Abstract

Encouraged by recent advances in radially-polarized laser technology, simulations have been performed of electron acceleration by a tightly-focused, ultra-short pulse in a parabolic plasma micro-channel. Milli-joule laser pulses, generated at kHz repetition rates, are shown to produce electron bunches of MeV energy, pC charge, low emittance and low divergence. The pivotal role played by the channel length in controlling the process is demonstrated, and the roles of direct and wakefield acceleration are distinguished.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Corrections

Meng Wen, Yousef I. Salamin, and Christoph H. Keitel, "Electron acceleration by a radially-polarized laser pulse in a plasma micro-channel: erratum," Opt. Express 27, 18958-18958 (2019)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-13-18958

1. Introduction

Recent advances in radially-polarized laser technology have led to the production of mJ few-cycle pulses of 90 GW peak power at 3 kHz repetition rate. This has been achieved using a segmented wave-plate in the linear-to-radial polarization conversion [1, 2]. A radially-polarized pulse is well-suited for the task of accelerating electrons to relativistice energies. Its radial electric and azimuthal magnetic field components help to trap the electrons, and its axial electric field component works to accelerate them directly. Relativistic electrons with MeV energy find utility in many applications, such as controlled injection mechanisms of staged laser wakefield accelerators [3, 4], dielectric acceleration structures [5, 6], and relativistic time-resolved electron diffraction experiments, the latter possibly with some limitations [7, 8]. The needed high repetition rates may be achieved in plasma-based accelerators driven by kHz lasers, a field of research that is currently witnessing considerable theoretical and experimental activity.

Employing a pulse with a weak or non-existent axial electric field component, the electrons in an underdense plasma get accelerated by the excited large-amplitude plasma wave, with the underlying mechanism dubbed laser wakefield acceleration (LWFA) [3, 4]. Acceleration to relativistic energy, however, requires an intense, tightly-focused, and ultra-short laser pulse, which can possess a strong axial electric field component. Acceleration by such a pulse can be achieved directly (in vacuum) with the underlying mechanism often referred to as direct laser acceleration (DLA) [9, 10], or in a plasma [11]. In the presence of a plasma background, sharp distinction between the roles of LWFA and DLA cannot be accomplished easily by reviewing the accelerating effects of kHz lasers with mJ energies [12–21], (see also Table 1, and [22] for terawatt lasers).

Focusability of the radially-polarized pulse down to a focal spot size as small as 0.16λ2 [23] is ideal for electron acceleration. The focal intensity of the pulse may be enhanced and maintained beyond a Rayleigh length using a micron-size parabolic plasma channel (PPC). The channel serves as a waveguide for the pulse and as a source for the electrons to be accelerated to relativistic energies, as has been proposed years ago [24–26]. Such a channel can be generated in a micro-structured optical fiber [27–30] and the parabolic density profile may be realized by employing a long and weak laser pulse to discharge the gas in the fiber [25, 26], or by stochastic heating [31–34].

In Sec. 2 recent work related to the subject of this paper is reviewed, and the main results are tabulated together with the ones obtained here. Section 3 is devoted to a description of the fields employed in the simulations. The PPC is also described in the same section. Our results are presented and discussed in Sec. 4. A summary is finally given in Sec. 5.

 figure: Fig. 1

Fig. 1 A schematic diagram showing the radially polarized laser pulse (orange) incident left-to-right (along the z-axis of the given coordinate system) on the parabolic plasma channel (PPC). The accelerated electron bunch is shown on the right (blue) behind the remnant laser pulse (orange).

Download Full Size | PPT Slide | PDF

2. Review of recent work

MeV electron acceleration with radially-polarized laser light has been investigated both experimentally and theoretically (see lines 4-5 and 6-7, respectively, in Table 1). Employing a plasma microchannel, and similar feasible laser parameters in the present work (see Fig. 1 for a schematic) has resulted in the data presented in the last line of Table 1. Our results report an order-of-magnitude higher value for the parameter QeEp/(eEL), viewed as a measure of acceleration efficiency. This is attributable to both the focusing of the pulse in the microchannel and the sharp gradients of the radially polarized fields. Results of our 3D particle-in-cell (PIC) simulations are interpreted on the basis of a combination of the DLA and LWFA mechanisms.

Tables Icon

Table 1. Electron acceleration by mJ laser fields. Results from this work and recent studies, and the parameters used, are given. Here, EL is the laser pulse energy, P0=EL/τp the paraxial beam power, τp the pulse duration, w0 the waist radius at focus, Ep the peak electron energy, Qe the total charge, and η=(Qe/e)(Ep/EL) measures acceleration efficiency.

3. The simulations

In the simulations, fields of the pulse are modeled by those of a beam with a stationary focus at z = 0 and a sech temporal envelope. In SI units [35]

Er=E{ϵρC2+ϵ3[ρC32+ρ3C4ρ5C54]+ϵ5[3ρC483ρ3C58+17ρ5C6163ρ7C78+ρ9C832]},
Ez=E{ϵ2[S2ρ2S3]+ϵ4[S32+ρ2S425ρ4S54+ρ6S64]},
Bθ=Ec{ϵρC2+ϵ3[ρC32+ρ3C42ρ5C54]+ϵ5[3ρC48+3ρ3C58+3ρ5C616ρ7C74+ρ9C832]},
where ρ=r/w0, ϵw0/zr is the diffraction angle, w0 is the waist radius at focus, zr=kw02/2 is the Rayleigh length, k is the wavenumber, and
E=E0exp (r2w2),w=w01+z2zr2,
Cn=(w0w)ncos (ψ+nψG);n=2,3,,
Sn=(w0w)nsin (ψ+nψG),
ψ=ψ0+ωtkzkr22R,R=z+zr2z,ψG=tan1(zzr).

In Eq. (7) the initial phase is denoted by ψ0. For the field components to describe an ultra-short pulse, each will be multiplied by the temporal envelope function [36]

f(t)=sech[2ln (1+2)tτp],
with τp the pulse duration, or full-width-at-half-maximum (FWHM) of the corresponding intensity profile, |f(t)|2. To order ϵ4 the beam power is given by [35]
P=P0[1+34ϵ2+916ϵ4];P0=π(ϵw0E0)28cμ0,
where P0[GW]8.71a02/8 is the paraxial-approximation beam power, and a0=eE0/(mωc) is the laser field strength parameter. Studies have demonstrated that electrons get accelerated axially mainly by the electric field component Ez. For the discussions below, amplitude of this component will be denoted by Ez0=E0ϵ2(1+ϵ2/2), arrived at from Eq. (2) by setting ρ=0=z (focal point) at t = 0 and for ψ0=π/2.

In order to sustain the field intensity beyond one Rayleigh length, a PPC extending in the region z0 will serve as a waveguide, with the ambient electron density in it modeled, as a function of the transverse (radial) coordinate r, by

n(r)=n0+Δn(rrch)2,
where rch is the channel radius, n0 is the (on-axis) minimum density, and Δn=n(rch)n0. The PPC is employed to play at least two roles: (a) serve as a waveguide for the laser pulse, with its micro-radius helping to sustain the laser intensity during propagation, and (b) facilitate generation of the plasma wakefield.

