Abstract

In this paper, a sensitive chirality selective metamaterial absorber (CSMA) is constructed by using 'I-shaped' resonator with asymmetric twisted metallic wires. Absorption of 95.18% and 91.77% at two resonant frequencies can be achieved for left-handed circularly polarized (LCP) incident wave, with little loss of right-handed circularly polarized (RCP) incident wave, which results in significant absorptive circular dichroism. Not only can the CSMA intensely absorb LCP illumination with dual bands, but also circularly polarized (CP) conversion for RCP wave is achieved over a broad bandwidth. The spin-dependent absorption, closely linked to chiral symmetry breaking, is investigated through oblique incidence, power loss distribution and scanning parameters optimization. The proposed strategy is further demonstrated in mid-infrared band which could advance the applications in polarization manipulation to circularly polarized detectors/lasers, chiral sensing/bolometers, and molecular spectroscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since the first experimental demonstration of a near-unity metamaterial absorber (MMA) proposed by N. I. Landy et al. in 2008 [1], MMAs have attracted great attention during the past decade. MMA has many advantages over traditional absorbers (e.g. ferromagnetic materials, carbon) including thin thickness, light weight, dynamically tunable resonance, and definitely sub-wavelength scale suitable with microwave/optical devices integration. Most MMAs are based on linearly polarized (single-polarized, dual-polarized and polarization insensitive) waves, which can realize multi-frequency, broadband, tunable absorption from microwave to optical regions [2–4]. MMAs for circularly polarized (CP) waves have not been extensively investigated. Circular dichroism (CD), i.e., differential absorption of left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) waves, existing in nature like DNA and protein molecules [5], has a wide range of applications in practical fields. The reconstruction and research of chiral structures based on metamaterials provide a tunable method to realize spin-dependent absorptive molecules [6].

The most common structures utilized in yielding CD are the helices [7,8]. In addition, remarkable CD can be realized by complementary Y-shaped resonator [9], split rings [10], twisted U-shaped structure and other asymmetry structures [6]. Strong optical activities are also widely demonstrated in the researches of chiral metamaterials with negative refractive index [11–14]. Besides, a novel form of CD was further observed by the resonant excitation of toroidal dipole and electric quadrupole [15–17]. These works mostly concentrate on the CD performance in transmission, with little attention paid on reflection, both of which should be taken into account in the designs of perfect absorbers. In 2015, a new type of chiral mirror based on split rings was proposed by reflecting one circular polarization wave without changing its handedness [18], while absorbing the other one. Then, tunable optically active reflectors and perfect absorbers [19] were achieved based on extrinsic chirality [20,21]. The circular polarization state and the magnetic circular dichroism (MCD) can also be tuned by varying the external magnetic field [22]. Perfect ultra-compact CP wave detector was also developed by using chiral plasmonic metamaterials with hot electron injection [23]. Meanwhile, a kind of chirality dependent absorber based on twisted L-shaped folded metallic wires was achieved around 8.72 GHz [24]. A similar structure was also numerically demonstrated in terahertz region [25]. Moreover, highly efficient absorption of RCP wave was also realized through the capacitive loading of metal circular split rings [26]. These models, although the thickness is much thinner compared with the operating wavelength, are not easy to be transplanted to higher frequencies (THz, IR and optical regions), due to the fabrication difficulties of metal via-holes and lumped elements realization. In 2016, a mid-infrared metamirror was achieved by comprising two layers of anisotropic metamaterials based on multi-layer twisted metallic wires [27]. Later, a similar metamirror possessing a reflection CD of ∼0.5 was demonstrated in a near-infrared wavelength band [28]. Besides, by combining two chiral resonant modes, a chiral metamirror was experimentally realized, which only absorbs LCP wave with a bandwidth of 5.1% [29].

However, many of these solutions including bulk three-dimensional structures and multi-layer constructions suffer from large thickness and fabrication difficulties especially for optical region [30]. Furthermore, chirality selective absorption resonance is limited to single narrow band and the absorptive CD is not strong enough, all of which are crucial to practical applications such as thermal bolometers and chiral sensing [31] where maximum CD of light is desired.

