A. Fleurot, and J. M. Di Nicola, “LIL and LMJ laser facility status,” Proc. SPIE 5580, 443–454 (2005).
[Crossref]

2004 (2)

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

1999 (3)

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

O. Lubin and C. Gouedard, “Modeling of the effects of KDP crystal gravity sag on third-harmonic generation,” Proc. SPIE 3492, 802–808 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

1998 (1)

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

1997 (1)

1982 (1)

Adams, C. H.

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Adams, J. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Anderson, K. S.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Arnold, P. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Auerbach, J. M.

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

J. M. Auerbach, D. Eimerl, D. Milam, and P. W. Milonni, “Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling,” Appl. Opt. 36(3), 606–618 (1997).
[Crossref] [PubMed]

Baisden, P. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Banyal, R. K.

Barker, C. E.

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Beer, N. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Betti, R.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Bian, Y.

Biesiada, T. A.

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

Bliss, E. S.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Boehly, T. R.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Bonanno, R. E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Bond, T.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Bowers, M.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Bowers, M. W.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Brady, A.

Bumpas, S. E.

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Burkhart, S. C.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

Caird, J. A.

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Campbell, J. H.

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Cao, J.

Z. Li, J. Cao, X. Zhao, and W. Liu, “Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication,” Opt. Commun. 320, 162–168 (2014).
[Crossref]

Cao, Y.

R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
[Crossref]

Cavailler, C.

C. Cavailler, N. A. Fleurot, and J. M. Di Nicola, “LIL and LMJ laser facility status,” Proc. SPIE 5580, 443–454 (2005).
[Crossref]

Chang, L.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Changchun, L.

Chatterjee, S.

Cohen, S. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Collins, T. J. B.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Couture, S. A.

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

Craxton, R. S.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Dai, Y.

D. Wu, Y. Dai, and L. Wang, “Influence of optical surface error on encircled energy,” Opt. Precis. Eng. 15(9), 1328–1335 (2007).

Damm, C.

Delettrez, J. A.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

DeYoreo, J. J.

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

Di Nicola, J. M.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. Cavailler, N. A. Fleurot, and J. M. Di Nicola, “LIL and LMJ laser facility status,” Proc. SPIE 5580, 443–454 (2005).
[Crossref]

Dixit, S. N.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

Eberhardt, R.

Eimerl, D.

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

J. M. Auerbach, D. Eimerl, D. Milam, and P. W. Milonni, “Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling,” Appl. Opt. 36(3), 606–618 (1997).
[Crossref] [PubMed]

Erbert, G. V.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Erlandson, A. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Fair, J. E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Feigenbaum, E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Finucane, R. G.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Fleurot, N. A.

C. Cavailler, N. A. Fleurot, and J. M. Di Nicola, “LIL and LMJ laser facility status,” Proc. SPIE 5580, 443–454 (2005).
[Crossref]

Goncharov, V. N.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Gouedard, C.

O. Lubin and C. Gouedard, “Modeling of the effects of KDP crystal gravity sag on third-harmonic generation,” Proc. SPIE 3492, 802–808 (1999).
[Crossref]

Gourdin, W. H.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Goy, M.

Guoqing, P.

Haber, A.

Hackel, L. A.

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

Han, Y.

Harding, D. R.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Hawley, R. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Haynam, C. A.

Heebner, J. E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Heestand, G. M.

Henesian, M. A.

Hermann, M.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Hermann, M. R.

Hibbard, R. L.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Honig, J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

House, R.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

House, R. K.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Hu, R.

Hu, S. X.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Huang, L.

Hui, W.

Jancaitis, K. S.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Kalantar, D. H.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Kamm, A.

Knauer, J. P.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Kruer, W. L.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

LaFortune, K. N.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Lang, Y.

Lange, N.

Larson, D. W.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Lawson, J. K.

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

Le Galloudec, B. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Lee, C. S.

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Leonhard, N.

Lewis, T.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Li, A.

Li, Q.

Li, Z.

Z. Li, J. Cao, X. Zhao, and W. Liu, “Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication,” Opt. Commun. 320, 162–168 (2014).
[Crossref]

Liang, Y.