3D PIC simulations are conducted, employing the code EPOCH [37], to investigate the propagation of the pulse, and to study the resulting electron density variations and electron energy evolution. The laser pulse, with a wavelength λ=0.8μm, is focused at z = 0 of the PPC. Only the region around the direction of propagation of the laser pulse (see Fig. 1) is of interest. Thus, the simulation box follows the pulse as a 10λ×6λ×6λ-volume window, represented by a 500×300×300 grid, and moving at the speed of light c. Two quasi-particles per cell, for electrons, are used.

 figure: Fig. 2

Fig. 2 Snapshots at (a) t=7τ and (b) t=20τ, showing the normalized electron density, ne/nc, and the normalized electric field intensity distribution, E2/E02, in the xz-plane, after a radially-polarized laser pulse has been injected axially, from the left, into a PPC. The corresponding amplitude is E02.35E˜, with E˜=mωc/e4.01×1012 V/m. Axial electric field variations with the propagation distance are shown in the PPC (solid-green)and in vacuum (dashed-green). See text for the remaining parameters used.

Download Full Size | PPT Slide | PDF

4. Results

To demonstrate the role of the PPC as a waveguide, propagation of a weak pulse (P0=6 GW and P6.49 GW) is simulated first, with results displayed in Fig. 2. In this figure, τ=λ/c is the laser period and nc=ε0mω2/e21.74×1021 cm−3 is the critical density for λ=0.8μm. The initial electron density in the PPC (before the pulse is injected) is given by Eq. (10) with n0=103nc, Δn=nc, and rch=3λ. The initial pulse has a waist radius w0=λ, duration τp=τ, and initial phase ψ0=π/2. The corresponding amplitude is E02.35E˜, with E˜=mωc/e4.01×1012 V/m.

Figure 2 shows snapshots of the electron density in the PPC and the pulse’s electric field intensity profile at different times after the pulse has been injected into the channel. The profile represents the ponderomotive potential of the pulse hiP=(eE)2/(4mω2) normalized by (eE0)2/(4mω2). The figure shows that the pulse is not powerful enough to alter the density profile in the channel dramatically. Response of the plasma to such a low-power pulse is quite weak and, thus, the effect of focusing is demonstrated. In the PPC, the radius of the pulse is almost unchanged, and the laser field intensity profile is distorted only slightly. Sustained propagation of the pulse shows even more clearly when the on-axis axial field, Ez,in the PPC is compared with that of the same pulse in vacuum. For propagation in vacuum, the pulse’s radius is expected to increase, according to Eq. (4).

Parameters of the PPC have not been chosen arbitrarily. The matching condition between the laser pulse and the channel profile can be found [38–40], which shows Δn/rch2 falling as 1/w04. In our parameter regime with w0λ, a micron-size PPC is required, in which the high density gradient, dn/drnc/λ, can be achieved by stochastic heating of the internal walls, as in the pre-plasma conditions used in high-repetition rate electron acceleration [41] and harmonic generation [33, 42]. Note that propagation of an ultra-short pulse in the PPC is associated with group velocity dispersion [43, 44], which leads to a negatively chirped and longitudinally extended pulse, as shown in Fig. 2. This will be shown below to play a role in the transition from LWFA to DLA.

 figure: Fig. 3

Fig. 3 (a) Same as Fig. 2(a) but for a pulse power corresponding to P0=600 GW, and without the axial electric field in vacuum. (b) Density plot of the axial field Ez, and the electron density in the channel. A red region corresponds to Ez<0, and displays an electron accelerating phase. For the pulse power used here, E023.5E˜, and Ez0=2.5E˜. (c) and (d) are, respectively, the same as (a) and (b) but for a linearly polarized pulse.

Download Full Size | PPT Slide | PDF

The role played by the PPC in creating the plasma wakefield [3] is demonstrated in Fig. 3. With the goal of realizing a kHz electron source in mind [17], an mJ laser of power corresponding to P0=600 GW is employed here. For easy comparison with Fig. 2(a), snapshots taken at the same instants are shown in Fig. 3(a). Besides the sustained propagation of the pulse, electron interaction with the oscillating fields leads to number density variations. Strong ponderomotive forces are exerted on the light-weight electrons and act to expel many of them quickly off the laser axis, while the much heavier positive ions drag slowly behind. This way a positive cavity (almost devoid of electrons) is gradually generated behind the pulse. After the pulse has passed by, the expelled electrons are attracted by the remaining ions towards the axis and the laser propagation direction, and a wakefield is formed behind the pulse. The associated plasma wakefield has an axial electric field component, established between the fast electrons and the slow-moving ions, as shown in red behind the laser pulse in Fig. 3(b). The red regions correlate with negative Ez in Fig. 3(a) and, thus, correspond to phases of electron acceleration.

Evolution of the electron density is accompanied by distortions in the field intensity distribution of the laser pulse, which can be seen clearly by comparing Fig. 2(a) with Fig. 3(a). For laser pulses of the same power, radially polarizedfields have sharper gradients than linearly-polarized ones [35] and, hence, give rise to stronger ponderomotive forces [16]. Consequently, a large number of electrons get trapped by the accelerating phase, as shown by the dark spot in Fig. 3(b). The relatively high charge achieved in this work, shown in Table 1, stems from both the sharp gradient of the radially-polarized laser and the micro-PPC acting as a waveguide, (see Fig. 2). Although the linearly-polarized pulse of the same power has a larger field amplitude on axis, as shown in Fig. 3(c), its ponderomotive force, obtained from the gradient of the field around the wall of the channel, is smaller. As a result, much less electrons are injected into the accelerating field of Fig. 3(d). Another shortcoming of the case driven by the linearly-polarized pulse shown in Fig. 3(c) is the asymmetry of the bubble resulting from its carrier envelope, which makes it unsuitable for accelerators [45]. Besides, the axial electric field boosts the electron energy via DLA at the right phase of the laser pulse, during which stage of evolution the accelerated electrons are engulfed by the pulse [22, 46, 47]. The LWFA accelerating phase at the stage of Fig. 3 is clearly distinguishable from that of DLA, as indicated roughly by the arrows in Fig. 3(a).

 figure: Fig. 4

Fig. 4 Same as Figs. 3(a) and 3(b), but at t=20τ, and the electric field distribution is replaced by (cBθ)2/E02.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5

Fig. 5 Snapshots of accelerated electron bunches after exiting the PPC. (a), (b) and (c): LWFA in a PPC of length zch=4λ, and (d), (e) and (f): Combined DLA and LWFA in a PPC of length zch=14λ. (a) and (d): Normalized electron density. (b) and (e): Phase space distributions, with ρed2Qe/dzdE. (e) and (f): Energy spectra presented by solid-black curves. Peak energies of solid-black curves in (c) and (f) are Ep6.14 MeV and 8.34 MeV, respectively. Spectra of electron beams driven by laser pulses with τp=2τ and 3τ are shown by the dashed-red and dotted-red curves, respectively, in (c). The solid-black, dashed-black and dotted-black curves in (c) and the inset correspond to the energy spectra driven by the first, third and fifth shots separated by Δt=100τ. The efficiency parameter η (defined in Table 1) in the multi-shot case is shown in the inset. Energy spectra of the electron beam driven by the laser in a homogeneous plasma with density n0 and 0.5nc are shown by the green and gray curves in (f).