In this paper, we aim to achieve high-efficiency chirality dependent absorption of CP waves with dual bands. An ultrathin, bilayer metamaterial absorber with remarkable absorptive circular dichroism is then designed and optimized in the microwave region. The proposed efficient structure can be scaled to other wavelengths, which is also demonstrated in mid-infrared region.

2. Simulated and experimental method

The proposed chirality selective metamaterial absorber (CSMA) is shown in Fig. 1(a), which consists of top resonator, bottom metallic shielding and middle dielectric spacing. The parameters of top periodic 'I-shaped' resonator are displayed in Fig. 1(b). Asymmetric twisted metal wires are introduced and the rotation angle θbetween L2 and L3 is 60°. The thickness of the middle dielectric (FR-4) is 2.5 mm, which has a relative dielectric constant of 4.3 and loss tangent of 0.025. The bottom of the unit cell is an optically thick copper film with the thickness of 0.035 mm and the conductivity of copper is 5.8×107s/m. Optimized geometric dimensions of the unit cell are as follows: L1 = 5.4 mm, L2 = 6.7 mm, L3 = 5.7 mm, w = 1.25 mm, a = 2.9 mm, b = 1.25 mm, c = 1.0 mm, d = 3.3 mm, e = 1.6 mm, f = 1.0 mm, P = 11.5 mm. The O (0,0) point represents the central original position of one unit cell. Strong chirality can be obtained due to the lacking of mirror symmetries.

 

Fig. 1 (a) The schematic of the proposed CSMA. (b) The top view of the unit cell. (c) Photograph of a portion of the fabricated sample.

Download Full Size | PPT Slide | PDF

We perform full-wave simulations using CST Microwave Studio. The periodic boundary conditions of the unit cell are along the x and y directions, and the wave propagation is along the z direction. Because of the bottom metallic shielding, the absorptive performance is only associated with reflection. The relationship between the incident electric field Eiand the reflective electric field Ercan be defined based on Jones matrix as:

(Er+Er)=(r++r+r+r)(Ei+Ei)=Rcirc(Ei+Ei),
where Er and Ei represent the reflected and incident electric field of RCP ( + ) and LCP (-) waves. Here, LCP (RCP) is defined as counterclockwise (clockwise) rotation of the electric field vector at a fixed point as seen by an observer looking into the beam. Rcirc represents the reflection matrix of CP waves and can be expressed by linear polarization Jones matrix [32]:
Rcirc=(r++r+r+r)=12((rxx+ryy)+i(rxyryx)(rxxryy)i(rxy+ryx)(rxxryy)+i(rxy+ryx)(rxx+ryy)i(rxyryx)),
where subscripts xand ydenote the x- and y-polarized waves for linear polarization, respectively. Accordingly, r+(r+) signifies the cross-polarized reflection coefficient of LCP (RCP) wave, and r(r++) is the co-polarized reflection coefficient of LCP (RCP) wave [25,33]. There is no transmission because of the bottom consecutive metallic shielding. In consideration of cross polarization of chiral structure, the total absorption of CSMA can then be simplified as [34]:
A=1(r+)2(r)2=1R+R,
A+=1(r+)2(r++)2=1R+R++.
Similarly, R+(R+)represents the cross-polarized reflectance and R(R++)represents the co-polarized reflectance. Taken into account both transmission and reflection, the highlighting differential absorption of CP waves can be characterized by absorptive circular dichroism parameter CDab [34]:

CDab=AA+.

Here, CDabcan be equipped with positive or negative value indicating the domination of LCP or RCP illumination absorption, respectively. In experiments, the CSMA was fabricated into a 40 × 40 unit cell sample (460 × 460 × 2.5 mm3) based on printed circuit board (PCB) technology, as shown in Fig. 1(c). The sample is ultra-thin with the thickness of 0.1λ0(for the first absorptive resonance of LCP). Because of our simple construction, this chirality selective concept can be easily transplanted to higher frequencies (with certain limitations), which will be demonstrated later. Reflection of CP waves can be achieved by transmitting and receiving antennas together with an Agilent E8362B network analyzer.

