Abstract

The implementation of polarization controlling components enables additional functionalities of short-wave infrared (SWIR) imagers. The high-performance and mass-producible polarization controller based on Si metasurface is in high demand for the next-generation SWIR imaging system. In this work, we report the first demonstration of all-Si metasurface based polarizing bandpass filters (PBFs) on 12-inch wafers. The PBF achieves a polarization extinction ratio of above 10 dB in power within the passbands. Using the complementary metal-oxide-semiconductor (CMOS) compatible 193nm ArF deep ultra-violet (DUV) immersion lithography and inductively coupled plasma (ICP) etch processing line, a device yield of 82% is achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Traditional image sensors only capture intensity and spectral information of light, whereas additional dimension of visual information can be captured by introducing polarization [1–3]. In short wave infrared (SWIR) range, the polarization controlling devices not only enhance the performance of the imagers under foggy and hazy weather conditions, but also enable new functionalities such as material identification [4]. Therefore, these devices are imperative for the next-generation SWIR imaging systems.

Metasurface is a thin nanostructured layer with subwavelength thickness, which can be used to manipulate the phase of electromagnetic waves precisely, and hence controls the wavefront. Metasurface-based optical devices have been demonstrated for imaging [5–8], augmented reality [9,10], chiral hologram [11–13], high order harmonics generation [14–16], and color display [17–20]. In order to make the applications of these devices more practical, it is expected to fabricate metasurface based devices using the complementary metal-oxide-semiconductor (CMOS) fabrication technology [21–24], where Si is dominantly used. At the same time, Si is also a desirable material in the SWIR range with low loss and mature fabrication process to achieve efficient polarization control [25–27]. However, to the best of our knowledge, the CMOS compatible metasurface polarizing bandpass filter (PBF) at SWIR has not been demonstrated so far.

In this paper, we demonstrate the first all-Si metasurface PBF mass-produced on a 12-inch wafer to manipulate the polarization in the SWIR wavelength range. Utilizing polarization selectivity of the anisotropic Si nano-pyramids, the PBF can be used to separate the incident beam to two polarization statuses at two desired bands. Si nano-pyramids were fabricated using 193 nm ArF DUV immersion lithography and direct inductively coupled plasma (ICP) etch. Dual passband metasurfaces for polarization beam filtering are studied numerically and verified experimentally. By varying the Si pyramid geometric parameters, e.g. critical dimension (CD), height, and sidewall angle, the bandwidth together with the center wavelength of PBF can be controlled precisely.

2. Device design and fabrication

The three-dimensional (3D) schematic illustration of the Si metasurface PBF is shown in Fig. 1(a). The PBF is composed of an array of Si pyramids. The geometric parameters of each pyramid are labeled as X-direction CD lx, Y-direction CD ly, height h and pitch p. Based on the size difference between X-direction and Y-direction of unit nanostructures, the metasurface shows birefringence for Ex and Ey polarization incidence. To investigate the birefringence of anisotropic Si nanostructure, we simulate the structure with the size lx = 220 nm, ly = 440 nm, h = 750 nm and p = 1 μm. In Figs. 1(b)-1(e), the sidewall angle is set to 90° in first simulation. As a comparison, we also simulate the structure with sidewall angle of 86° in Figs. 1(f)-1(i) while the rest of the parameters remain unchanged.

 

Fig. 1 (a) The schematic of the proposed all-Si PBF. There are two different passbands, one for X- and the other for Y-polarized light beams. Within the former passband, only the X-polarized light is transmitted whereas the Y-polarized light is reflected (as illustrated in this figure), and vice versa for the latter passband. (b) and (c) Simulated cross-sectional normalized E-field and H-field distribution of cylindrical pillars for X- polarizations incidence at 1320 nm. (d) and (e) Simulated cross-sectional normalized E-field and H-field distribution of cylindrical pillars for Y- polarizations at 1620 nm. (f) and (g) Simulated cross-sectional normalized E-field and H-field distribution of pyramid pillars for X- polarizations incidence at 1320 nm. (h) and (i) Simulated cross-sectional normalized E-field and H-field distribution of pyramid pillars for Y- polarizations at 1620 nm.