Download Full Size | PPT Slide | PDF

The roles of LWFA and DLA are not so easily distinguishable at the later time t=20τ. In Fig. 3(a) the laser pulse is stretched, due to group velocity dispersion, as is demonstrated by the density plot of (cBθ)2, contributed by the laser. In Fig. 3(b) the axial field Ez, contributed jointly by the wakefield and the laser pulse, is shown in color, while red regions (dark spots) around the channel axis indicate electron acceleration phases (electron bunches). The role played by the laser fields in trapping and acceleration of the electrons may be understood by considering components of the Lorentz force on a single electron, using Eqs. (1)(3). In cylindrical coordinates, those components read Fr=e(ErvzBθ), Fθ=0, and Fz=e(Ez+vrBθ), where vr and vz are the radial and axial components, respectively, of the velocity vector of the electron. Provided the phase of the laser field is right, an electron gets pulled inward by Fr to the axis of the channel and gets accelerated axially by Fz. This implies that some electrons will be trapped in each cycle of the laser pulse. Some of them may dephase to the decelerating phase with positive Ez [48]. Multiple-trapping of the electron bunches thus makes it difficult to sustain a small energy spread, as will be further highlighted in connection with Fig. 5.

Prevalence of one acceleration regime over the other may actually be controlled by carefully choosing the PPC length, or thickness of the target hosting it. For example, interaction of the electrons with the laser field and plasma wakefield in Fig. 3 can be stopped entirely by using a PPC of length zch=4λ, while the relativistic electrons of Fig. 4 are extracted from a PPC of length zch=14λ. Figures 5(a) and 5(d) show time distribution of the electrons after exiting the PPC in the space corresponding to z>zch, where the plasma density has been assumed to fall off following a Gaussian down-ramp n(r)=n0+Δn(r/rch)2exp[(zzch)2/λ2] [49, 50]. The laser pulse gets diffracted quickly after exiting the PPC and does not affect an electron bunch appreciably anymore. Note that because LWFA is dominant in the early stages, Fig. 5(a) shows that only one bunch of electrons has been ejected from a PPC of length 4λ, while Fig. 5(d) shows that several bunches have clearly exited a 14λ-long PPC. Their normalized emittances, calculated from εn,x=x2px2xpx2/(mc), are 0.22 mm mrad and 0.23 mm mrad, respectively. The longer PPC allows for longer exposure of the electrons to the DLA mechanism. The corresponding phase-space distributions are shown in Figs. 5(b) and 5(e), in which energy chirping of the accelerated electrons correlates with their instantaneous phase when they leave the PPC [51]. Owing to the distortions suffered by the accelerating fields inside the PPC, the electron bunches are kept short, of axial length around λ/2. The solid-black curves in Figs. 5(c) and 5(f) show electron bunches with peaked energies. The total charges of electrons in the colored regions are 16.7 pC and 18.5 pC, respectively. The energy spectrum of the electrons driven by the same laser pulse in a homogeneous plasma with density n0 is shown by the green curve in Fig. 5(f), whose beam charge is 3 orders of magnitude lower. Since near-critical density targets may also be superior in generating MeV electrons [52], the spectrum obtained in a homogeneous plasma with density 0.5nc is shown in Fig. 5(f), for comparison. Comparison of the spectra in the PPC with those in the homogeneous plasma shows a high-charge beam with peaked energy, despite the fact that the electron bunch is very short in our case. The pulse duration, which is determined by the size of the wakefield, is also very short in our regime. Energy spectra driven by pulses of longer duration are shown by the dashed-red and dotted-red curves in Fig. 5(c). A pulse duration τp=2τ is comparable to the size of the wakefield, resulting in suppression of the accelerating phase of the wakefield. It also results in a lower beam energy, as shown in Fig. 5(c). Laser pulses of duration longer than the size of the wakefield, like τp=3τ, suppress the effect of the wakefield completely and the electrons are accelerated by the laser pulse directly. See Table 1 for more on the bunch properties and the relevant parameters used in this work, as well as elsewhere. The proposed regime scales well to multi-shot acceleration at high repetition rates. In order to access target resilience to the cumulative effects of multi-shot laser-target interactions, the case with several laser pulses is simulated. A repetition rate of 1/(100τ) is employed due to the computational cost of the PIC simulation. Figure 5(c) also shows the electron spectra driven by a third and a fifth laser pulse by dashed-black and dotted-black curves, respectively. Calculations employing many shots lead to almost similar results, with a stable efficiency parameter for each shot. The minor differences among these spectra are manifestations of density profile variations due to damage of the PPC by the incident laser pulses.

5. Summary

Employing 3D PIC simulations, a scheme of electron acceleration, driven by a radially-polarized, tightly-focused, and ultra-short laser pulse, propagating in a parabolic plasma micro-channel, has been demonstrated. Quality of the accelerated electron bunch in our work compares well with, or is substantially better than, what is reported elsewhere (see Table 1). Thickness of the target hosting the channel can be used to optimize the role of DLA in this scheme. With a few hundred GW laser system of radial polarization, MeV electrons of pC charge can be obtained at kHz repetition rates. Focusing the accelerated electrons beyond the PPC for transport to applications may be challenging to available technologies [53, 54]. This should stimulate experimental work on plasma-channel-assisted electron acceleration with radially-polarized laser pulses [55].

References

1. S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014). [CrossRef]   [PubMed]  

2. S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016). [CrossRef]  

3. V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012). [CrossRef]  

4. S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013). [CrossRef]  

5. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013). [CrossRef]   [PubMed]  

6. R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014). [CrossRef]  

7. J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006). [CrossRef]  

8. Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011). [CrossRef]  

9. Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374, 4950–4953 (2010). [CrossRef]  

10. L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017). [CrossRef]   [PubMed]  

11. R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015). [CrossRef]   [PubMed]  

12. Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013). [CrossRef]  

13. A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015). [CrossRef]   [PubMed]  

14. D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017). [CrossRef]  

15. M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016). [CrossRef]   [PubMed]  

16. S. Feister, D. R. Austin, J. T. Morrison, K. D. Frische, C. Orban, G. Ngirmang, A. Handler, J. R. H. Smith, M. Schillaci, J. A. LaVerne, E. A. Chowdhury, R. R. Freeman, and W. M. Roquemore, “Relativistic electron acceleration by mj-class kHz lasers normally incident on liquid targets,” Opt. Express 25, 18736–18750 (2017). [CrossRef]   [PubMed]  

17. S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012). [CrossRef]  

18. V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-kev electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013). [CrossRef]   [PubMed]  

19. V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015). [CrossRef]  

20. C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016). [CrossRef]  

21. N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017). [CrossRef]   [PubMed]  

22. J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017). [CrossRef]   [PubMed]  

23. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]   [PubMed]  

24. C. G. Durfee and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993). [CrossRef]   [PubMed]  

25. A. Butler, D. J. Spence, and S. M. Hooker, “Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide,” Phys. Rev. Lett. 89, 185003 (2002). [CrossRef]   [PubMed]  

26. T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008). [CrossRef]   [PubMed]  

27. S.-J. Qin and W. Li, “Micromachining of complex channel systems in 3d quartz substrates using q-switched nd:yag laser,” Appl. Phys. A 74, 773–777 (2002). [CrossRef]  

28. J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013). [CrossRef]  

29. J. M. Estudillo-Ayala, R. Rojas-Laguna, J. C. Hernández-Garcia, D. Jauregui-Vazquez, and J. M. Sierra-Hernandez, Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers(SpringerNetherlands, Dordrecht, 2015), pp. 159–172.

30. U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017). [CrossRef]  

31. W. L. Kruer and K. Estabrook, “J×B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985). [CrossRef]  

32. L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001). [CrossRef]  

33. L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008). [CrossRef]   [PubMed]  

34. M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015). [CrossRef]  

35. Y. I. Salamin, “Fields of a radially polarized gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 31, 2619–2621 (2006). [CrossRef]   [PubMed]  

36. https://www.rp-photonics.com/sech2_shaped_pulses.html.

