Abstract

A beam-scanning terahertz (THz) radiation mechanism in a free-electron-driven grating system is proposed for THz applications. By loading a period-asynchronous rod array above the grating, the spoof surface plasmon (SSP) originally excited by the electron changes its radiation characteristics owing to the rod-induced Brillouin zone folding effect. The rod array functions as an antenna and converts the SSP into a spatial coherent THz radiation. The radiation frequency and direction can be precisely controlled by the electron energy. The field intensity of the radiation is increased approximately 20 times compared with that of the conventional Smith–Purcell radiation in the same frequency range. In addition, a microwave-band scaling prototype is fabricated and the frequency-controlled radiation is measured. Excellent agreement between the experimental and simulated results is obtained. This study paves the way for the development of on-chip THz sources for advanced communication and detection applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Over the past decades, the terahertz (THz) technology has attracted increasing interest for various applications, including communication, bio-medicine imaging, and security inspection [13]. However, the lack of compact and efficient THz radiation sources has impeded its further development [4]. As alternatives, vacuum electric devices (VEDs) based on the beam–wave interaction have been expected to achieve efficient THz radiation sources [58]. Recently, THz radiation sources based on the interaction between the free electrons and spoof surface plasmons (SSPs) have been extensively investigated [916]. THz radiation sources based on the beam–SSP interactions in open metallic grating, double grating, and crystal-like structures have been studied [11,12,16]. Various methods have been proposed to improve the interaction efficiency. For example, a depth-gradient grating has been proposed to maintain the long-range interaction between the free electron and SSP wave [10]. Moreover, an optical cavity has been introduced to provide feedback for the beam–SSP interaction system, yielding a significantly improved interaction efficiency [13]. Despite the progress, most of the studies have been focused on the improvement in beam–wave interaction efficiency, while the radiative characteristic has not been extensively investigated.

Although it is expected to achieve the THz radiation through the beam–SSP interaction, it is confined at the surface of the grating owing to the mismatch in wavenumber between the SSP and propagation wave. As this has impeded the potential THz applications, it is crucial to harvest the radiation confined at the surface of the subwavelength structure. Several approaches have been proposed to overcome this obstacle. Metasurfaces could couple the SSP into spatial radiation. Owing to the high power capacity and electron bombardment in VEDs, an all-metal structure is limited and the metasurfaces are not practical for use in VEDs [17]. A high-Q metallic Fano grating has been employed to couple out the SSP wave; the radiation characteristics strongly depended on the resonance of the system [18,19]. Although the SSP can be diffracted into a spatial directional radiation at the end of a graded grating, the direction is limited [20]. Moreover, a high-efficiency Gaussian beam–SSP conversion has been achieved based on the gradient phase matching method [21]. The SSP wave has been effectively converted into the waveguide mode in backward oscillators in a similar manner [7]. Similarly, a long graded waveguide is needed to achieve a high conversion efficiency, which hinders the miniaturization of VEDs. Particularly, for on-chip VEDs, it is challenging to effectively realize the transformation. Furthermore, the beam-scanning THz radiation has a key role in advanced applications such as the wireless communication systems and directional detection [22,23]. Therefore, it is essential to develop an efficient and robust approach to collect and convert the SSP into free space.

In this study, a free-electron-driven beam-scanning spatial THz radiation is achieved based on the Brillouin zone folding effect. The Brillouin zone of the grating is reshaped upon the loading of an asynchronous rod array. Consequently, a part of the dispersion curve is in the radiative region. When the interaction point is in the radiative region, the SSP is stimulated and transformed into spatial radiation with the excitation of a free electron. The radiation frequency and direction are tailored by the energy of the free electron. Moreover, the beam scanning character is experimentally verified in the microwave region according to the scaling principle. Compared with that of the Smith–Purcell radiation (SPR), a conventional spatial radiation, the field intensity is increased approximately 20 times. As the power can be radiated into the free space, this is particularly applicable for the development of compact and efficient on-chip electron-driven radiation. Moreover, the system generates the directional radiation with the excitation of a free electron and the radiation angles can be tuned by the energy of the free electron. In this manner, a novel controllable beam-scanning THz radiation source is realized, promising for various advanced applications such as communication, detection, and energy transmission.