Download Full Size | PPT Slide | PDF

The normalized electric and magnetic field distributions are simulated around the both cylindrical and pyramid Si pillars by finite-difference time-domain (FDTD) method. The incidence wavelength covers from 1100 nm to 2500 nm with 10 nm resolution for both Ex and Ey polarizations (Refractive index n of Si is in the range of 3.44-3.54 within 1100-2500 nm wavelength [28]). As seen from Fig. 1(b), the normalized electric field forms a strong vortex with Ex polarization incidence at 1320 nm. The normalized electric field is defined as Emag = (Ex2 + Ey2 + Ez2)0.5. The electric field vortex induces magnetic field enhancement at the Si pillar’s center of Y-Z plane, which is shown in Fig. 1(c). It indicates the excitation of magnetic dipole resonance, which will cause the high reflection in such structures [29]. Similarly, as shown in Fig. 1 (d), the electric field vortex is formed at the Si pillar’s center of Y-Z plane with Ey polarization incidence at 1620 nm. Figure 1(e) illustrates the X-Z plane magnetic field enhancement at the center of Si pillar. Figures 1(f) and 1(g) are simulation results of the normalized electric field which forms a strong vortex, and the magnetic field enhancement with Ex polarization incidence at 1320 nm. Figures 1(h) and 1(i) indicate the magnetic resonance with Ey polarization incidence at 1620 nm. Despite the existence of 86° sidewall angle of Si pyramid, the magnetic dipole resonance still occurs at the similar region compared with the structures with 90° sidewall angle.

The transmission of the anisotropic subwavelength structures is selective to the polarization of incident light. The incidence polarization along long axes (Y-Polarization) will generate electric field vortex and magnetic dipole resonance at the longer wavelength (1620 nm), and reflect most portion of the incident light in the same direction, while the light in X-Polarization is mostly transmitted. We define 1620 nm as X-Passband here. Vice versa for Y-passband at 1320 nm. Therefore, the device proposed in this paper works as a dual-band polarizing band pass filter. It should be noted that the fabrication process will bring in some imperfection of nanostructures. The effect of CD, side-wall angle and height variation caused by fabrication processes will be discussed in the next section.

The device was fabricated on a 12-inch Si wafer, as shown in Fig. 2(a). Using IME’s multiple-projects-wafer (MPW) flat-optics reticle, the designed metasurface was patterned with a 193 nm immersion scanner. After the subsequent ICP etching step [30], a cleaning process was employed to remove the photoresist residuals. Each die has a size of 26 × 33 mm2, and is central-symmetrically repeated on the wafer. Figure 2(b) shows the zoomed-in view of one MPW die, with the PBF highlighted by white dashed rectangular box.

 

Fig. 2 (a) Photography of the 300 mm Si metasurface wafer fabricated by IME’s multiple-projects-wafer (MPW) line for flat-optics. (b) Zoomed-in view of the die located at wafer center. (c) Top-view SEM image of a 3 × 3 Si pyramid array. (d) 45°-tilted SEM image of one Si pyramid located at wafer center. The dashed-yellow line A-A’ indicates the FIB milling region for TEM analysis. (e) Cross-sectional TEM image of the Si pyramid along A-A’.

Download Full Size | PPT Slide | PDF

Figure 2(c) is the top view scanning electron microscopy (SEM) image of a 3 × 3 Si pyramid array. The white periphery ring is the sidewall of each pyramid. The pitch p between adjacent pyramids is 1 μm. Figure 2(d) is a 45° tilted-view SEM image of one Si pyramid. The yellow dashed-line indicates the focused ion beam (FIB) milling region for transmission electron microscopy (TEM) analysis. The pyramid height h was measured from the tilted SEM picture while lx,top, ly,top, lx,bottom and ly,bottom lengths were measured from top-view photos. The pyramid sidewall angle along X-axis θx was calculated from lx,top, lx,bottom and h. Similarly, the sidewall angle θy can be calculated from ly,top, ly,bottom and h. The geometric parameters lx,top and lx,bottom obtained from the SEM images were then verified by the cross-sectional TEM images of the Si pyramid, as shown in Fig. 2(e).

The die mapping of the 300 mm Si wafer is illustrated in Fig. 3(a). Wafer-level process uniformity was investigated by analyzing 17 dies at difference locations on the wafer. The red dots indicate the locations of selected PBFs across the wafer. The center die is marked as (0, 0) while the bottom one is (0, −4). The geometric parameters lx,top, ly,top, h, θx and θy of the Si pyramids at the selected dies are summarized in Figs. 3(b)-3(f), respectively. Decent lx,top and h values of 163 ± 7 nm and 766 ± 19 nm are realized. The sidewall angles θx of all the selected Si pyramids are larger than 85°. In addition, the geometrical parameters of the Si pyramids along Y-direction were also characterized. ly,top and θy are measured to be 384 ± 7 nm and 86.1 ± 0.5°, respectively.