R. Su, H. Liu, Y. Liang, and L. Lu, “Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics,” Appl. Opt. 53(2), 283–290 (2014).
[Crossref] [PubMed]

R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
[Crossref]

Lindl, J. D.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Liou, L. W.

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

Liu, H.

R. Su, H. Liu, Y. Liang, and L. Lu, “Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics,” Appl. Opt. 53(2), 283–290 (2014).
[Crossref] [PubMed]

R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
[Crossref]

Liu, L.

Liu, S.

Liu, T.

H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019).
[Crossref]

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Liu, W.

Z. Li, J. Cao, X. Zhao, and W. Liu, “Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication,” Opt. Commun. 320, 162–168 (2014).
[Crossref]

Long, K.

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Lu, L.

R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
[Crossref]

R. Su, H. Liu, Y. Liang, and L. Lu, “Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics,” Appl. Opt. 53(2), 283–290 (2014).
[Crossref] [PubMed]

Lubin, O.

O. Lubin and C. Gouedard, “Modeling of the effects of KDP crystal gravity sag on third-harmonic generation,” Proc. SPIE 3492, 802–808 (1999).
[Crossref]

MacGowan, B.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

MacGowan, B. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Mahajan, V. N.

Maj, I.

Manes, K.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Manes, K. R.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Marozas, J. A.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Marshall, C. D.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Maximov, A. V.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

McCandless, K. P.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

McCracken, R. W.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

McCrory, R. L.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

McKenty, P. W.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Mehta, N. C.

Menapace, J.

Menapace, J. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

Menjiya, T.

Mennerat, G.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Meyerhofer, D. D.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Michel, D. T.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Milam, D.

Miller, P. E.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Milonni, P. W.

Mohaupt, M.

Montesanti, R. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Moses, E.

Moses, E. I.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Murray, J. R.

Myatt, J. F.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Negres, R.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Newton, M. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Norton, M. A.

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

Nostrand, M. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Olejniczak, B.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Orth, C.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Orth, C. D.

Parham, T.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Parham, T. G.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

Patterson, R.

Pei, G.

H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019).
[Crossref]

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Pereira, S. F.

Perfect, S. A.

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

Polo, A.

Pryatel, J. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Quan, X.

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Radha, P. B.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Rana, S.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Rardin, D. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Ravindra, B.

Raymond, B.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Regan, S. P.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Reinlein, C.

Rever, M.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Roberts, D. H.

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Roberts, V. S.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Rodriguez, S. B.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Rong, Y.

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Rowe, A. W.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Sacks, R. A.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Salmon, J. T.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Sangster, T. C.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Schmitt, A. J.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Schrauth, S.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Seka, W.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Sethian, J. D.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Shaw, M.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Shaw, M. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Short, R. W.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Skupsky, S.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Solodov, A. A.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Sommer, S.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Soures, J. M.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Spaeth, M.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Spaeth, M. L.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Spec, D. R.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Stoeckl, C.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Stolz, C. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Su, R.

R. Su, H. Liu, Y. Liang, and L. Lu, “Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics,” Appl. Opt. 53(2), 283–290 (2014).
[Crossref] [PubMed]

R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
[Crossref]

Sun, C.

Sun, F.

R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
[Crossref]

Sun, L.

Suratwala, T. I.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Sutton, S. B.

Swift, D. W.

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

Tanaka, K.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Theobald, W.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Tian, M.

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Tianye, L.

Tietbohl, G. L.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Tinghai, Q.

Trenholme, J. B.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Tünnermann, A.

Urbach, H. P.

Van Wonterghem, B. M.

Verhaegen, M.

Wang, H.

H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019).
[Crossref]

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Wang, L.

D. Wu, Y. Dai, and L. Wang, “Influence of optical surface error on encircled energy,” Opt. Precis. Eng. 15(9), 1328–1335 (2007).

Wang, W.

Wegner, P.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Wegner, P. J.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Weifeng, D.

White, R. K.