2. Model and dispersion analysis

A schematic of the beam-scanning coherent spatial radiation source is shown in Fig.   1(a). A rod array is set above the metallic grating. The free electron moves through the gap exciting the THz radiation between the rod array and metallic grating. The period, groove width, and groove depth of the metallic grating are denoted as d, a, and h, respectively. The rod array and reflection grating are separated by a gap g. In this study, we use the following parameters: a = 50 µm, d = 100 µm, h = 200 µm, and w = 2.5 mm. The period and radius of the rod array are denoted as p and R, respectively. The transverse width of the rod array is identical to that of the metallic grating.

 

Fig. 1. (a) Model for the free-electron beam-scanning THz radiation source. A rod array is set above the metallic grating. The free electron bunch moves through the gap between the rod array and metallic grating. The operation voltage of the free electron is 36 kV (${v_e} = 0.357c$). (b) Diffraction relation between the wavenumbers of the SSP and propagation waves. Dispersion curves of the (c) metallic grating and (d) metallic grating with the loaded rod array. The electron beam line and interaction point are indicated in the dispersion diagrams.

Download Full Size | PPT Slide | PDF

The dispersion characteristic is investigated for a precise analysis of this radiation system. The dispersion equation with perfect electric conductor boundary conditions can be expressed as [24]

$$\frac{1}{{{k_{xn}}}}\sum\limits_{n = - \infty }^\infty {S{a^2}} \left( {\frac{{{k_{zn}}a}}{2}} \right) = \frac{d}{a}\cot ({{k_0}h} ),$$
where ${k_{zn}} = {k_{z0}} + {{2\pi n} \mathord{\left/ {\vphantom {{2\pi n} d}} \right.} d}$ is the longitudinal wavenumber of the nth harmonic wave, ${k_{xn}} = \sqrt {k_0^2 - k_{zn}^2} $, ${k_0} = \omega /c = {{2\pi f} \mathord{\left/ {\vphantom {{2\pi f} c}} \right.} c}$ is the wavenumber in the free space, and c is the light speed in the free space. The dispersion equation of the free electron can be expressed as
$$\omega = {v_e}{k_z},$$
$${v_e} = c\sqrt {1 - {1 \mathord{\left/ {\vphantom {1 {{{(1 + \frac{{eU}}{{{m_0}{c^2}}})}^2}}}} \right. } {{{(1 + \frac{{eU}}{{{m_0}{c^2}}})}^2}}}} ,$$
where ${v_e}$ is the velocity of the free electron, e is the electron charge, ${m_0}$ is the electron mass, and U is the operation voltage. The calculated dispersion curves are presented in Figs.   1(c) and 1(d). The Brillouin zone of the metallic grating is reshaped according to the Brillouin zone folding effect considering the different periods [25]. The Brillouin zone $({{ - \pi } \mathord{\left/ {\vphantom {{ - \pi } d}} \right.} d},{\pi \mathord{\left/ {\vphantom {\pi d}} \right.} d})$ is divided into three Brillouin zones, as illustrated in Fig.   1(d) at $p = 3d$. Compared with the dispersion curve in Fig.   1(c), a part of the dispersion curve is in the radiative region, which implies that the SSP could radiate into the free space in this compound system.

3. Generation of THz radiation

When the free electron passes over the surface of the grating, the SSP is stimulated and propagates along the periodic surface. The excitation frequency is determined by the frequency of the interaction point, i.e., the intersection point between the free electron line and dispersion curve, as shown in Figs.   1(c) and 1(d). When proper parameters are chosen, the interaction point is in the radiative region when the rod array is loaded above the grating. In this case, the coherent spatial THz radiation is generated at a specific direction with the excitation of a free electron. As the zeroth wavenumber ${k_{z0}}$ of the SSP is considerably larger than that (${k_0}$) in the free space, it cannot be converted to spatial radiation directly through the rod array. The harmonic wave whose wavenumber ${k_{zn}}$ is smaller than ${k_0}$ can be coupled out as a propagation wave, as shown in Fig.   1(b). Assuming that the angle between the harmonic wave and z axis is $\theta $, according to the diffraction theory, the relation between the nth harmonic wave and propagation wave is

$${k_{z0}} + \frac{{2n\pi }}{L} = {k_0}\cos \theta ,$$
where L is the period of the compound system. At the operation frequency,
$${k_{z0}} = \frac{\omega }{{{v_e}}},$$
$${k_0} = \frac{\omega }{c}.$$
The substitution of Eq. (4) into Eq. (3) yields
$$\frac{c}{f} = \left( {\frac{c}{{{v_e}}} - \cos \theta } \right)\frac{L}{n},$$
where f is the operation frequency. The relation between the energy of the free electron and radiation direction is identical to that for the SPR. Consequently, the coherent THz radiation is a type of SPR-like radiation. The radiation characteristics including the frequency and direction are tunable according to the energy of the free electron.