37. T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015). [CrossRef]  

38. E. Esarey and W. P. Leemans, “Nonparaxial propagation of ultrashort laser pulses in plasma channels,” Phys. Rev. E 59, 1082–1095 (1999). [CrossRef]  

39. E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000). [CrossRef]   [PubMed]  

40. P. Jha, A. Malviya, A. K. Upadhyay, and V. Singh, “Simultaneous evolution of spot size and length of short laser pulses in a plasma channel,” Plasma Phys. Contr. Fusion 50, 015002 (2008). [CrossRef]  

41. A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009). [CrossRef]  

42. S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013). [CrossRef]   [PubMed]  

43. P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000). [CrossRef]   [PubMed]  

44. B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014). [CrossRef]  

45. E. N. Nerush and I. Y. Kostyukov, “Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses,” Phys. Rev. Lett. 103, 035001 (2009). [CrossRef]   [PubMed]  

46. C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999). [CrossRef]  

47. X. Zhang, V. N. Khudik, and G. Shvets, “Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime,” Phys. Rev. Lett. 114, 184801 (2015). [CrossRef]   [PubMed]  

48. A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett. 100, 195001 (2008). [CrossRef]   [PubMed]  

49. A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017). [CrossRef]  

50. O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016). [CrossRef]  

51. A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018). [CrossRef]   [PubMed]  

52. F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017). [CrossRef]   [PubMed]  

53. J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015). [CrossRef]   [PubMed]  

54. M. R. Conti, A. Bacci, A. Giribono, V. Petrillo, A. Rossi, L. Serafini, and C. Vaccarezza, “Electron beam transfer line design for plasma driven free electron lasers,” Nucl. Instrum. Meth. A (2018), https://.org/10.1016/j.nima.2018.02.061.

55. S. Carbajo, (private communication).

References

  • View by:

  1. S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014).
    [Crossref] [PubMed]
  2. S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
    [Crossref]
  3. V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).
    [Crossref]
  4. S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).
    [Crossref]
  5. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
    [Crossref] [PubMed]
  6. R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
    [Crossref]
  7. J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
    [Crossref]
  8. Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
    [Crossref]
  9. Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374, 4950–4953 (2010).
    [Crossref]
  10. L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
    [Crossref] [PubMed]
  11. R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
    [Crossref] [PubMed]
  12. Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
    [Crossref]
  13. A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
    [Crossref] [PubMed]
  14. D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
    [Crossref]
  15. M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
    [Crossref] [PubMed]
  16. S. Feister, D. R. Austin, J. T. Morrison, K. D. Frische, C. Orban, G. Ngirmang, A. Handler, J. R. H. Smith, M. Schillaci, J. A. LaVerne, E. A. Chowdhury, R. R. Freeman, and W. M. Roquemore, “Relativistic electron acceleration by mj-class kHz lasers normally incident on liquid targets,” Opt. Express 25, 18736–18750 (2017).
    [Crossref] [PubMed]
  17. S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
    [Crossref]
  18. V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-kev electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
    [Crossref] [PubMed]
  19. V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015).
    [Crossref]
  20. C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
    [Crossref]
  21. N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
    [Crossref] [PubMed]
  22. J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
    [Crossref] [PubMed]
  23. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref] [PubMed]
  24. C. G. Durfee and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
    [Crossref] [PubMed]
  25. A. Butler, D. J. Spence, and S. M. Hooker, “Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide,” Phys. Rev. Lett. 89, 185003 (2002).
    [Crossref] [PubMed]
  26. T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
    [Crossref] [PubMed]
  27. S.-J. Qin and W. Li, “Micromachining of complex channel systems in 3d quartz substrates using q-switched nd:yag laser,” Appl. Phys. A 74, 773–777 (2002).
    [Crossref]
  28. J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
    [Crossref]
  29. J. M. Estudillo-Ayala, R. Rojas-Laguna, J. C. Hernández-Garcia, D. Jauregui-Vazquez, and J. M. Sierra-Hernandez, Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers(SpringerNetherlands, Dordrecht, 2015), pp. 159–172.
  30. U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017).
    [Crossref]
  31. W. L. Kruer and K. Estabrook, “J×B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985).
    [Crossref]
  32. L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
    [Crossref]
  33. L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
    [Crossref] [PubMed]
  34. M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
    [Crossref]
  35. Y. I. Salamin, “Fields of a radially polarized gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 31, 2619–2621 (2006).
    [Crossref] [PubMed]
  36. https://www.rp-photonics.com/sech2_shaped_pulses.html .
  37. T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
    [Crossref]
  38. E. Esarey and W. P. Leemans, “Nonparaxial propagation of ultrashort laser pulses in plasma channels,” Phys. Rev. E 59, 1082–1095 (1999).
    [Crossref]
  39. E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000).
    [Crossref] [PubMed]
  40. P. Jha, A. Malviya, A. K. Upadhyay, and V. Singh, “Simultaneous evolution of spot size and length of short laser pulses in a plasma channel,” Plasma Phys. Contr. Fusion 50, 015002 (2008).
    [Crossref]
  41. A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
    [Crossref]
  42. S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
    [Crossref] [PubMed]
  43. P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
    [Crossref] [PubMed]
  44. B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
    [Crossref]
  45. E. N. Nerush and I. Y. Kostyukov, “Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses,” Phys. Rev. Lett. 103, 035001 (2009).
    [Crossref] [PubMed]
  46. C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
    [Crossref]
  47. X. Zhang, V. N. Khudik, and G. Shvets, “Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime,” Phys. Rev. Lett. 114, 184801 (2015).
    [Crossref] [PubMed]
  48. A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett. 100, 195001 (2008).
    [Crossref] [PubMed]
  49. A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
    [Crossref]
  50. O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
    [Crossref]
  51. A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
    [Crossref] [PubMed]
  52. F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).
    [Crossref] [PubMed]
  53. J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
    [Crossref] [PubMed]
  54. M. R. Conti, A. Bacci, A. Giribono, V. Petrillo, A. Rossi, L. Serafini, and C. Vaccarezza, “Electron beam transfer line design for plasma driven free electron lasers,” Nucl. Instrum. Meth. A (2018), https://.org/10.1016/j.nima.2018.02.061 .
  55. S. Carbajo, (private communication).

2018 (1)

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

2017 (8)

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).
[Crossref] [PubMed]

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

S. Feister, D. R. Austin, J. T. Morrison, K. D. Frische, C. Orban, G. Ngirmang, A. Handler, J. R. H. Smith, M. Schillaci, J. A. LaVerne, E. A. Chowdhury, R. R. Freeman, and W. M. Roquemore, “Relativistic electron acceleration by mj-class kHz lasers normally incident on liquid targets,” Opt. Express 25, 18736–18750 (2017).
[Crossref] [PubMed]

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref] [PubMed]

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017).
[Crossref]

2016 (4)

C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
[Crossref]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

2015 (7)

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

X. Zhang, V. N. Khudik, and G. Shvets, “Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime,” Phys. Rev. Lett. 114, 184801 (2015).
[Crossref] [PubMed]

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015).
[Crossref]

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

2014 (3)

S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014).
[Crossref] [PubMed]

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

2013 (6)

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-kev electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

2012 (2)

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).
[Crossref]

2011 (1)

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
[Crossref]

2010 (1)

Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374, 4950–4953 (2010).
[Crossref]

2009 (2)

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

E. N. Nerush and I. Y. Kostyukov, “Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses,” Phys. Rev. Lett. 103, 035001 (2009).
[Crossref] [PubMed]

2008 (4)