 

Fig. 3 (a) Die mapping of the 300 mm Si wafer. Wafer-level process uniformity was investigated by analyzing 17 dies at different locations. The red dots indicate the locations of the PBFs at different dies. The h, lx,top, ly,top, θx and θy values of the Si pyramids at different wafer dies are summarized in (b)-(f), respectively.

Download Full Size | PPT Slide | PDF

3. Results and discussion

A. Polarizing beam filter performance analysis

Transmission spectra of the fabricated Si metasurface PBFs were simulated by FDTD method. Figure 4(a) shows the simulated transmission spectra of the center die (0, 0). The blue dotted line and red solid line indicate the transmittance of X-polarized (Tx) and Y-polarized (Ty) incident beams at SWIR range, respectively. The Y-passband is the spectrum window with low transmission of X-polarization incidence and high transmission of Y-polarization incidence. Vice versa for X-passband. At λ = 1310 nm, Tx is almost zero while the Y-polarized light beam maintains a relatively high transmittance, representing Y-passband. X-passband is at λ = 1610 nm, transmittance of the Y-polarized incidence (Ty) is close to zero and Tx is high. Therefore, the device can work as a dual band pass filter for two polarization directions. Figure 4(b) illustrates the cross-sectional electric field (E-field) distribution of X- and Y-polarization at λ = 1310 and 1610 nm, respectively. The E-field distribution clearly shows that the Y-polarized light can pass at 1310 nm, whereas the X-polarized one can pass at 1610 nm. The side-wall angles in the center die (0, 0) is about 86 degrees. The small variations of the side-wall angle make insignificant impact on passband shifting.

 

Fig. 4 FDTD simulated and measured results of the PBF at the center die (0, 0). (a) Simulated transmittance spectra of X- and Y-polarization incidences. (b) Simulated cross-sectional E-field distribution for X- and Y-polarizations at 1310 nm and 1610 nm. (c) Measured transmittance spectra of X-polarization and Y-polarization incidence. (d) Extinction ratio of the PBF at SWIR range, which is defined as 10 × log (Tx/Ty) in decibel (dB).

Download Full Size | PPT Slide | PDF

The Bruker Vertex 70 Fourier transform infrared spectroscopy (FTIR) is used to conduct the measurements. Transmittance of the PBF at center die (0, 0) is illustrated in Fig. 4(c). Figure 4(d) shows the extinction ratio of the PBF at SWIR range, which is defined as 10 × log (Tx/Ty) in decibel (dB). In the FTIR system, both polarizer and analyzer were used to select incident and transmitted beams with certain polarization direction. Figure 4(d) clearly shows two operation bands of PBF near λ = 1360 nm and 1660 nm with more than 10 dB extinction ratio.

In order to study the performance of the devices at the edge of the 12-inch wafer, the measured dimension of Si pyramid from edge of the wafer is input into the FDTD. Figure 5(a) shows the simulation results of transmission spectra of the PBF at the edge die (0, −4). Because of the smaller CD, the Y-passband is blue-shifted to around 1200 nm and the X-passband is blue-shifted to 1560nm. Figure 5(b) illustrates the cross-sectional E-field distribution of X- and Y-polarized incidences at λ = 1200 and 1560 nm, respectively. Figure 5(c) is the FTIR measurement results of PBF at die (0, −4), with its extinction ratio spectrum shown in Fig. 5(d). Two operation bands at around 1200 nm and 1560 nm with at least 10 dB extinction ratio can be observed. The shift of passbands could be attributed to the difference in geometric parameters of the Si pyramids at different wafer locations.

 

Fig. 5 FDTD simulated results of the PBF at die (0, −4). (a) Transmittance spectra of X-polarization and Y-polarization incidence. (b) Cross-sectional E-field distribution for X- and Y-polarizations at 1200 nm and 1560 nm. (c) FTIR measured transmittance spectra of the PBF at die (0, −4), with X- and Y-polarization incidences. (d) Extinction ratio of the PBF in SWIR.