This physical mechanism is verified using the particle-in-cell (PIC) solver in the commercial software CST studio [26]. The simulated coherent high-intensity radiation is shown in Fig.   2. The parameters of the metallic grating are unchanged, while the parameters of the rod array are R = 75 µm and g = 50 µm. The operation voltage of the free electron is 36 kV (${v_e} = 0.357c$). The distance between the free electron and metallic grating surface is 10 µm. As a single-electron-bunch model is employed in the PIC simulation, the radiation spectrum inevitably extends to a certain frequency bandwidth [27]. As shown in Fig.   2(a), the peak frequency at the far-field region is 0.316 THz, which well agrees with the interaction frequency. The corresponding electric distribution ${E_z}$ at the radiation frequency is shown in Fig.   2(b). The radiation angle is 110°, in agreement with Eq. (5) (L = p, n = −1). As presented in Fig.   2(b), the SSP wave along the metallic grating surface radiates into the free space through the coupling with the rod array. Accordingly, the structural parameters, such as R and g, have significant influences on the radiation characteristics, as discussed below.

 

Fig. 2. Simulation of the coherent THz radiation. (a) Radiation frequency spectrum probed in the free space. (b) Electric contour EZ at the radiation frequency.

Download Full Size | PPT Slide | PDF

4. Discussion

The results obtained using arrays with different radii of the rods are presented in Fig.   3; the other parameters are unchanged. The radiation frequency exhibits small ripples during the variation in rod radius, while the field intensity considerably changes. As shown in Fig.   3(a), the field intensity increases with the radius in the range of 20 to 75 µm, and then decreases in the range of 80 to 120 µm. According to the simulation, the optimized radius of the rod is R = p/4 and thus R is set to 75 µm in the following experiments.

 

Fig. 3. Simulation results with different radii; g = 50 µm, operation voltage U = 36 kV (ve = 0375c). (a) Radiation frequency and intensity variations with the radius. (b) Frequency spectra of the coherent radiation and ordinary SPR generated by the rod array.

Download Full Size | PPT Slide | PDF

The SPR is a conventional wide-band spatial radiation, which originates from the diffraction on a periodic structure such as the metallic grating and rod array [28,29]. As mentioned in the previous section, the dispersion relation of the SPR is identical to that in Eq. (5). For the SPR obtained by the metallic grating, the radiation frequency (0.316 THz) is absent in the radiation frequency spectrum as the lowest frequency range is 0.788–1.662 THz according to Eq. (5) (L = d, n = −1). For the SPR generated by the rod array, the lowest frequency range is 0.262–0.554 THz (L = p, n = −1), shown as a blue line in Fig.   3(b). Compared with the SPR generated by the rod array, the radiation is coherent with an increased field intensity (approximately 20 times), which is promising for the development of compact and efficient THz radiation sources.

Considering the near-field confinement of the SSP wave, the field intensity exponentially decays along the y direction. The gap between the rod and metallic grating has a considerable effect on the radiation characteristic. To achieve an efficient conversion from the SSP mode to radiation, the gap has to satisfy the condition $g < \delta $, where δ = 1/kx0 is the decay length of the SSP wave. The simulation results with different gaps are presented in Fig.   4. Two peaks in the frequency spectrum are observed when the gap is narrow (g < 45 µm), while one radiation peak is observed when the gap is extended (g > 50 µm). These unique characteristics are explained by the following factors. When the gap is narrow, the rod array has a considerable impact on the distribution of the SSP wave, which changes the dispersion curve of the metallic grating and leads to the multi-frequency radiation effect. For example, at g = 20 µm, the dispersion curve of the grating splits into three independent pass-bands owing to the over-coupling with the loaded rod array close to the grating, as shown in Fig.   4(c). Two interaction points are observed in the radiative region, corresponding to two radiation frequency peaks with the free-electron excitation, as shown in Fig.   4(b). This intriguing characteristic is expected to provide a multi-color THz radiation source. When g is increased, the coupling between the rod array and metallic grating attenuates and the dispersion curves in different pass-bands connect, as shown in Fig.   4(c). Consequently, the multi-frequency radiation disappears. As the interaction frequency is determined by the structural parameters and operation voltage of the electron bunch, the radiation frequency remains stable with the increase in gap.