3. Results and discussions

Both the simulated and experimental results of the reflectance/absorption for the LCP and RCP illuminations are presented in Fig. 2. The cross-polarization reflection R+ and R+curves are completely coincident since the impedance for LCP and RCP illuminations are the same. The average value is low with maximum under 0.23 indicating the nearly idealized impedance matching with the free space. For the LCP incident wave, the reflective waves decompose into R+and R, both of which possess minimum values at two resonant frequencies as shown in Fig. 2(a). The corresponding absorption and circular dichroism (CDab) spectra curves of the CSMA structure can be calculated in Fig. 2(b) (CDab corresponds to the right y-coordinate with blue values). Two significant absorption resonances for the LCP wave have been yielded with peak values of 95.18% and 91.77% at 12.04 GHz and 14.22 GHz, respectively. Nevertheless, for RCP incident wave, the magnitudes are only 17.2% and 23.0% at the corresponding two resonance frequencies in simulation. The simulated CDabat two selective resonances are both above 69% (approximately 77.8% and 69.0%, respectively). The necessary condition to realize the absorptive circular dichroism is simultaneously breaking of the n-fold rotational (n > 2) and mirror symmetries [35]. So in the principle design of our model, L1 and L3 are introduced with varied extending lengths of L2 along + x and -x directions (a, b, c, d). Additionally, L3 has been twisted counterclockwise with an intersection angle of 60°between L2 and L3, which has sensitive influence on the dual-band spin-dependent performance. The experimental results match well with the simulated results, and the slight tolerance can be tolerated due to imperfect PCB fabrication precision.

 

Fig. 2 (a) Simulated reflectance and (b) absorption spectra of LCP and RCP waves. (c) and (d) are the experimental results corresponding to (a) and (b). AbsorptiveCDabspectra corresponds to the right y-coordinate in (b, d) with blue values.

Download Full Size | PPT Slide | PDF

Interestingly, the handedness of CP waves will be changed because of the reverse direction of propagation vector, i.e., the RCP wave illuminating on an ideal metal mirror will be reflected to the LCP wave, and vice versa [18,36]. That is, Rand R++represent the polarization conversion capability for LCP and RCP waves, also known as circular polarization converter/transformer. R++has three peak values with 0.86, 0.81 and 0.69 at the resonant frequencies of 11.02 GHz, 12.04 GHz and 14.22 GHz, respectively (R++ is greater than 0.6 spanning 9.49-14.52 GHz), with the latter two resonances are the chirality selective absorption for LCP illumination. Correspondingly, the values of R+are only 0.008, 0.04 and 0.07, respectively. The conversion efficiency for RCP incident wave can be expressed by polarization conversion ratio (PCR) which is defined as [33]:

PCR=r++2r++2+r+2=R++R+++R+.

Furthermore, the angle sensitivity with oblique incidence is discussed, since it is important for practical applications. The feature is investigated for two different cases with the wave vector confined in the plane of x-z and y-z, respectively (see right panels in Fig. 3) [19,27]. Oblique incidence with wide angles may make the Eq. (2) unavailable [37]. Here, LCP/RCP ports serving as transmitter and receiver can be set up in CST. Then the CP reflection coefficients can be obtained with varied oblique incident angles utilizing the build-in tools. One can see from Fig. 3(a) that when the wave vector is located in the x-z plane, the absorption of LCP wave can maintain two peak values (over 81.5% and 77.4% for lower and higher resonance frequencies, respectively) from 0°to 45°. The tiny decrease of absorption attributes to the weakness of magnetic coupling between the top and bottom metallic structures, where the dielectric loss dominates the absorption in the Fabry-Perot (F-P) cavity (details in Fig. 4). On the contrary, in Fig. 3(b), there are no significant changes in the absorption performance of RCP wave, with magnitudes always lower than 39.6%. So, the absorption of two polarization states still maintains considerable contrast with dual bands for oblique incident angle up to 45 degree. At the same time, the PCR curves for RCP illumination at different incident angles are described in Fig. 3(e). Obviously, for normal incidence, though the efficiency decreases around 13 GHz, it still has strong values more than 0.7 from 9.55 GHz to 14.75 GHz, with a broadband bandwidth of 5.2 GHz. Therefore, not only can the CSMA intensely absorb LCP illumination with dual bands, but also CP conversion for RCP wave is achieved with broad bandwidth. Although the absorptive CDab remains relatively high with the increase of angle, the ratio between R++and R+drops significantly, which results in intense fluctuations of PCR curves. In other words, the capability of our structure in CP conversion for RCP wave is weakened under oblique incidence.