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett. 100, 195001 (2008).
[Crossref] [PubMed]

P. Jha, A. Malviya, A. K. Upadhyay, and V. Singh, “Simultaneous evolution of spot size and length of short laser pulses in a plasma channel,” Plasma Phys. Contr. Fusion 50, 015002 (2008).
[Crossref]

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

2006 (2)

Y. I. Salamin, “Fields of a radially polarized gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 31, 2619–2621 (2006).
[Crossref] [PubMed]

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

2002 (2)

A. Butler, D. J. Spence, and S. M. Hooker, “Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide,” Phys. Rev. Lett. 89, 185003 (2002).
[Crossref] [PubMed]

S.-J. Qin and W. Li, “Micromachining of complex channel systems in 3d quartz substrates using q-switched nd:yag laser,” Appl. Phys. A 74, 773–777 (2002).
[Crossref]

2001 (1)

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

2000 (2)

E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000).
[Crossref] [PubMed]

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

1999 (2)

E. Esarey and W. P. Leemans, “Nonparaxial propagation of ultrashort laser pulses in plasma channels,” Phys. Rev. E 59, 1082–1095 (1999).
[Crossref]

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

1993 (1)

C. G. Durfee and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[Crossref] [PubMed]

1985 (1)

W. L. Kruer and K. Estabrook, “J×B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985).
[Crossref]

Alvarado-Mendez, E.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Amorim, L. D.

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

Andriyash, I.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

Antonsen, T. M.

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett. 100, 195001 (2008).
[Crossref] [PubMed]

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

Arber, T. D.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Austin, D. R.

Bane, K.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Beaurepaire, B.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

Bell, A. R.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Benedetti, C.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Bennett, K.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Bobrova, N. A.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Bocoum, M.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

Böhle, F.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

Brabec, T.

C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
[Crossref]

V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015).
[Crossref]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-kev electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

Brady, C. S.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Brunetti, E.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Budde, F.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Bulanov, S. S.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Bulanov, S. V.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Butler, A.

A. Butler, D. J. Spence, and S. M. Hooker, “Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide,” Phys. Rev. Lett. 89, 185003 (2002).
[Crossref] [PubMed]

Bychenkov, V.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Byer, R. L.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Carbajo, S.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014).
[Crossref] [PubMed]

S. Carbajo, (private communication).

Cardoza, J. D.

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Castro, J. M.

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Chang, C.-M.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Chen, C.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

Chen, L. M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

Chen, M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Chowdhury, E. A.

Colby, E. R.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Cole, J.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Cowan, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Daniels, J.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Dawson, J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Dong, Q. L.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

Döpp, A.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Dowell, D. H.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Dromey, B.

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

Durfee, C. G.

C. G. Durfee and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[Crossref] [PubMed]

Dzelzainis, T.

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

Easter, J.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Easter, J. H.

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

England, R. J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Esarey, E.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000).
[Crossref] [PubMed]

E. Esarey and W. P. Leemans, “Nonparaxial propagation of ultrashort laser pulses in plasma channels,” Phys. Rev. E 59, 1082–1095 (1999).
[Crossref]

Estabrook, K.

W. L. Kruer and K. Estabrook, “J×B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985).
[Crossref]

Estudillo-Ayala, J. M.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

J. M. Estudillo-Ayala, R. Rojas-Laguna, J. C. Hernández-Garcia, D. Jauregui-Vazquez, and J. M. Sierra-Hernandez, Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers(SpringerNetherlands, Dordrecht, 2015), pp. 159–172.

Evans, R. G.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Fallahi, A.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

Faure, J.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref] [PubMed]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

Feder, L.

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).
[Crossref] [PubMed]

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

Feister, S.

Fennel, T.

C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
[Crossref]

Foster, P. S.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Fourmaux, S.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Freeman, R. R.

Frische, K. D.

Gahn, C.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

Gai, W.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Gallacher, J. G.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Garen, W.

U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017).
[Crossref]

Geddes, C. G. R.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Gierman, S. M.

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Gillies, P.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Glazyrin, I. V.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Goddet, J.-P.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

Goers, A. J.

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).
[Crossref] [PubMed]

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

Gonsalves, A. J.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Granados, E.

Guénot, D.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

Guillaume, E.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

Gustas, D.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

Habs, D.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

Hafizi, B.

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

Handler, A.

Hastings, J. B.

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

He, X.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

He, Z.-H.

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

Hernandez-Garcia, J. C.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Hernández-Garcia, J. C.

J. M. Estudillo-Ayala, R. Rojas-Laguna, J. C. Hernández-Garcia, D. Jauregui-Vazquez, and J. M. Sierra-Hernandez, Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers(SpringerNetherlands, Dordrecht, 2015), pp. 159–172.

Hine, G. A.

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).
[Crossref] [PubMed]

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

Hogan-Lamarre, P.

C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
[Crossref]

V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015).
[Crossref]

Hommelhoff, P.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Hong, K.-H.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014).
[Crossref] [PubMed]

Hooker, S. M.

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).
[Crossref]

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

A. Butler, D. J. Spence, and S. M. Hooker, “Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide,” Phys. Rev. Lett. 89, 185003 (2002).
[Crossref] [PubMed]

Hou, B.

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Hu, R.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

Hu, Z.

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

Huang, Y.-C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Hubbard, R. F.

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

Huijts, J. V.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Ibbotson, T.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Ishimaru, M.

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
[Crossref]

Jaroszynski, D. A.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Jauregui-Vazquez, D.

J. M. Estudillo-Ayala, R. Rojas-Laguna, J. C. Hernández-Garcia, D. Jauregui-Vazquez, and J. M. Sierra-Hernandez, Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers(SpringerNetherlands, Dordrecht, 2015), pp. 159–172.

Jha, P.

P. Jha, A. Malviya, A. K. Upadhyay, and V. Singh, “Simultaneous evolution of spot size and length of short laser pulses in a plasma channel,” Plasma Phys. Contr. Fusion 50, 015002 (2008).
[Crossref]

Jing, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Joannopoulos, J. D.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

Joshi, C.

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

Jullien, A.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

Kahaly, S.

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

Kai, Y.

U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017).
[Crossref]

Kaminer, I.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

Kamperidis, C.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Kando, M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Kärtner, F. X.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014).
[Crossref] [PubMed]

Kato, Y.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Keathley, P. D.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

Khudik, V. N.

X. Zhang, V. N. Khudik, and G. Shvets, “Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime,” Phys. Rev. Lett. 114, 184801 (2015).
[Crossref] [PubMed]

Kieffer, J. C.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Kim, K. Y.

Kneip, S.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Koga, J.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Kononenko, O.

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Kostyukov, I. Y.

E. N. Nerush and I. Y. Kostyukov, “Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses,” Phys. Rev. Lett. 103, 035001 (2009).
[Crossref] [PubMed]

Kruer, W. L.

W. L. Kruer and K. Estabrook, “J×B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985).
[Crossref]

Krushelnick, K.

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Kuk, D.

Laurent, G.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

LaVerne, J. A.

Lawrence-Douglas, A.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Leblanc, A.

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

Leedle, K. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Leemans, W. P.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000).
[Crossref] [PubMed]

E. Esarey and W. P. Leemans, “Nonparaxial propagation of ultrashort laser pulses in plasma channels,” Phys. Rev. E 59, 1082–1095 (1999).
[Crossref]

Légaré, F.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Lemos, N.

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Li, W.