 

Fig. 4. Simulation results with different gaps. The radius of the rod array R is 75 µm, while the operation voltage U is 36 kV. (a) Radiation frequency and field intensity changes with the gap. (b) Multi- and single-frequency radiation spectra with different gaps. (c) Dispersion curves of the metallic grating loaded with the rod array with g = 20 µm.

Download Full Size | PPT Slide | PDF

At g = 20 µm, the simulation results at different rod radii are presented in Fig.   5. The radius has a large influence on the radiation peaks at the narrow gap. Similar to that of the single-frequency radiation, the field intensity initially increases with the radius, and then decreases in the range of 20 to 120 µm. At g = 50 µm, the coupling approaches saturation and the field intensity decreases with the increase in radius. According to the Brillouin zone folding effect, the first pass-band is folded from the original dispersion curve in the wave vector range of $({{2\pi } \mathord{\left/ {\vphantom {{2\pi } p}} \right.} p},{{3\pi } \mathord{\left/ {\vphantom {{3\pi } p}} \right.} p})$, while the second pass-band is derived from the original dispersion range $({\pi \mathord{\left/ {\vphantom {\pi p}} \right.} p},{{2\pi } \mathord{\left/ {\vphantom {{2\pi } p}} \right.} p})$ [25]. In this regard, the field intensity at ${f_1}$ is smaller than that at ${f_2}$. Moreover, the ordinary SPR generated by the rod array is presented in Fig.   5(c), whose field intensity is almost 20 times smaller than that of the coherent THz radiation. Considering the aim to achieve a coherent THz radiation source, the gap is set to 50 µm in the following experiment and the multiple-frequency radiation is avoided.

 

Fig. 5. Simulation results with different radii. The gap between the rod array and metallic grating is set to 20 µm, while the operation voltage U is 36 kV. (a) Radiation frequency and intensity variations with the radius. (b) Frequency spectra of the multi-frequency radiation and ordinary SPR with a different radius of R = 75 µm.

Download Full Size | PPT Slide | PDF

Considering the above analysis, as the interaction frequency is determined by the structural parameters and energy of the free electron, it is tailored by the latter when the former are fixed. In this manner, the system achieves a tunable THz radiation. The simulation results with different energies are shown in Fig.   6. When the operation voltage is increased from 10 to 70 kV, the interaction point moves down along the dispersion curve, yielding a decrease in radiation frequency. Simultaneously, the radiation intensity initially increases, and then decreases at U = 42 kV. When the operation voltage is low, for example, at U = 15 kV, the interaction point approaches the edge of the Brillouin zones. The SSP is confined at the surface of the grating and the electric field rapidly decays along the y direction, which contributes to the small radiation intensity. In addition, the interaction point may shift into the nonradiative region when the energy is high (for example, at U = 70 kV), contributing to the decrease in field intensity with the increase in electron energy.

 

Fig. 6. Simulation results with different operation voltages. The gap between the rod array and metallic grating is set to 50 µm, R = 75 µm, p = 300 µm. (a) Distribution of the radiation frequency at different operation frequencies. (b) Variations in interaction frequency and field intensity with the operation voltage.

Download Full Size | PPT Slide | PDF

The radiation character of the proposed system largely depends on the Brillouin zone distribution and can be changed by varying the period of the rod array. This provides an efficient approach to tune the radiation character. For example, at U = 70 kV, the interaction point is in the nonradiative region when p = 3d and in the radiative region when p = 4d, as shown in Fig.   7. The tuning is further demonstrated by the radiation spectrum in Fig.   7(c). When the period p is changed from 3d to 4d, the Brillouin zone redistributes, yielding the radiative character of the system. Generally, when p = md, the Brillouin zone of the metallic grating is divided into m parts. The nonradiative frequency range is eliminated by increasing the period of the rod array. For the grating presented in this study, almost all high frequencies can radiate into propagation at p ≥ 5d.