Whitman, P.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Whitman, P. K.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

Widmayer, C.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Widmayer, C. C.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Williams, W.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Williams, W. H.

Wonterghem, B. M. V.

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

Wonterghem, B. V.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Wu, D.

D. Wu, Y. Dai, and L. Wang, “Influence of optical surface error on encircled energy,” Opt. Precis. Eng. 15(9), 1328–1335 (2007).

Xiong, Z.

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Xu, X.

Xusong, Q.

Yang, S.

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Yang, S. T.

Ye, L.

H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019).
[Crossref]

Yongjie, L.

Zacharias, R.

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

Zacharias, R. A.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Zeitner, U.

Zhang, Z.

H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019).
[Crossref]

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Zhao, X.

Zheng, Y.

Zheng, Z.

Zuegel, J. D.

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Appl. Opt. (6)

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46(16), 3276–3303 (2007).
[Crossref] [PubMed]

Z. Zheng, Y. Lang, D. Weifeng, L. Tianye, T. Menjiya, L. Yongjie, W. Hui, and X. Xu, “Mechanical sensitivity analysis and optimization of a large-aperture KDP frequency converter for higher SHG efficiency,” Appl. Opt. 58(9), 2205–2215 (2019).
[Crossref] [PubMed]

R. Hu, S. Liu, and Q. Li, “Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope,” Appl. Opt. 56(15), 4551–4560 (2017).
[Crossref] [PubMed]

A. Li, W. Wang, Y. Bian, and L. Liu, “Dynamic characteristics analysis of a large-aperture rotating prism with adjustable radial support,” Appl. Opt. 53(10), 2220–2228 (2014).
[Crossref] [PubMed]

R. Su, H. Liu, Y. Liang, and L. Lu, “Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics,” Appl. Opt. 53(2), 283–290 (2014).
[Crossref] [PubMed]

J. M. Auerbach, D. Eimerl, D. Milam, and P. W. Milonni, “Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling,” Appl. Opt. 36(3), 606–618 (1997).
[Crossref] [PubMed]

Fus. Sci. Technol. (1)

M. L. Spaeth, K. R. Manes, D. H. Kalantar, P. E. Miller, J. E. Heebner, E. S. Bliss, D. R. Spec, T. G. Parham, P. K. Whitman, P. J. Wegner, P. A. Baisden, J. A. Menapace, M. W. Bowers, S. J. Cohen, T. I. Suratwala, J. M. Di Nicola, M. A. Newton, J. J. Adams, J. B. Trenholme, R. G. Finucane, R. E. Bonanno, D. C. Rardin, P. A. Arnold, S. N. Dixit, G. V. Erbert, A. C. Erlandson, J. E. Fair, E. Feigenbaum, W. H. Gourdin, R. A. Hawley, J. Honig, R. K. House, K. S. Jancaitis, K. N. LaFortune, D. W. Larson, B. J. Le Galloudec, J. D. Lindl, B. J. MacGowan, C. D. Marshall, K. P. McCandless, R. W. McCracken, R. C. Montesanti, E. I. Moses, M. C. Nostrand, J. A. Pryatel, V. S. Roberts, S. B. Rodriguez, A. W. Rowe, R. A. Sacks, J. T. Salmon, M. J. Shaw, S. Sommer, C. J. Stolz, G. L. Tietbohl, C. C. Widmayer, and R. Zacharias, “Description of the NIF laser,” Fus. Sci. Technol. 69(1), 25–145 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Nucl. Fusion (1)

J. M. Di Nicola, T. Bond, M. Bowers, L. Chang, M. Hermann, R. House, T. Lewis, K. Manes, G. Mennerat, B. MacGowan, R. Negres, B. Olejniczak, C. Orth, T. Parham, S. Rana, B. Raymond, M. Rever, S. Schrauth, M. Shaw, M. Spaeth, B. V. Wonterghem, W. Williams, C. Widmayer, S. Yang, P. Whitman, and P. Wegner, “The national ignition facility: laser performance status and performance quad results at elevated energy,” Nucl. Fusion 59(3), 032004 (2019).
[Crossref]

Opt. Commun. (1)