S.-J. Qin and W. Li, “Micromachining of complex channel systems in 3d quartz substrates using q-switched nd:yag laser,” Appl. Phys. A 74, 773–777 (2002).
[Crossref]

Li, Y. T.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Liang, T. J.

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

Lifschitz, A.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref] [PubMed]

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

Lin, C.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

Liu, B.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

Loos, H.

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Lopes, N.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Lopez-Martens, R.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

Lozano, M.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

Lu, H.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

MacLean, J. P.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Malka, V.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).
[Crossref]

Malviya, A.

P. Jha, A. Malviya, A. K. Upadhyay, and V. Singh, “Simultaneous evolution of spot size and length of short laser pulses in a plasma channel,” Plasma Phys. Contr. Fusion 50, 015002 (2008).
[Crossref]

Mangles, S.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Mangles, S. P. D.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Marceau, V.

C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
[Crossref]

V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015).
[Crossref]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-kev electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

Marsh, K. A.

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

Martin, P.

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

Martinez de la Ossa, A.

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

Massimo, F.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

Masson-Laborde, P.-E.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Mata-Chavez, R. I.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Matlis, N. H.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

McGuinness, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

McNeur, J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Mehrling, T. J.

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

Meyer-ter Vehn, J.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

Miao, B.

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).
[Crossref] [PubMed]

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

Milchberg, H. M.

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).
[Crossref] [PubMed]

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett. 100, 195001 (2008).
[Crossref] [PubMed]

C. G. Durfee and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[Crossref] [PubMed]

Miller, R. J. D.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

Mizrahi, A.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Monchocé, S.

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

Montazeri, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Mordovanakis, A. G.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Mori, W. B.

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

Moriena, G.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

Morrison, J. T.

Moses, J.

Mourou, G.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Murooka, Y.

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
[Crossref]

Murphy, C. D.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Najmudin, Z.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Nakamura, K.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Nanni, E. A.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

Naranjo, B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Naruse, N.

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
[Crossref]

Naumova, N.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Nees, J.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Nees, J. A.

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

Nerush, E. N.

E. N. Nerush and I. Y. Kostyukov, “Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses,” Phys. Rev. Lett. 103, 035001 (2009).
[Crossref] [PubMed]

Ng, C.-K.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Ngirmang, G.

Noble, R. J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Norreys, P. A.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Orban, C.

Osterhoff, J.

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Palastro, J. P.

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett. 100, 195001 (2008).
[Crossref] [PubMed]

Palmer, C.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Palmer, R. B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Payeur, S.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Peñano, J. R.

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

Peralta, E.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Peralta, E. A.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Phuoc, K. Ta

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

Piché, M.

C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
[Crossref]

V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015).
[Crossref]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-kev electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Piot, P.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

Poder, K.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Popov, K.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Pottiez, O.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Pretzler, G.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

Pukhov, A.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

Qin, S.-J.

S.-J. Qin and W. Li, “Micromachining of complex channel systems in 3d quartz substrates using q-switched nd:yag laser,” Appl. Phys. A 74, 773–777 (2002).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

Quéré, F.

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

Ramsay, M. G.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Ridgers, C. P.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Rojas-Laguna, R.

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

J. M. Estudillo-Ayala, R. Rojas-Laguna, J. C. Hernández-Garcia, D. Jauregui-Vazquez, and J. M. Sierra-Hernandez, Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers(SpringerNetherlands, Dordrecht, 2015), pp. 159–172.

Roquemore, W. M.

Rosenzweig, J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Rowlands-Rees, T. P.

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Rozmus, W.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Rudakov, F. M.

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Rusby, D.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Sakakihara, S.

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
[Crossref]

Salamin, Y. I.

Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374, 4950–4953 (2010).
[Crossref]

Y. I. Salamin, “Fields of a radially polarized gaussian laser beam beyond the paraxial approximation,” Opt. Lett. 31, 2619–2621 (2006).
[Crossref] [PubMed]

Salehi, F.

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk, B. Miao, D. Woodbury, K. Y. Kim, and H. M. Milchberg, “MeV electron acceleration at 1 kHz with ∼10 mJ laser pulses,” Opt. Lett. 42, 215–218 (2017).
[Crossref] [PubMed]

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

Sasorov, P. V.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Schachter, L.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Schillaci, M.

Schimpf, D.

Schlegel, T.

U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017).
[Crossref]

Schmerge, J. F.

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Schmidt, B. E.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Schmitz, H.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Schroeder, C. B.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000).
[Crossref] [PubMed]

Schwartz, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Sears, C.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Sell, A.

Shadwick, B. A.

E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000).
[Crossref] [PubMed]

Shaw, B. H.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Shaw, J. L.

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

Sheeran, B.

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

Sheng, Z.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

Sheng, Z. M.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Shvets, G.

X. Zhang, V. N. Khudik, and G. Shvets, “Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime,” Phys. Rev. Lett. 114, 184801 (2015).
[Crossref] [PubMed]

Sierra-Hernandez, J. M.

J. M. Estudillo-Ayala, R. Rojas-Laguna, J. C. Hernández-Garcia, D. Jauregui-Vazquez, and J. M. Sierra-Hernandez, Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers(SpringerNetherlands, Dordrecht, 2015), pp. 159–172.

Singh, V.

P. Jha, A. Malviya, A. K. Upadhyay, and V. Singh, “Simultaneous evolution of spot size and length of short laser pulses in a plasma channel,” Plasma Phys. Contr. Fusion 50, 015002 (2008).
[Crossref]

Sircombe, N. J.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

Smith, J. R. H.

Sokolov, I.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

Soljacic, M.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

Soong, K.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Sozer, E. B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Spence, D. J.

A. Butler, D. J. Spence, and S. M. Hooker, “Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide,” Phys. Rev. Lett. 89, 185003 (2002).
[Crossref] [PubMed]

Spencer, J. E.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Sprangle, P.

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

Steinke, S.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Streeter, M. J. V.

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Symes, D.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Tajima, T.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Tanimura, K.

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
[Crossref]

Tantawi, S.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Tazfi, A.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

Tchervenkov, C.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Teng, H.

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

Teubner, U.

U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017).
[Crossref]

Thaury, C.

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

Thévenet, M.

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref] [PubMed]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

Thirolf, P.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

Thomas, A. G. R.

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

Ting, A.

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

Travish, G.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Tsakiris, G. D.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

Tsung, F. S.

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

Upadhyay, A. K.

P. Jha, A. Malviya, A. K. Upadhyay, and V. Singh, “Simultaneous evolution of spot size and length of short laser pulses in a plasma channel,” Plasma Phys. Contr. Fusion 50, 015002 (2008).
[Crossref]

Vafaei-Najafabadi, N.

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

van Tilborg, J.

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

Varin, C.

C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
[Crossref]

V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015).
[Crossref]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-kev electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

Vernier, A.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

Vincenti, H.

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

Wahlstrand, J. K.

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

Walz, D.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Warwick, J.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Weber, P. M.

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Wei, Z. Y.

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

Werner, G. R.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Witte, K. J.

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

Wolf, S. J.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Wong, L. J.

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

Wood, J.

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Woodbury, D.

Wu, Z.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

Wurtele, J. S.

E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000).
[Crossref] [PubMed]

Xu, H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Xu, M. H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Yan, X.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

Yang, J.

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
[Crossref]

Yoder, R. B.

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

York, A. G.

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett. 100, 195001 (2008).
[Crossref] [PubMed]

Yuan, X. H.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

Zaïm, N.

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref] [PubMed]

Zeitoun, D. E.

U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017).
[Crossref]

Zepf, M.