 

Fig. 7. Simulation results with different periods of the rod array; g = 50 µm, R = 75 µm. Brillouin zone distributions at (a) p = 3d and (b) p = 4d. (c) Probed radiation spectra at different periods of the rod array at far field.

Download Full Size | PPT Slide | PDF

When the interaction point is in the radiative region, the coherent radiation at a specific direction is generated with the excitation of a free electron. The radiation direction is determined by Eq. (5). The radiation characteristics at different operation frequencies are presented in Figs.   8(b) and 8(c). The simulation results are indicated by dots, which are in good agreement with the calculated results. As shown in Fig.   8, a wide-band beam-scanning radiation can be achieved by tuning the operation frequency, which can be realized by changing the energy of the free electron, which cannot be achieved by most conventional VEDs. This is very promising for various advanced applications such as the directional detection.

 

Fig. 8. Beam-scanning characteristic in the THz range. The parameters of the rod array are R = 125 µm, p = 500 µm, and g = 70 µm. (a) Brillouin diagram of the metallic grating with the loaded rod array. (b) Radiation angles at different operation frequencies. (c) Directional charts at different operation frequencies.

Download Full Size | PPT Slide | PDF

The radiation characteristic also exists in other frequency bands, which provides a convenient approach to verify the radiation characteristic predicted by the theory and numerical calculations. In this study, a physical prototype is fabricated and measured in the microwave region. The geometric parameters are d = 2 mm, a = 1 mm, h = 5.8 mm, R = 7.8 mm, p = 11d, and g = 7 mm. The dispersion curve is shown in Fig.   9(a), while the variation in radiation direction with the operation frequency is shown in Fig.   9(b). To stimulate the SSP, a monopole antenna is utilized to imitate the free electron. The experimental scheme and fabricated model are shown in Figs.   9(c) and 9(d), respectively. In this measurement, a horn antenna, which could freely move around the physical prototype, is used to receive the radiation signal. Both monopole antenna and horn antenna are connected to an Agilent vector network analyzer (Agilent N5245A PNA-X). The direction charts obtained by the simulation are presented as solid lines in Fig.   9(e), while the measurement results are represented by green circles. The radiation angle decreases from 115 to 70° when the operation frequency is increased from 7.8 to 10.8 GHz. The measured results are in good agreement with the simulation results, which experimentally demonstrates the radiation characteristics of the rod-array-loaded grating.

 

Fig. 9. Simulated and experimentally measured radiation properties. The parameters of the rod array are R = 7.8 mm, p = 23 mm, g = 7 mm, d = 2 mm, a = 1 mm, and h = 5.2 mm. (a) Brillouin diagram of the metallic grating with the loaded rod array. (b) Beam-scanning characteristic in the microwave range. (c) Schematic of the model used for the experimental verification. A monopole antenna is used to mimic the free electron to excite the SSP, while a horn antenna is used to receive the radiation signal. (d) Fabricated prototype. (e) Simulated and experimental results.

Download Full Size | PPT Slide | PDF

Although the radiation mechanism can be verified by this simple method, the beam–wave interaction is neglected in this process. In the free-electron-driven THz radiation system, the SSP is amplified through the beam–wave interaction during the propagation. Considering the beam–wave interaction, a two-dimensional simulation is carried out using the finite-difference time-domain software CHIPIC [30]. The parameters of the metallic grating are unchanged, while those of the rod array are R = 125 µm and p = 500 µm. The gap between the metallic grating and rod array is set to 70 µm. The length of the interaction circuit is 10 mm. The metal is copper, whose conductivity is 5.7 × 107 S/m. The initial voltage of the electron beam is 19.90 keV. The current of the continuous electron beam is set to 200 mA (duty: 0.5). The simulation results are presented in Fig.   10. The SSP is stimulated by the free electron and is amplified during the propagation toward the right terminal through the beam–wave interaction. At the right end, the power reaches 4 W, while the interaction efficiency is approximately 0.55%. According to the energy evolution of the free electron beam, the electron beam losses its energy while propagating from the left part to the right part. The profile of the magnetic field shows that the radiation direction is 90°, which implies that the output power can be collected over the structure. The frequency spectrum of the output power is shown in Fig.   10(c); the peak frequency is approximately 0.325 THz. Moreover, the radiation direction and frequency can be adjusted by changing the energy of the free electron.