Download Full Size | PPT Slide | PDF

B. Wafer level device performance analysis

Optical characterization of the selected 17 PBFs were performed to analyze the wafer-level device performance. The polarization sensitive extinction ratio of the 17 dies were plotted in Fig. 6(a). The X-polarization passbands of the PBFs at die (0, 4) and (0, −4) are blue-shifted as compared with those at the rest 15 dies. It should be noted that both of the two PBFs are located at the extreme edge of the wafer, and have different geometric parameters as compared with those located near the center. Figure 6(b) summarizes the passbands of the 17 selected PBFs with at least 10 dB extinction ratio. By targeting 1360 nm as the Y-polarization passband, 15 out of 17 sampled PBFs are working devices with more than 10 dB polarization extinction ratio, except those at die (0, −3) and (0, −4). In addition, by choosing 1660 nm as the X-polarization passband, 15 out of 17 dies are working, whereas PBFs at die (0, 4) and (0, −4) are out of range. If combining both passbands, 14 out of 17 dies sampled are in good working functions, corresponding to a yield of 82%. By outlier analysis of the 17 PBFs, the one at die (0, −4) is an extreme outlier for Y-polarization passband and a mild outlier for X-polarization passband. Both of the PBFs at die (0, −3) and (0, 4) are not outliers. The wafer functionality can be further enhanced by improving the process uniformity for lithography and etching steps in the future.

 

Fig. 6 (a) FTIR measurement results of the extinction ratio spectra for the selected 17 PBFs. 15 dies with 10 dB passband for X-polarization is highlighted in the dashed circle. (b) Working bandwidth with 10 dB extinction ratio for 17 PBFs based on (a).

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we have demonstrated the Si pyramid-based metasurface on a 12-inch wafer for polarization control. Based on the CMOS-compatible process line, the fabricated metasurface can be used as PBF working on dual SWIR bands. The PBF has a polarization extinction ratio of above 10 dB within the passbands. The wafer level process uniformity was analyzed and 14 out of 17 sampled dies were found to be in working condition in the desired dual-passbands. With 193nm ArF immersion lithography capability of downscaling the CD to sub-50 nm, flat-optics devices with working wavelengths extendable to visible range and more precisely-controlled feature sizes can be realized. This work paves the way for the mass-production of metasurface based polarization controlling devices for the next generation compact imaging systems.

Funding

RIE2020 Advanced Manufacturing and Engineering (AME) Domain's Core Funds: SERC Strategic Funds (A1818g0028).

References

1. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010). [CrossRef]   [PubMed]  

2. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010). [CrossRef]   [PubMed]  

3. T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014). [CrossRef]   [PubMed]  

4. D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

5. H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018). [CrossRef]   [PubMed]  

6. R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019). [CrossRef]   [PubMed]  

7. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018). [CrossRef]   [PubMed]  

8. B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017). [CrossRef]   [PubMed]  

9. G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018). [CrossRef]   [PubMed]  

10. S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019). [CrossRef]  

11. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017). [CrossRef]   [PubMed]  

12. M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016). [CrossRef]   [PubMed]  

13. Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018). [CrossRef]   [PubMed]  

14. G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017). [CrossRef]   [PubMed]  

15. S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018). [CrossRef]   [PubMed]  

16. L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018). [CrossRef]   [PubMed]  

17. T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, and Y. Gu, “Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer,” Opt. Express 26(15), 19548–19554 (2018). [CrossRef]   [PubMed]  

18. X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017). [CrossRef]   [PubMed]  

19. J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018). [CrossRef]   [PubMed]  

20. H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019). [CrossRef]  

21. A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26(2), 1573–1585 (2018). [CrossRef]   [PubMed]  

22. Z. Xu, Y. Dong, Y. H. Fu, Q. Zhong, T. Hu, D. Li, Y. Li, N. Li, Y. Lin, Q. Lin, S. Zhu, and N. Singh, “Embedded dielectric metasurface based subtractive color filter on a 300mm glass wafer,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), p. STh1O.4. [CrossRef]  

23. Y. Dong, Z. Xu, J. Tong, Y. H. Fu, Q. Zhong, V. Bliznetsov, T. Hu, Y. Li, S. Zhu, Q. Lin, D. Zhang, and N. Singh, “Metasurface-based Waveplates Demonstrated on 300 mm Si CMOS Platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), p. SF3J.6. [CrossRef]  

24. T. Hu, Q. Zhong, N. Li, Y. Dong, Y. H. Fu, Z. Xu, D. Li, V. Bliznetsov, K. H. Lai, S. Zhu, Q. Lin, Y. Gu, N. Singh, and D.-L. Kwong, “Demonstration of a-Si metalenses on a 12-inch glass wafer by CMOS-compatible technology,”https://arxiv.org/abs/1906.11764.