 

Fig. 3 Absorption spectra for (a, c) LCP and (b, d) RCP illumination at different incident angles. (e)-(f) PCR curves at different incident angles for RCP illumination. (a, b, e) and (c, d, f) are with the wave vectors confined in the x-z plane and y-z plane, respectively.

Download Full Size | PPT Slide | PDF

 

Fig. 4 (a)-(d) The power loss distributions: (a) and (b) are for RCP and LCP illumination at 12.04 GHz; (c) and (d) are for RCP and LCP illumination at 14.22 GHz. (e) and (f) are electric-field components Ezfor LCP illumination at 12.04 GHz and 14.22 GHz. (a)-(f) Cross section calculated at an x-y plane located in the middle between the front and bottom metallic layers. (g) and (h) are the distributions of the surface current for LCP illumination on the top layer (solid line) and the bottom metallic plate (dashed line).

Download Full Size | PPT Slide | PDF

The other situation is with the wave vector confined in the y-z plane, as shown in Figs. 3(c) and 3(d). Unfortunately, both the absorption amplitude and operating wavelength of LCP and RCP waves change sharply as the angle increases. Moreover, it can be seen from Fig. 3(f) that the PCR deteriorates seriously with oblique incidence of RCP illumination, making CP conversion unavailable. Compared with the first situation (wave vector confined in the x-z plane), more serious reduction in the degree of asymmetry has been introduced with the wave vector confined in the y-z plane. This mirror asymmetry is important in yielding different phase shifts for opposite handedness states, and further impacts the constructive/destructive interference within multi-layer reflections [19,38]. Therefore, the chiral selective absorption performance of the structure is not stable in this case, and this problem should be carefully considered in practical applications.

To further reveal the origin and physical mechanism, we calculate the power loss, electric field and current distributions in Fig. 4. Figures 4(a)-4(f) are calculated at an x-y plane located in the middle between the front and bottom metallic layers. Owing to the high efficient polarization conversion of RCP wave as discussed above, the power loss is very weak at both 12.04 GHz and 14.22 GHz for RCP illumination (Figs. 4(a) and 4(c)). In contrast, in Figs. 4(b) and 4(d), for LCP illumination, strong power loss distributions have been stimulated inside the CSMA structure. The stimulated currents on the top 'I-shaped' resonator, as the solid line shown in Figs. 4(g) and 4(h), flow anti-parallel with the corresponding currents (dashed line) on the bottom metal plate, yielding intense normal component electric field (Ez) in the middle dielectric (Figs. 4(e) and 4(f)) . Ez, originating from the displacement currents flowing out (blue color, + z) or into (red color, -z) along propagation direction, results from the magnetic coupling between two metallic layers. Specifically, at 12.02 GHz, most power loss aggregates in FR-4 just below the left side of L1, right side of L3 and the middle of L2 (red color regions in Fig. 4(b)), which is consistent with Ezdistributions in Fig. 4(e). Situation is similar to the high resonance. So, the dielectric loss plays a dominate role in the strong absorption for LCP illumination.