 

Fig. 10. Simulation results obtained by considering the beam–wave interaction. (a) Output power variations with the simulation time. Inset: beam energy evolution with the structure length when the power is stable. (b) Frequency spectrum of the output power. Inset: magnetic field profile.

Download Full Size | PPT Slide | PDF

In this system, a rod array is loaded above the grating to reshape the Brillouin zone and thus change the radiation characteristics. Other periodic arrays could also be used instead of the rod array, e.g., transmission grating. In the conventional VEDs based on the SPR mechanism, such as the free-electron light sources, the SSP wave is not considered owing to the confinement along the surface, and thus a high-intensity radiation cannot be achieved [31,32]. The proposed method provides a robust and efficient approach to couple out the SSP wave, and thus generate a coherent high-intensity THz radiation. The SPP and SPR are obtained simultaneously by the proposed method. This study paves the way for the development of compact on-chip THz radiation sources without the output system as the SSP wave is converted into the free space. The free-electron-driven beam-scanning THz radiation source is valuable for various advanced THz radiation applications such as communication and directional detection.

5. Summary

In this study, a free-electron-driven beam-scanning THz radiation was demonstrated. The Brillouin zone of the metallic grating was reshaped owing to the Brillouin zone folding effect of the loaded rod array. The spatial coherent THz radiation was stimulated with the excitation of a free electron. The radiation frequency and direction could be tuned by the energy of the free electron bunch. The influences of the structural parameters and electron energy on the SSP radiation performance were investigated. The multi- and single-frequency radiations could be excited by adjusting the gap between the rod array and metallic grating. Compared with that of the conventional spatial SPR, the field intensity in the proposed scheme was increased ∼20 times. This study provides an approach for the realization of an efficient free-electron-driven on-chip THz radiation source for advanced THz applications.

Funding

National Natural Science Foundation of China (61531002, 61861130367, U1830201); Newton Advanced Fellowship Royal Society (NAF\R1\180121).

Acknowledgment

The authors thank Dr. Bao-Liang Hao, Beijing Vacuum Electronics Research Institute, China, for his support for the CST software simulation.

References

1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002). [CrossRef]  

2. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013). [CrossRef]  

3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004). [CrossRef]  

4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]  

5. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008). [CrossRef]  

6. J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

7. H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018). [CrossRef]  

8. R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019). [CrossRef]  

9. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef]  

10. L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015). [CrossRef]  

11. Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016). [CrossRef]  

12. Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016). [CrossRef]  

13. J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019). [CrossRef]  

14. W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012). [CrossRef]  

15. Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013). [CrossRef]  

16. Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017). [CrossRef]  

17. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012). [CrossRef]  

18. A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014). [CrossRef]  

19. S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018). [CrossRef]  

20. A. Okajima and T. Matsui, “Electron-beam induced terahertz radiation from graded metallic grating,” Opt. Express 22(14), 17490–17496 (2014). [CrossRef]  

21. H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016). [CrossRef]  

22. N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015). [CrossRef]  

23. I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014). [CrossRef]  

24. K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

25. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002). [CrossRef]  

26. CST Corporation, “CST PS Tutorials,” http://www.cst-china.cn.

27. W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014). [CrossRef]  

28. I. Shih, D. B. Chang, J. Drummond, K. Dubbs, D. Masters, R. Prohaska, and W. W. Salisbury, “Experimental investigation of radiation from the interaction of an electron beam and a conducting grating,” Opt. Lett. 15(10), 559–561 (1990). [CrossRef]  

29. T. Ochiai and K. Ohtaka, “Theory of unconventional Smith–Purcell radiation in finite-size photonic crystals,” Opt. Express 14(16), 7378–7397 (2006). [CrossRef]  