25. Z. Li, G. Zheng, P. He, S. Li, Q. Deng, J. Zhao, and Y. Ai, “All-silicon nanorod-based Dammann gratings,” Opt. Lett. 40(18), 4285–4288 (2015). [CrossRef]   [PubMed]  

26. G. Zheng, G. Liu, M. G. Kenney, Z. Li, P. He, S. Li, Z. Ren, and Q. Deng, “Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays,” Opt. Express 24(6), 6749–6757 (2016). [CrossRef]   [PubMed]  

27. P. Velha, V. Sorianello, M. V. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. Lett. 41(24), 5656–5659 (2016). [CrossRef]   [PubMed]  

28. E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).

29. Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017). [CrossRef]   [PubMed]  

30. V. Bliznetsov and K. L. W. Loong, “Development of trilayer mask etching for fabrication of high aspect ratio structures,” in Proceedings of Electron Devices Technology and Manufacturing Conference (IEEE, 2019), pp. 127–129. [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [Crossref] [PubMed]
  2. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
    [Crossref] [PubMed]
  3. T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
    [Crossref] [PubMed]
  4. D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).
  5. H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
    [Crossref] [PubMed]
  6. R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
    [Crossref] [PubMed]
  7. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
    [Crossref] [PubMed]
  8. B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
    [Crossref] [PubMed]
  9. G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
    [Crossref] [PubMed]
  10. S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
    [Crossref]
  11. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref] [PubMed]
  12. M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
    [Crossref] [PubMed]
  13. Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
    [Crossref] [PubMed]
  14. G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
    [Crossref] [PubMed]
  15. S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
    [Crossref] [PubMed]
  16. L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
    [Crossref] [PubMed]
  17. T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, and Y. Gu, “Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer,” Opt. Express 26(15), 19548–19554 (2018).
    [Crossref] [PubMed]
  18. X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
    [Crossref] [PubMed]
  19. J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
    [Crossref] [PubMed]
  20. H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
    [Crossref]
  21. A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26(2), 1573–1585 (2018).
    [Crossref] [PubMed]
  22. Z. Xu, Y. Dong, Y. H. Fu, Q. Zhong, T. Hu, D. Li, Y. Li, N. Li, Y. Lin, Q. Lin, S. Zhu, and N. Singh, “Embedded dielectric metasurface based subtractive color filter on a 300mm glass wafer,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), p. STh1O.4.
    [Crossref]
  23. Y. Dong, Z. Xu, J. Tong, Y. H. Fu, Q. Zhong, V. Bliznetsov, T. Hu, Y. Li, S. Zhu, Q. Lin, D. Zhang, and N. Singh, “Metasurface-based Waveplates Demonstrated on 300 mm Si CMOS Platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), p. SF3J.6.
    [Crossref]
  24. T. Hu, Q. Zhong, N. Li, Y. Dong, Y. H. Fu, Z. Xu, D. Li, V. Bliznetsov, K. H. Lai, S. Zhu, Q. Lin, Y. Gu, N. Singh, and D.-L. Kwong, “Demonstration of a-Si metalenses on a 12-inch glass wafer by CMOS-compatible technology,” https://arxiv.org/abs/1906.11764 .
  25. Z. Li, G. Zheng, P. He, S. Li, Q. Deng, J. Zhao, and Y. Ai, “All-silicon nanorod-based Dammann gratings,” Opt. Lett. 40(18), 4285–4288 (2015).
    [Crossref] [PubMed]
  26. G. Zheng, G. Liu, M. G. Kenney, Z. Li, P. He, S. Li, Z. Ren, and Q. Deng, “Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays,” Opt. Express 24(6), 6749–6757 (2016).
    [Crossref] [PubMed]
  27. P. Velha, V. Sorianello, M. V. Preite, G. De Angelis, T. Cassese, A. Bianchi, F. Testa, and M. Romagnoli, “Wide-band polarization controller for Si photonic integrated circuits,” Opt. Lett. 41(24), 5656–5659 (2016).
    [Crossref] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).
  29. Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
    [Crossref] [PubMed]
  30. V. Bliznetsov and K. L. W. Loong, “Development of trilayer mask etching for fabrication of high aspect ratio structures,” in Proceedings of Electron Devices Technology and Manufacturing Conference (IEEE, 2019), pp. 127–129.
    [Crossref]

2019 (3)

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

2018 (9)

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26(2), 1573–1585 (2018).
[Crossref] [PubMed]

J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
[Crossref] [PubMed]

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
[Crossref] [PubMed]

T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, and Y. Gu, “Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer,” Opt. Express 26(15), 19548–19554 (2018).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

2017 (5)

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref] [PubMed]

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

2014 (1)

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

2013 (1)

D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

2010 (2)

Achilefu, S.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Adams, D. C.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Ai, Y.