Z. Li, J. Cao, X. Zhao, and W. Liu, “Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication,” Opt. Commun. 320, 162–168 (2014).
[Crossref]

Opt. Eng. (2)

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, and C. J. Stolz, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43(12), 2873–2884 (2004).
[Crossref]

Z. Zhang, M. Tian, X. Quan, G. Pei, H. Wang, T. Liu, K. Long, Z. Xiong, and Y. Rong, “Optomechanical design and analysis of a self-adaptive mounting method for optimizing phase matching of large potassium dihydrogen phosphate converter,” Opt. Eng. 56(11), 115107 (2017).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

R. Su, H. Liu, Y. Liang, L. Lu, F. Sun, and Y. Cao, “Mechanical and optical analysis of large-aperture optics mounted on a frame with a curved surface,” Opt. Laser Technol. 56, 189–195 (2014).
[Crossref]

Opt. Precis. Eng. (1)

D. Wu, Y. Dai, and L. Wang, “Influence of optical surface error on encircled energy,” Opt. Precis. Eng. 15(9), 1328–1335 (2007).

Phys. Plasmas (1)

R. S. Craxton, K. S. Anderson, T. R. Boehly, V. N. Goncharov, D. R. Harding, J. P. Knauer, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, J. F. Myatt, A. J. Schmitt, J. D. Sethian, R. W. Short, S. Skupsky, W. Theobald, W. L. Kruer, K. Tanaka, R. Betti, T. J. B. Collins, J. A. Delettrez, S. X. Hu, J. A. Marozas, A. V. Maximov, D. T. Michel, P. B. Radha, S. P. Regan, T. C. Sangster, W. Seka, A. A. Solodov, J. M. Soures, C. Stoeckl, and J. D. Zuegel, “Direct-drive inertial confinement fusion: A review,” Phys. Plasmas 22(11), 110501 (2015).
[Crossref]

Precis. Eng. (1)

H. Wang, T. Liu, Z. Zhang, G. Pei, L. Ye, and X. Xu, “An investigation on the precision mounting process of large-aperture potassium dihydrogen phosphate converters based on the accurate prediction model,” Precis. Eng. 57, 73–82 (2019).
[Crossref]

Proc. SPIE (6)

P. J. Wegner, J. M. Auerbach, C. E. Barker, S. C. Burkhart, S. A. Couture, J. J. DeYoreo, R. L. Hibbard, L. W. Liou, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Frequency converter development for the National Ignition Facility,” Proc. SPIE 3492, 392–405 (1999).
[Crossref]

C. Cavailler, N. A. Fleurot, and J. M. Di Nicola, “LIL and LMJ laser facility status,” Proc. SPIE 5580, 443–454 (2005).
[Crossref]

O. Lubin and C. Gouedard, “Modeling of the effects of KDP crystal gravity sag on third-harmonic generation,” Proc. SPIE 3492, 802–808 (1999).
[Crossref]

C. E. Barker, J. M. Auerbach, C. H. Adams, S. E. Bumpas, R. L. Hibbard, C. S. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. V. Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197–202 (1998).
[Crossref]

J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. DeYoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial nonuniformities due to gravitational sag,” Proc. SPIE 3492, 472–479 (1999).
[Crossref]

P. J. Wegner, J. M. Auerbach, T. A. Biesiada, S. N. Dixit, J. K. Lawson, J. A. Menapace, T. G. Parham, D. W. Swift, P. K. Whitman, and W. H. Williams, “NIF final optics system: frequency conversion and beam conditioning,” Proc. SPIE 5341, 180–189 (2004).
[Crossref]

Other (2)

R. L. Hibbard, M. A. Norton, and P. J. Wegner, Design of Precision Mounts for Optimizing the Conversion Efficiency of KDP Crystals for the National Ignition Facility (Lawrence Livermore National Lab., 1998).