As the power loss described above, it can be concluded that the left side of L1 and the right side of L3 determine the low frequency absorption peak, while the right side of L1 and the left side of L3 determine the high one. The influences of four crucial geometric parameters a, b, c and d on selective absorption performance have been investigated in Fig. 5. There is little differential absorption of CP waves without the left side of L1 (a = 0), and the spectra of CDab at higher resonance frequency is almost unchanged with the increase of a as shown in Fig. 5(a). Simultaneously, the lower center resonance frequency of CDabhas significant red-shift with the parameter increasing from 2.3 mm to 2.9 mm, and the peak value reaches maximum around a = 2.6 mm. In particular, the CSMA has opposite differential absorption when parameter a = 3.5 mm, that is, RCP absorption dominates the power loss (with the peak value of 0.73 for RCP illumination). LCP/RCP wave can be decomposed into two orthogonally linear polarized fields, Ex and Ey, with the phase of Ex is 90 ahead/behind of Ey. Phase difference can be produced from the anisotropy of the asymmetric top 'I-shaped' resonator, resulting in certain polarization conversions. Thus, the converted scattered fields will destructively/constructively interfere with the unconverted one with π/2πphase shift [39]. So the dielectric thickness, associated with the Fabry-Perot (F-P) cavity, linked with multiple reflections [38], plays a determinate role in the matching between the amplitude and phase. The change of a, also with other parameters, will definitely affect the phase difference along Exand Ey, and the single-chiral dependent performance can be reversed by enough phase accumulation. Situation is similar with d = 2.7 mm. In Figs. 5(b) and 5(c), with the increase of b and c, there is no obvious change in the CDab spectra at low frequency. Even when b reduced to 0, there is still strong circular dichroism with 0.6 at 12.5 GHz. On the contrary, the resonant frequency of CDabspectra at high frequency is significantly red-shifted and its amplitude fluctuates.

 

Fig. 5 The CDabspectra of the proposed CSMA with varied parameters of (a) a, (b) b, (c) c, and (d) d.

Download Full Size | PPT Slide | PDF

Rotation angle θbetween L2 and L3 is also an important factor affecting the degree of asymmetry of 'I-shaped' resonator. The differential absorption characteristics under various rotation angles are shown in Fig. 6(a). When the angle θis 90°(L3 is in parallel with x-axis), the value of CDabis close to zero (small negligible spike around 11.75 GHz), indicating the asymmetry is almost broken up. Once L3 is no longer in a horizontal position, vertical component can be provided with the rotation angle from 30°to 75°. This strategy effectively introduces high asymmetry, together with certain polarization transformation, and eventually enhances the circular dichroism. With an optimized rotation angle θ=60°, strongest CDab can be achieved at both the lower and higher resonance frequencies.

 

Fig. 6 (a) The CDabspectra of the CSMA with various rotation angles between L2 and L3. (b) Simulated absorption of the chiral structure in mid-infrared band (The insets are power loss distributions of top metallic resonator for the lower and higher resonance, respectively).

Download Full Size | PPT Slide | PDF

Our proposed model has been experimentally demonstrated at microwave range. However, the design strategy is not limited to GHz, and it can be transplanted to higher frequencies. Furthermore, not only the 'I-shaped' metallic wires are highly tolerant to photoetching fabrication errors, but also the metal-dielectric-metal construction is easy to be fabricated. Generally, it works well down to mid-infrared. But as the wavelength further decreases, metals are not perfect, and the electron inertia will cause breakdown of the scaling law [40,41]. So the parameters should be made certain adaptive modifications. The metal is replaced by silver and described using the Drude model (the dielectric constant is 6.0, plasma frequency is1.37×1016rads1, and collision frequency is8.5×1013rads1) [42]. The dielectric layer is silicon dioxide (SiO2) with thickness of 480 nm and a relative dielectric constant of 2.25. Other optimized dimensions are: L1 = 1129.7 nm, L2 = 1161.7 nm, L3 = 1199.6 nm, w = 240.0 nm, a = 695.0 nm, b = 194.6 nm, c = 97.5 nm, d = 825.0 nm, θ=60°, P = 2180 nm. As shown in Fig. 6(b), two differential absorption peaks for LCP and RCP illuminations are achieved in mid-infrared band, with the maximums of 98.3% at 65.9 THz and 92.0% at 97.3 THz, respectively. It is worth noting that, this absorption mechanism for mid-infrared model is similar with the references [20,43]. Strong absorption mainly originates from the excitation of surface plasmon resonance (SPR), which utilizes localized or un-localized surface plasmon (SP) coupling. Here, the electric and magnetic field are mainly bonded around the top 'I-shaped' resonator, with no power loss in the dielectric (loss free dielectric). The electromagnetic energy concentrates in the top metal, and almost all absorbed energy is consumed in metal (as the power loss inset in Fig. 6(b)). That is also the reason why enough thickness of the top metallic resonator should be taken into account. So, although the design strategy is demonstrated at mid-infrared band, the absorption mechanism is different with that of microwave model. In contrast to their low-frequency counterparts [1,44,45], for the mid-infrared absorber, the power carried by light is predominantly dissipated through ohmic losses in metals rather than in a dielectric spacer.