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

Zhang, J.

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

Zhang, X.

X. Zhang, V. N. Khudik, and G. Shvets, “Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime,” Phys. Rev. Lett. 114, 184801 (2015).
[Crossref] [PubMed]

Zhao, L. Z.

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

Zhou, M.

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

Zigler, A.

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

Appl. Phys. A (1)

S.-J. Qin and W. Li, “Micromachining of complex channel systems in 3d quartz substrates using q-switched nd:yag laser,” Appl. Phys. A 74, 773–777 (2002).
[Crossref]

Appl. Phys. Lett. (3)

J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Cardoza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, “Ultrafast time-resolved electron diffraction with megavolt electron beams,” Appl. Phys. Lett. 89, 184109 (2006).
[Crossref]

Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, “Transmission-electron diffraction by MeV electron pulses,” Appl. Phys. Lett. 98, 251903 (2011).
[Crossref]

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

J. Phys. B: At. Mol. Opt. (2)

V. Marceau, P. Hogan-Lamarre, T. Brabec, M. Piché, and C. Varin, “Tunable high-repetition-rate femtosecond few-hundred kev electron source,” J. Phys. B: At. Mol. Opt. 48, 045601 (2015).
[Crossref]

C. Varin, V. Marceau, P. Hogan-Lamarre, T. Fennel, M. Piché, and T. Brabec, “Mev femtosecond electron pulses from direct-field acceleration in low density atomic gases,” J. Phys. B: At. Mol. Opt. 49, 024001 (2016).
[Crossref]

Laser Phys. Lett. (1)

J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, R. I. Mata-Chavez, O. Pottiez, R. Rojas-Laguna, and E. Alvarado-Mendez, “Experimental study on a broad and flat supercontinuum spectrum generated through a system of two pcfs,” Laser Phys. Lett. 10, 075101 (2013).
[Crossref]

Nat. Photonics (2)

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).
[Crossref]

S. M. Hooker, “Developments in laser-driven plasma accelerators,” Nat. Photonics 7, 775–782 (2013).
[Crossref]

Nat. Phys. (1)

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, and J. Faure, “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2015).
[Crossref]

Nature (1)

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503, 91–94 (2013).
[Crossref] [PubMed]

New J. Phys. (3)

Z.-H. He, B. Hou, J. A. Nees, J. H. Easter, J. Faure, K. Krushelnick, and A. G. R. Thomas, “High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp,” New J. Phys. 15, 053016 (2013).
[Crossref]

U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, “Laser-plasma induced shock waves in micro shock tubes,” New J. Phys. 19, 103016 (2017).
[Crossref]

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

Nucl. Instrum. Meth. A (1)

O. Kononenko, N. Lopes, J. Cole, C. Kamperidis, S. Mangles, Z. Najmudin, J. Osterhoff, K. Poder, D. Rusby, D. Symes, J. Warwick, J. Wood, and C. Palmer, “2d hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator,” Nucl. Instrum. Meth. A 829, 125–129 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Fluids (1)

W. L. Kruer and K. Estabrook, “J×B heating by very intense laser light,” Phys. Fluids 28, 430–432 (1985).
[Crossref]

Phys. Lett. A (1)

Y. I. Salamin, “Low-diffraction direct particle acceleration by a radially polarized laser beam,” Phys. Lett. A 374, 4950–4953 (2010).
[Crossref]

Phys. Plasmas (2)

V. Malka, “Laser plasma accelerators,” Phys. Plasmas 19, 055501 (2012).
[Crossref]

L. M. Chen, J. Zhang, Q. L. Dong, H. Teng, T. J. Liang, L. Z. Zhao, and Z. Y. Wei, “Hot electron generation via vacuum heating process in femtosecond laser-solid interactions,” Phys. Plasmas 8, 2925–2929 (2001).
[Crossref]

Phys. Rev. Accel. Beams (2)

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley, G. Laurent, R. J. D. Miller, and F. X. Kärtner, “Direct longitudinal laser acceleration of electrons in free space,” Phys. Rev. Accel. Beams 19, 021303 (2016).
[Crossref]

A. Martinez de la Ossa, Z. Hu, M. J. V. Streeter, T. J. Mehrling, O. Kononenko, B. Sheeran, and J. Osterhoff, “Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators,” Phys. Rev. Accel. Beams 20, 091301 (2017).
[Crossref]

Phys. Rev. E (1)

E. Esarey and W. P. Leemans, “Nonparaxial propagation of ultrashort laser pulses in plasma channels,” Phys. Rev. E 59, 1082–1095 (1999).
[Crossref]

Phys. Rev. Lett. (20)

E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, “Nonlinear theory of nonparaxial laser pulse propagation in plasma channels,” Phys. Rev. Lett. 84, 3081–3084 (2000).
[Crossref] [PubMed]

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I. Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees, and K. Krushelnick, “Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz,” Phys. Rev. Lett. 103, 235001 (2009).
[Crossref]

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, and F. Quéré, “Direct observation of density-gradient effects in harmonic generation from plasma mirrors,” Phys. Rev. Lett. 110, 175001 (2013).
[Crossref] [PubMed]

P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, “Stable laser-pulse propagation in plasma channels for GeV electron acceleration,” Phys. Rev. Lett. 85, 5110–5113 (2000).
[Crossref] [PubMed]

E. N. Nerush and I. Y. Kostyukov, “Carrier-envelope phase effects in plasma-based electron acceleration with few-cycle laser pulses,” Phys. Rev. Lett. 103, 035001 (2009).
[Crossref] [PubMed]

C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter Vehn, G. Pretzler, P. Thirolf, D. Habs, and K. J. Witte, “Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels,” Phys. Rev. Lett. 83, 4772–4775 (1999).
[Crossref]

X. Zhang, V. N. Khudik, and G. Shvets, “Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime,” Phys. Rev. Lett. 114, 184801 (2015).
[Crossref] [PubMed]

A. G. York, H. M. Milchberg, J. P. Palastro, and T. M. Antonsen, “Direct Acceleration of Electrons in a Corrugated Plasma Waveguide,” Phys. Rev. Lett. 100, 195001 (2008).
[Crossref] [PubMed]

A. Döpp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J.-P. Goddet, A. Tazfi, K. Ta Phuoc, and V. Malka, “Energy-Chirp Compensation in a Laser Wakefield Accelerator,” Phys. Rev. Lett. 121, 074802 (2018).
[Crossref] [PubMed]

J. van Tilborg, S. Steinke, C. G. R. Geddes, N. H. Matlis, B. H. Shaw, A. J. Gonsalves, J. V. Huijts, K. Nakamura, J. Daniels, C. B. Schroeder, C. Benedetti, E. Esarey, S. S. Bulanov, N. A. Bobrova, P. V. Sasorov, and W. P. Leemans, “Active plasma lensing for relativistic laser-plasma-accelerated electron beams,” Phys. Rev. Lett. 115, 184802 (2015).
[Crossref] [PubMed]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-kev electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref] [PubMed]

A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, “Multi-MeV electron acceleration by subterawatt laser pulses,” Phys. Rev. Lett. 115, 194802 (2015).
[Crossref] [PubMed]

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier, A. Jullien, J. Faure, and R. Lopez-Martens, “Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors,” Phys. Rev. Lett. 116, 185001 (2016).
[Crossref] [PubMed]

L. M. Chen, M. Kando, M. H. Xu, Y. T. Li, J. Koga, M. Chen, H. Xu, X. H. Yuan, Q. L. Dong, Z. M. Sheng, S. V. Bulanov, Y. Kato, J. Zhang, and T. Tajima, “Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil,” Phys. Rev. Lett. 100, 045004 (2008).
[Crossref] [PubMed]