P. Wegner, L. Hackel, M. Feit, T. Parham, M. Kozlowski, and P. Whitman, Ultraviolet light generation and transport in the final optics assembly of the National Ignition Facility, (Lawrence Livermore National Laboratory, 1999).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Principle and design method of the bio-inspired surface aberration mitigation (SAM) technique: (a) lotus leaf character in vigorous growth period; (b) lotus leaf character in decay period; (c) schematic showing initial point support and clamping layout; and (d), (e), and (f) show different support forms that may occur during optimization of support point position.
Fig. 2
Fig. 2 Schematic showing offline characterization system: (a) φ600-mm near-infrared phase-shifting interferometer; (b) vertical fixture for 90° measurement of optics surface; and (c) tilt fixture for 45° measurement of optics surface.
Fig. 3
Fig. 3 Schematic showing principles of two experimental setups used for characterization of surface topography of large-aperture crystal at different spatial installation attitudes.
Fig. 4
Fig. 4 Schematic showing in situ imaging system established in long-distance high-peak-power laser beam path.
Fig. 5
Fig. 5 (a)–(c) Schematics showing three types of support layouts corresponding to first three groups of candidate optimization solutions presented in Table 1; (d) change trend of crystal surface aberration (PV) during the evolution of eight-point support uniformly to four-point support; (e)–(g) crystal surface diagrams corresponding to 10-, 100-, and 190-mm offsets of support points, respectively.
Fig. 6
Fig. 6 Distributions of local angle-detuning magnitude | θ (x,y) | of crystals under different support layouts.
Fig. 7
Fig. 7 Change trend of THG efficiency with the increase of offset of support point Xi = 1,2,…,8.
Fig. 8
Fig. 8 (a)–(c) Responses of crystal surface aberration to incremental clamping force under mid-point, tripartite-point, and four-corner clamping modes, respectively; (d) schematic showing structure and layout of new clamping configuration with the SAM technique.
Fig. 9
Fig. 9 Responses of crystal surface aberration to incremental clamping force at different installation attitudes.
Fig. 10
Fig. 10 Distributions of angle-detuning magnitude of crystal under SAM technique and corresponding colored diagrams of surface topographies.
Fig. 11
Fig. 11 Change trend of THG efficiency with incremental clamping force.
Fig. 12
Fig. 12 (a)–(d) Colored diagrams showing surface topographies corresponding to different clamping schemes; (e) THG efficiency and surface aberration (PV) change trends under different clamping modes.
Fig. 13
Fig. 13 Offline experimental verification results: (a) original crystal surface topographies of six selected frequency converters; (b) surface topography of reference mirror used in the offline characterization system; (c) incomplete surface measurement result corresponding to the SSFP clamping technique; (d) interferometric results of crystal surface topographies of crystal clamped by the SAM technique.
Fig. 14
Fig. 14 Online experimental verification of performance of the proposed SAM technique: focal spot morphology corresponding to the frequency converter clamped by (a) FFSP technique and (b) SAM technique.

Tables (2)

Tables Icon

Table 1 Five groups of candidate optimized solutions of specific offsets of eight support points.

Tables Icon

Table 2 Comparison of surface aberration (PV) under different conditions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

PV= {Max[ z m ]Min[ z m ]}{Max[ δ z ]Min[ δ z ]} 2sinγ .
Δ θ I = 1 (M-1)(N-1) k=1 M1 l=1 N1 ( [ z( x k+1 , y l )-z( x k1 , y l ) δx ] 2 + [ z( x k , y l1 )-z( x k , y l+1 ) sinγδy ] 2 ) 2 .
F(ω,x,y)= h 3 12 [ D 11 4 ω x 4 +(2 D 16 + D 61 ) 4 ω x 3 y +(2 D 66 + D 12 + D 21 ) 2 ω x 2 y 2 +(2 D 26 + D 62 ) 4 ω x y 4 +( D 22 + D 62 ) 4 ω y 4 ]
{ Δ θ x (k,l)= z( x k+1 , y l )-z( x k1 , y l ) δx Δ θ y (k,l)= z( x k , y l1 )-z( x k , y l+1 ) δy ,
Δk= ω c sin(2 θ m ) ( n o ω ) 3 [ ( n e 2ω ) 2 ( n o 2ω ) 2 ]| θ (x,y) |,

Metrics