30. J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009). [CrossRef]  

31. A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018). [CrossRef]  

32. Y. Ye, F. Liu, M. Wang, L. Tai, K. Cui, X. Feng, and Y. Huang, “Deep-ultraviolet Smith–Purcell radiation,” Optica 6(5), 592–597 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  2. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  5. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
    [Crossref]
  6. J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.
  7. H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
    [Crossref]
  8. R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
    [Crossref]
  9. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref]
  10. L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
    [Crossref]
  11. Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
    [Crossref]
  12. Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
    [Crossref]
  13. J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
    [Crossref]
  14. W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
    [Crossref]
  15. Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013).
    [Crossref]
  16. Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
    [Crossref]
  17. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref]
  18. A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
    [Crossref]
  19. S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
    [Crossref]
  20. A. Okajima and T. Matsui, “Electron-beam induced terahertz radiation from graded metallic grating,” Opt. Express 22(14), 17490–17496 (2014).
    [Crossref]
  21. H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
    [Crossref]
  22. N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
    [Crossref]
  23. I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
    [Crossref]
  24. K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).
  25. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
    [Crossref]
  26. CST Corporation, “CST PS Tutorials,” http://www.cst-china.cn .
  27. W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
    [Crossref]
  28. I. Shih, D. B. Chang, J. Drummond, K. Dubbs, D. Masters, R. Prohaska, and W. W. Salisbury, “Experimental investigation of radiation from the interaction of an electron beam and a conducting grating,” Opt. Lett. 15(10), 559–561 (1990).
    [Crossref]
  29. T. Ochiai and K. Ohtaka, “Theory of unconventional Smith–Purcell radiation in finite-size photonic crystals,” Opt. Express 14(16), 7378–7397 (2006).
    [Crossref]
  30. J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
    [Crossref]
  31. A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
    [Crossref]
  32. Y. Ye, F. Liu, M. Wang, L. Tai, K. Cui, X. Feng, and Y. Huang, “Deep-ultraviolet Smith–Purcell radiation,” Optica 6(5), 592–597 (2019).
    [Crossref]

2019 (3)

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Y. Ye, F. Liu, M. Wang, L. Tai, K. Cui, X. Feng, and Y. Huang, “Deep-ultraviolet Smith–Purcell radiation,” Optica 6(5), 592–597 (2019).
[Crossref]

2018 (3)

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

2017 (1)

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

2016 (3)

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

2015 (2)

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

2014 (4)

2013 (2)

Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

2012 (2)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

2009 (1)

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

2008 (1)

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

2004 (2)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

2002 (2)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

1990 (1)

Akyildiz, I. F.

I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
[Crossref]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Baek, I. K.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
[Crossref]

Bao, L. Y.

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Barik, R. K.

Basten, M. A.

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

Bera, A.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
[Crossref]

Bhattacharya, R.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Chang, D. B.

Chang, K.

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

Chen, Z. G.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Cui, K.

Dong, L.

Drummond, J.

Du, C. H.

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Dubbs, K.

Fahad, A. K.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Feng, X.

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Gallagher, D. A.

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

Gang, Y.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Glyavin, M. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

Golubiatnikov, G. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

Gong, S.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Han, C.

I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

He, Z. C.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hong, D.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

Huang, C. P.

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Huang, Y.

Jiang, G.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Jornet, J. M.

I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Karl, N. J.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Kim, S.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kong, L. B.

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Kooi, S. E.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kreischer, K. E.

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

Kwon, O.

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, D.

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

Li, R.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Li, R. J.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Li, S. S.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Li, Z.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

Liao, C.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

Liu, D.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

Liu, F.

Liu, L. W.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Liu, P. K.

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Liu, S.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Liu, W.

W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Liu, Y. Q.

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Luchinin, A. G.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

Ma, T. J.

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Massuda, A.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Masters, D.

Matsui, T.

McKinney, R. W.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Mendis, R.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Min, S. H.

Mittleman, D. M.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Monnai, Y.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Murdia, C.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Ochiai, T.

Ohtaka, K.

Okajima, A.

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Park, G. S.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Prohaska, R.

Roques-Carmes, C.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Ruan, C. J.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Salisbury, W. W.

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

Sattorov, M.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Shih, I.

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Soljacic, M.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Tai, L.

Tang, H. H.

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tucek, J. C.

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

Wang, H.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Wang, J. G.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Wang, M.

Wang, Y.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Xi, H. Z.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xu, Z.

W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

Yang, Y.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Yang, Z.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Ye, Y.

Yin, X. G.

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Zhang, C. Y.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Zhang, K.

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

Zhang, P.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Zhou, J.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Zhou, Y.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013).
[Crossref]

Zhu, G.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Zhu, J. F.