4. Conclusions

A high-efficiency chiral metamaterial absorber (CSMA) has been demonstrated both theoretically and experimentally. The absorptive peaks for LCP illumination are 95.18% at 12.04 GHz and 91.77% at 14.22 GHz, with little absorption of RCP illumination, resulting in significant absorptive circular dichroism. Not only can the CSMA intensely absorb LCP illumination with dual bands, but also CP conversion for RCP wave is achieved over a broad bandwidth (normal incidence). Besides, the proposed strategy is also demonstrated in mid-infrared band. This spin-dependent absorptive performance, together with certain polarization transformer, could boost the plasmonic devices with circular polarization control from microwave to optical region, especially in the applications of circularly polarized laser, absorber filter, chiral sensing/bolometers, molecular spectroscopy and satellite communication.

Funding

National Natural Science Foundation of China (61631012, 61701206), and K.C. Wong Magna Fund in Ningbo University.

Acknowledgments

The author M. H. Li acknowledges great concern and discussion with Vassili A. Fedotov in Optoelectoncis Research Centre, University of Southampton.

References

1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef]   [PubMed]  

2. Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253–5263 (2019). [CrossRef]   [PubMed]  

3. M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018). [CrossRef]   [PubMed]  

4. V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015). [CrossRef]  

5. G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016). [CrossRef]   [PubMed]  

6. S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019). [CrossRef]  

7. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012). [CrossRef]   [PubMed]  

8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef]   [PubMed]  

9. Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016). [CrossRef]  

10. Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019). [CrossRef]  

11. H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018). [CrossRef]  

12. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009). [CrossRef]   [PubMed]  

13. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009). [CrossRef]  

14. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009). [CrossRef]   [PubMed]  

15. T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016). [CrossRef]  

16. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016). [CrossRef]   [PubMed]  

17. T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017). [CrossRef]   [PubMed]  

18. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015). [CrossRef]  

19. E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016). [CrossRef]  

20. T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014). [CrossRef]   [PubMed]  

21. A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014). [CrossRef]  

22. A. Rashidi, A. Namdar, and R. Abdi-Ghaleh, “Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals,” Appl. Opt. 56(21), 5914–5919 (2017). [CrossRef]   [PubMed]  

23. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015). [CrossRef]   [PubMed]  

24. M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014). [CrossRef]  

25. Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018). [CrossRef]  

26. S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016). [CrossRef]  

27. Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016). [CrossRef]  

28. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017). [CrossRef]   [PubMed]  

29. L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017). [CrossRef]  

30. L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

31. X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018). [CrossRef]   [PubMed]  

32. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010). [CrossRef]  

33. B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019). [CrossRef]  

34. T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013). [CrossRef]   [PubMed]  

35. M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014). [CrossRef]   [PubMed]  

36. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010). [CrossRef]   [PubMed]  

37. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72(4), 507–513 (1982). [CrossRef]  

38. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012). [CrossRef]   [PubMed]  

39. B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017). [CrossRef]  

40. M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016). [CrossRef]  

41. K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016). [CrossRef]  

42. W. R. Zhu and X. P. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26(12), 2382–2385 (2009). [CrossRef]  

43. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009). [CrossRef]   [PubMed]  