Alenin, A. S.

D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

Ambrosio, A.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Anwar, M. S.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Balthasar Mueller, J. P.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Bianchi, A.

Bliznetsov, V.

T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, and Y. Gu, “Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer,” Opt. Express 26(15), 19548–19554 (2018).
[Crossref] [PubMed]

V. Bliznetsov and K. L. W. Loong, “Development of trilayer mask etching for fabrication of high aspect ratio structures,” in Proceedings of Electron Devices Technology and Manufacturing Conference (IEEE, 2019), pp. 127–129.
[Crossref]

Brener, I.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Cai, W.

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

Capasso, F.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26(2), 1573–1585 (2018).
[Crossref] [PubMed]

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Cassese, T.

Charanya, T.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Cheah, K. W.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Chen, B. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Chen, J.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

Chen, J.-W.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Chen, M. K.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

Chen, M.-K.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Chen, S.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Chen, Y. H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Chu, C. H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Chung, T. L.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

Clarke, D. R.

Cronin, T. W.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

De Angelis, G.

Deng, Q.

Devlin, R. C.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Ding, V.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Dong, Y.

Duan, X.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref] [PubMed]

Engheta, N.

Fu, Y. H.

Gao, S.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Groever, B.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Gruev, V.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
[Crossref] [PubMed]

Gu, Y.

Guo, J.

J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
[Crossref] [PubMed]

Han, J.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Hariri, L. P.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

He, P.

Hong, J.-Y.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Hu, T.

Huang, S.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Huang, T.-T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Huang, Y.-T.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

Huang, Y.-W.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Hwang, S.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Jeon, S.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Jeong, J.-H.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Kahan, L.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Kamin, S.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref] [PubMed]

Kang, H.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Kanhaiya, P.

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Keeler, G. A.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Kenney, M. G.

Khorasaninejad, M.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Kim, H.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Kim, I.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Kivshar, Y.

L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
[Crossref] [PubMed]

Koch, B. M.

D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

Koshelev, K.

L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
[Crossref] [PubMed]

Kravchenko, I.

L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
[Crossref] [PubMed]

Kruk, S.

L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
[Crossref] [PubMed]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Kuo, H. Y.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Lai, K. H.

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Lake, S. P.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Lan, S.

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

Lan, Y.-C.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Lee, B.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Lee, D.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Lee, G.-Y.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Lee, I. C.

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Lee, K.-T.

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

LeMaster, D. A.

D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

Li, G.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Li, K. F.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Li, S.

Li, T.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Li, W.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Li, Y.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Li, Z.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

G. Zheng, G. Liu, M. G. Kenney, Z. Li, P. He, S. Li, Z. Ren, and Q. Deng, “Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays,” Opt. Express 24(6), 6749–6757 (2016).
[Crossref] [PubMed]

Z. Li, G. Zheng, P. He, S. Li, Q. Deng, J. Zhao, and Y. Ai, “All-silicon nanorod-based Dammann gratings,” Opt. Lett. 40(18), 4285–4288 (2015).
[Crossref] [PubMed]

Lim, H.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Lin, Q.

Lin, R. J.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

Lin, R.-M.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Liu, G.

Liu, H.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Liu, N.

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref] [PubMed]

Liu, S.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Liu, Y.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Liu, Z.

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Loong, K. L. W.

V. Bliznetsov and K. L. W. Loong, “Development of trilayer mask etching for fabrication of high aspect ratio structures,” in Proceedings of Electron Devices Technology and Manufacturing Conference (IEEE, 2019), pp. 127–129.
[Crossref]

Luk’yanchuk, B.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Luo, Y.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Luther-Davies, B.

L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
[Crossref] [PubMed]

Mahamat, A. H.

D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

Marshall, J.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Mehmood, M. Q.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Moon, S.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Nam, K. T.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Pahlevaninezhad, H.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Peng, L.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Perkins, R.

Plum, E.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Powell, S. B.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Preite, M. V.

Pun, E. Y. B.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Qiu, C.-W.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Raman, B.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Ratliff, B. M.

D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

Ren, Z.

Reno, J. L.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Rho, J.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Roberts, N. W.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Rodrigues, S.

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

Romagnoli, M.

Rubin, N. A.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Saha, D.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Saleem, M.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Schlickriede, C.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

She, A.

Shi, Z.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Shian, S.

Sinclair, M. B.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Song, B.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Sorianello, V.

Staude, I.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Su, V.-C.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Suter, M. J.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Taghinejad, M.