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACS Photonics (1)

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Adv. Opt. Mater. (1)

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

Appl. Phys. Lett. (2)

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

IEEE Trans. Plasma Sci. (3)

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

J. Appl. Phys. (1)

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Nat. Photonics (3)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

New J. Phys. (2)

W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Commun. (1)

I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
[Crossref]

Phys. Rev. Lett. (1)

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

Sci. Rep. (4)

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Other (3)

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

CST Corporation, “CST PS Tutorials,” http://www.cst-china.cn .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Model for the free-electron beam-scanning THz radiation source. A rod array is set above the metallic grating. The free electron bunch moves through the gap between the rod array and metallic grating. The operation voltage of the free electron is 36 kV (${v_e} = 0.357c$). (b) Diffraction relation between the wavenumbers of the SSP and propagation waves. Dispersion curves of the (c) metallic grating and (d) metallic grating with the loaded rod array. The electron beam line and interaction point are indicated in the dispersion diagrams.
Fig. 2.
Fig. 2. Simulation of the coherent THz radiation. (a) Radiation frequency spectrum probed in the free space. (b) Electric contour EZ at the radiation frequency.
Fig. 3.
Fig. 3. Simulation results with different radii; g = 50 µm, operation voltage U = 36 kV (ve = 0375c). (a) Radiation frequency and intensity variations with the radius. (b) Frequency spectra of the coherent radiation and ordinary SPR generated by the rod array.
Fig. 4.
Fig. 4. Simulation results with different gaps. The radius of the rod array R is 75 µm, while the operation voltage U is 36 kV. (a) Radiation frequency and field intensity changes with the gap. (b) Multi- and single-frequency radiation spectra with different gaps. (c) Dispersion curves of the metallic grating loaded with the rod array with g = 20 µm.
Fig. 5.
Fig. 5. Simulation results with different radii. The gap between the rod array and metallic grating is set to 20 µm, while the operation voltage U is 36 kV. (a) Radiation frequency and intensity variations with the radius. (b) Frequency spectra of the multi-frequency radiation and ordinary SPR with a different radius of R = 75 µm.
Fig. 6.
Fig. 6. Simulation results with different operation voltages. The gap between the rod array and metallic grating is set to 50 µm, R = 75 µm, p = 300 µm. (a) Distribution of the radiation frequency at different operation frequencies. (b) Variations in interaction frequency and field intensity with the operation voltage.
Fig. 7.
Fig. 7. Simulation results with different periods of the rod array; g = 50 µm, R = 75 µm. Brillouin zone distributions at (a) p = 3d and (b) p = 4d. (c) Probed radiation spectra at different periods of the rod array at far field.
Fig. 8.
Fig. 8. Beam-scanning characteristic in the THz range. The parameters of the rod array are R = 125 µm, p = 500 µm, and g = 70 µm. (a) Brillouin diagram of the metallic grating with the loaded rod array. (b) Radiation angles at different operation frequencies. (c) Directional charts at different operation frequencies.
Fig. 9.
Fig. 9. Simulated and experimentally measured radiation properties. The parameters of the rod array are R = 7.8 mm, p = 23 mm, g = 7 mm, d = 2 mm, a = 1 mm, and h = 5.2 mm. (a) Brillouin diagram of the metallic grating with the loaded rod array. (b) Beam-scanning characteristic in the microwave range. (c) Schematic of the model used for the experimental verification. A monopole antenna is used to mimic the free electron to excite the SSP, while a horn antenna is used to receive the radiation signal. (d) Fabricated prototype. (e) Simulated and experimental results.
Fig. 10.
Fig. 10. Simulation results obtained by considering the beam–wave interaction. (a) Output power variations with the simulation time. Inset: beam energy evolution with the structure length when the power is stable. (b) Frequency spectrum of the output power. Inset: magnetic field profile.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 k x n n = S a 2 ( k z n a 2 ) = d a cot ( k 0 h ) ,
ω = v e k z ,
v e = c 1 1 / 1 ( 1 + e U m 0 c 2 ) 2 ( 1 + e U m 0 c 2 ) 2 ,
k z 0 + 2 n π L = k 0 cos θ ,
k z 0 = ω v e ,
k 0 = ω c .
c f = ( c v e cos θ ) L n ,

Metrics