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref] [PubMed]

J. L. Shaw, N. Lemos, L. D. Amorim, N. Vafaei-Najafabadi, K. A. Marsh, F. S. Tsung, W. B. Mori, and C. Joshi, “Role of direct laser acceleration of electrons in a laser wakefield accelerator with ionization injection,” Phys. Rev. Lett. 118, 064801 (2017).
[Crossref] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

C. G. Durfee and H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[Crossref] [PubMed]

A. Butler, D. J. Spence, and S. M. Hooker, “Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide,” Phys. Rev. Lett. 89, 185003 (2002).
[Crossref] [PubMed]

T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, “Laser-driven acceleration of electrons in a partially ionized plasma channel,” Phys. Rev. Lett. 100, 105005 (2008).
[Crossref] [PubMed]

Plasma Phys. Contr. Fusion (2)

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Contr. Fusion 57, 113001 (2015).
[Crossref]

P. Jha, A. Malviya, A. K. Upadhyay, and V. Singh, “Simultaneous evolution of spot size and length of short laser pulses in a plasma channel,” Plasma Phys. Contr. Fusion 50, 015002 (2008).
[Crossref]

Rev. Mod. Phys. (1)

R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Rev. Mod. Phys. 86, 1337–1389 (2014).
[Crossref]

Sci. Rep. (2)

L. J. Wong, K.-H. Hong, S. Carbajo, A. Fallahi, P. Piot, M. Soljacic, J. D. Joannopoulos, F. X. Kärtner, and I. Kaminer, “Laser-induced linear-field particle acceleration in free space,” Sci. Rep. 7, 11159 (2017).
[Crossref] [PubMed]

R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C. Chen, X. He, and X. Yan, “Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities,” Sci. Rep. 5, 15499 (2015).
[Crossref] [PubMed]

Other (4)

https://www.rp-photonics.com/sech2_shaped_pulses.html .

J. M. Estudillo-Ayala, R. Rojas-Laguna, J. C. Hernández-Garcia, D. Jauregui-Vazquez, and J. M. Sierra-Hernandez, Sub- and Nanosecond Pulsed Lasers Applied to the Generation of Broad Spectrum in Standard and Microstructured Optical Fibers(SpringerNetherlands, Dordrecht, 2015), pp. 159–172.

M. R. Conti, A. Bacci, A. Giribono, V. Petrillo, A. Rossi, L. Serafini, and C. Vaccarezza, “Electron beam transfer line design for plasma driven free electron lasers,” Nucl. Instrum. Meth. A (2018), https://.org/10.1016/j.nima.2018.02.061 .

S. Carbajo, (private communication).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic diagram showing the radially polarized laser pulse (orange) incident left-to-right (along the z-axis of the given coordinate system) on the parabolic plasma channel (PPC). The accelerated electron bunch is shown on the right (blue) behind the remnant laser pulse (orange).
Fig. 2
Fig. 2 Snapshots at (a) t = 7 τ and (b) t = 20 τ , showing the normalized electron density, n e / n c , and the normalized electric field intensity distribution, E 2 / E 0 2 , in the xz-plane, after a radially-polarized laser pulse has been injected axially, from the left, into a PPC. The corresponding amplitude is E 0 2.35 E ˜ , with E ˜ = m ω c / e 4.01 × 10 12 V/m. Axial electric field variations with the propagation distance are shown in the PPC (solid-green)and in vacuum (dashed-green). See text for the remaining parameters used.
Fig. 3
Fig. 3 (a) Same as Fig. 2(a) but for a pulse power corresponding to P 0 = 600 GW, and without the axial electric field in vacuum. (b) Density plot of the axial field Ez, and the electron density in the channel. A red region corresponds to E z < 0 , and displays an electron accelerating phase. For the pulse power used here, E 0 23.5 E ˜ , and E z 0 = 2.5 E ˜ . (c) and (d) are, respectively, the same as (a) and (b) but for a linearly polarized pulse.
Fig. 4
Fig. 4 Same as Figs. 3(a) and 3(b), but at t = 20 τ , and the electric field distribution is replaced by ( c B θ ) 2 / E 0 2 .
Fig. 5
Fig. 5 Snapshots of accelerated electron bunches after exiting the PPC. (a), (b) and (c): LWFA in a PPC of length z c h = 4 λ , and (d), (e) and (f): Combined DLA and LWFA in a PPC of length z c h = 14 λ . (a) and (d): Normalized electron density. (b) and (e): Phase space distributions, with ρ e d 2 Q e / d z d E . (e) and (f): Energy spectra presented by solid-black curves. Peak energies of solid-black curves in (c) and (f) are E p 6.14 MeV and 8.34 MeV, respectively. Spectra of electron beams driven by laser pulses with τ p = 2 τ and 3 τ are shown by the dashed-red and dotted-red curves, respectively, in (c). The solid-black, dashed-black and dotted-black curves in (c) and the inset correspond to the energy spectra driven by the first, third and fifth shots separated by Δ t = 100 τ . The efficiency parameter η (defined in Table 1) in the multi-shot case is shown in the inset. Energy spectra of the electron beam driven by the laser in a homogeneous plasma with density n0 and 0.5 n c are shown by the green and gray curves in (f).

Tables (1)

Tables Icon

Table 1 Electron acceleration by mJ laser fields. Results from this work and recent studies, and the parameters used, are given. Here, E L is the laser pulse energy, P 0 = E L / τ p the paraxial beam power, τp the pulse duration, w0 the waist radius at focus, E p the peak electron energy, Qe the total charge, and η = ( Q e / e ) ( E p / E L ) measures acceleration efficiency.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E r = E { ϵ ρ C 2 + ϵ 3 [ ρ C 3 2 + ρ 3 C 4 ρ 5 C 5 4 ] + ϵ 5 [ 3 ρ C 4 8 3 ρ 3 C 5 8 + 17 ρ 5 C 6 16 3 ρ 7 C 7 8 + ρ 9 C 8 32 ] } ,
E z = E { ϵ 2 [ S 2 ρ 2 S 3 ] + ϵ 4 [ S 3 2 + ρ 2 S 4 2 5 ρ 4 S 5 4 + ρ 6 S 6 4 ] } ,
B θ = E c { ϵ ρ C 2 + ϵ 3 [ ρ C 3 2 + ρ 3 C 4 2 ρ 5 C 5 4 ] + ϵ 5 [ 3 ρ C 4 8 + 3 ρ 3 C 5 8 + 3 ρ 5 C 6 16 ρ 7 C 7 4 + ρ 9 C 8 32 ] } ,
E = E 0 exp  ( r 2 w 2 ) , w = w 0 1 + z 2 z r 2 ,
C n = ( w 0 w ) n cos  ( ψ + n ψ G ) ; n = 2 , 3 , ,
S n = ( w 0 w ) n sin  ( ψ + n ψ G ) ,
ψ = ψ 0 + ω t k z k r 2 2 R , R = z + z r 2 z , ψ G = tan 1 ( z z r ) .
f ( t ) = sech [ 2 ln  ( 1 + 2 ) t τ p ] ,
P = P 0 [ 1 + 3 4 ϵ 2 + 9 16 ϵ 4 ] ; P 0 = π ( ϵ w 0 E 0 ) 2 8 c μ 0 ,
n ( r ) = n 0 + Δ n ( r r c h ) 2 ,

Metrics