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

Testa, F.

Tsai, D. P.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Tseng, C.-K.

Tu, Y.

J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
[Crossref] [PubMed]

Tyo, J. S.

D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

Vabishchevich, P. P.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Van der Spiegel, J.

Vaskin, A.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Velha, P.

Wang, B.

J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
[Crossref] [PubMed]

Wang, J.-H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
[Crossref] [PubMed]

J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Wang, S.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, and Y. Gu, “Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer,” Opt. Express 26(15), 19548–19554 (2018).
[Crossref] [PubMed]

Wang, Y.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Wang, Z.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Wu, L.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Wu, P. C.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Wu, W.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Xu, Q.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Xu, Y.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Xu, Z.

T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, and Y. Gu, “Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer,” Opt. Express 26(15), 19548–19554 (2018).
[Crossref] [PubMed]

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Yang, H.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Yang, L.

J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
[Crossref] [PubMed]

Yang, Q.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Yoon, J.

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

York, T.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
[Crossref] [PubMed]

Zentgraf, T.

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Zhang, L.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

Zhang, S.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26(2), 1573–1585 (2018).
[Crossref] [PubMed]

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

Zhang, W.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Zhang, X.

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Zhang, Y.

J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
[Crossref] [PubMed]

Zhao, J.

Zheng, G.

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

G. Zheng, G. Liu, M. G. Kenney, Z. Li, P. He, S. Li, Z. Ren, and Q. Deng, “Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays,” Opt. Express 24(6), 6749–6757 (2016).
[Crossref] [PubMed]

Z. Li, G. Zheng, P. He, S. Li, Q. Deng, J. Zhao, and Y. Ai, “All-silicon nanorod-based Dammann gratings,” Opt. Lett. 40(18), 4285–4288 (2015).
[Crossref] [PubMed]

Zhu, A.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Zhu, S.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, and Y. Gu, “Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer,” Opt. Express 26(15), 19548–19554 (2018).
[Crossref] [PubMed]

ACS Nano (1)

Z. Li, I. Kim, L. Zhang, M. Q. Mehmood, M. S. Anwar, M. Saleem, D. Lee, K. T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, and C.-W. Qiu, “Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light,” ACS Nano 11(9), 9382–9389 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

S. Lan, X. Zhang, M. Taghinejad, S. Rodrigues, K.-T. Lee, Z. Liu, and W. Cai, “Metasurfaces for Near-Eye Augmented Reality,” ACS Photonics 6(4), 864–870 (2019).
[Crossref]

Adv. Opt. Mater. (1)

H. Liu, H. Yang, Y. Li, B. Song, Y. Wang, Z. Liu, L. Peng, H. Lim, J. Yoon, and W. Wu, “Switchable All-Dielectric Metasurfaces for Full-Color Reflective Display,” Adv. Opt. Mater. 7(8), 1801639 (2019).
[Crossref]

Light Sci. Appl. (1)

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7(1), 25 (2018).
[Crossref] [PubMed]

Nano Lett. (3)

G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, “Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation,” Nano Lett. 17(12), 7974–7979 (2017).
[Crossref] [PubMed]

L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear Wavefront Control with All-Dielectric Metasurfaces,” Nano Lett. 18(6), 3978–3984 (2018).
[Crossref] [PubMed]

B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,” Nano Lett. 17(10), 6345–6352 (2017).
[Crossref] [PubMed]

Nat. Commun. (3)

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

X. Duan, S. Kamin, and N. Liu, “Dynamic plasmonic colour display,” Nat. Commun. 8(1), 14606 (2017).
[Crossref] [PubMed]

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9(1), 2507 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14(3), 227–231 (2019).
[Crossref] [PubMed]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13(3), 227–232 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optic endoscope for high-resolution optical coherence tomography in vivo,” Nat. Photonics 12(9), 540–547 (2018).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Proc IEEE Inst Electr Electron Eng (1)

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, S. P. Lake, B. Raman, and V. Gruev, “Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature’s method in sensors to image and diagnose with polarized light,” Proc IEEE Inst Electr Electron Eng 102(10), 1450–1469 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

D. A. LeMaster, A. H. Mahamat, B. M. Ratliff, A. S. Alenin, J. S. Tyo, and B. M. Koch, “SWIR active polarization imaging for material identification,” Proc. SPIE 8873, 88730O (2013).

Sci. Adv. (1)

M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, and F. Capasso, “Broadband and chiral binary dielectric meta-holograms,” Sci. Adv. 2(5), e1501258 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Guo, Y. Tu, L. Yang, Y. Zhang, L. Wang, and B. Wang, “Design and Simulation of Active Frequency-selective Metasurface for Full-colour Plasmonic Display,” Sci. Rep. 8(1), 11778 (2018).
[Crossref] [PubMed]

Other (5)

E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).

Z. Xu, Y. Dong, Y. H. Fu, Q. Zhong, T. Hu, D. Li, Y. Li, N. Li, Y. Lin, Q. Lin, S. Zhu, and N. Singh, “Embedded dielectric metasurface based subtractive color filter on a 300mm glass wafer,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), p. STh1O.4.
[Crossref]

Y. Dong, Z. Xu, J. Tong, Y. H. Fu, Q. Zhong, V. Bliznetsov, T. Hu, Y. Li, S. Zhu, Q. Lin, D. Zhang, and N. Singh, “Metasurface-based Waveplates Demonstrated on 300 mm Si CMOS Platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), p. SF3J.6.
[Crossref]

T. Hu, Q. Zhong, N. Li, Y. Dong, Y. H. Fu, Z. Xu, D. Li, V. Bliznetsov, K. H. Lai, S. Zhu, Q. Lin, Y. Gu, N. Singh, and D.-L. Kwong, “Demonstration of a-Si metalenses on a 12-inch glass wafer by CMOS-compatible technology,” https://arxiv.org/abs/1906.11764 .

V. Bliznetsov and K. L. W. Loong, “Development of trilayer mask etching for fabrication of high aspect ratio structures,” in Proceedings of Electron Devices Technology and Manufacturing Conference (IEEE, 2019), pp. 127–129.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of the proposed all-Si PBF. There are two different passbands, one for X- and the other for Y-polarized light beams. Within the former passband, only the X-polarized light is transmitted whereas the Y-polarized light is reflected (as illustrated in this figure), and vice versa for the latter passband. (b) and (c) Simulated cross-sectional normalized E-field and H-field distribution of cylindrical pillars for X- polarizations incidence at 1320 nm. (d) and (e) Simulated cross-sectional normalized E-field and H-field distribution of cylindrical pillars for Y- polarizations at 1620 nm. (f) and (g) Simulated cross-sectional normalized E-field and H-field distribution of pyramid pillars for X- polarizations incidence at 1320 nm. (h) and (i) Simulated cross-sectional normalized E-field and H-field distribution of pyramid pillars for Y- polarizations at 1620 nm.
Fig. 2
Fig. 2 (a) Photography of the 300 mm Si metasurface wafer fabricated by IME’s multiple-projects-wafer (MPW) line for flat-optics. (b) Zoomed-in view of the die located at wafer center. (c) Top-view SEM image of a 3 × 3 Si pyramid array. (d) 45°-tilted SEM image of one Si pyramid located at wafer center. The dashed-yellow line A-A’ indicates the FIB milling region for TEM analysis. (e) Cross-sectional TEM image of the Si pyramid along A-A’.
Fig. 3
Fig. 3 (a) Die mapping of the 300 mm Si wafer. Wafer-level process uniformity was investigated by analyzing 17 dies at different locations. The red dots indicate the locations of the PBFs at different dies. The h, lx,top, ly,top, θx and θy values of the Si pyramids at different wafer dies are summarized in (b)-(f), respectively.
Fig. 4
Fig. 4 FDTD simulated and measured results of the PBF at the center die (0, 0). (a) Simulated transmittance spectra of X- and Y-polarization incidences. (b) Simulated cross-sectional E-field distribution for X- and Y-polarizations at 1310 nm and 1610 nm. (c) Measured transmittance spectra of X-polarization and Y-polarization incidence. (d) Extinction ratio of the PBF at SWIR range, which is defined as 10 × log (Tx/Ty) in decibel (dB).
Fig. 5
Fig. 5 FDTD simulated results of the PBF at die (0, −4). (a) Transmittance spectra of X-polarization and Y-polarization incidence. (b) Cross-sectional E-field distribution for X- and Y-polarizations at 1200 nm and 1560 nm. (c) FTIR measured transmittance spectra of the PBF at die (0, −4), with X- and Y-polarization incidences. (d) Extinction ratio of the PBF in SWIR.
Fig. 6
Fig. 6 (a) FTIR measurement results of the extinction ratio spectra for the selected 17 PBFs. 15 dies with 10 dB passband for X-polarization is highlighted in the dashed circle. (b) Working bandwidth with 10 dB extinction ratio for 17 PBFs based on (a).

Metrics