44. J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012). [CrossRef]  

45. C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253–5263 (2019).
    [Crossref] [PubMed]
  3. M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
    [Crossref] [PubMed]
  4. V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
    [Crossref]
  5. G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
    [Crossref] [PubMed]
  6. S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
    [Crossref]
  7. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
    [Crossref] [PubMed]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  9. Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
    [Crossref]
  10. Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
    [Crossref]
  11. H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
    [Crossref]
  12. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  13. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
    [Crossref]
  14. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
    [Crossref] [PubMed]
  15. T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
    [Crossref]
  16. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
    [Crossref] [PubMed]
  17. T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
    [Crossref] [PubMed]
  18. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
    [Crossref]
  19. E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
    [Crossref]
  20. T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
    [Crossref] [PubMed]
  21. A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
    [Crossref]
  22. A. Rashidi, A. Namdar, and R. Abdi-Ghaleh, “Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals,” Appl. Opt. 56(21), 5914–5919 (2017).
    [Crossref] [PubMed]
  23. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
    [Crossref] [PubMed]
  24. M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
    [Crossref]
  25. Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
    [Crossref]
  26. S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
    [Crossref]
  27. Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  28. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
    [Crossref] [PubMed]
  29. L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
    [Crossref]
  30. L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).
  31. X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
    [Crossref] [PubMed]
  32. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]
  33. B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
    [Crossref]
  34. T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013).
    [Crossref] [PubMed]
  35. M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
    [Crossref] [PubMed]
  36. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
    [Crossref] [PubMed]
  37. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72(4), 507–513 (1982).
    [Crossref]
  38. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  39. B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
    [Crossref]
  40. M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016).
    [Crossref]
  41. K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
    [Crossref]
  42. W. R. Zhu and X. P. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26(12), 2382–2385 (2009).
    [Crossref]
  43. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
    [Crossref] [PubMed]
  44. J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
    [Crossref]
  45. C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
    [Crossref] [PubMed]

2019 (4)

Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253–5263 (2019).
[Crossref] [PubMed]

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
[Crossref]

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

2018 (5)

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

2017 (5)

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

A. Rashidi, A. Namdar, and R. Abdi-Ghaleh, “Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals,” Appl. Opt. 56(21), 5914–5919 (2017).
[Crossref] [PubMed]

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

2016 (9)

M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016).
[Crossref]

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

2015 (3)

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

2014 (4)

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

2013 (1)

2012 (3)

J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

2010 (3)

2009 (6)

W. R. Zhu and X. P. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26(12), 2382–2385 (2009).
[Crossref]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

1982 (1)

Abdi-Ghaleh, R.

Asadchy, V. S.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Aydin, K.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Basmanov, D.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Burger, S.

Butun, S.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Cai, W.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Cai, W. S.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Cao, H. L.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Cao, T.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013).
[Crossref] [PubMed]

Chen, H. R.

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Chen, H. S.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chen, H. T.

Chen, W. T.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Chen, X.

Cheng, Y. Z.

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Cheng, Z. Z.

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Cryan, M. J.

Cui, T. J.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Dong, J. F.

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Eidelshtein, G.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Eledlebi, K.

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

Faniayeu, I. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Fardian-Melamed, N.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Fedotov, V. A.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Feng, Q.

Gansel, J. K.

Gong, R. Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Gordon, O.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Govorov, A. O.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Guo, J. X.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Guo, L. Y.

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Gutkin, V.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

He, X. T.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Hu, C.

Huang, Y. J.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Ishii, A.

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Ismail, M.

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

Jia, H.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jing, L. Q.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Kang, L.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Kaschke, J.

Kato, Y. K.

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Khakhomov, S. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Khosravi Khorashad, L.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Klinov, D.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Kong, X. T.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Kotlyar, A.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Kuprov, I.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Lan, S.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lapine, M.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Lee, K. T.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Levi-Kalisman, Y.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, M. H.

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Li, X.

Li, Y.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

Li, Z. Y.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Lin, B. Q.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Linden, S.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, B. Y.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Liu, J.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Liu, M.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Liu, Y.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Liu, Y. M.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Liu, Z. H.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Luo, X.

Lv, L. T.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Ma, H. F.

Ma, Y. H.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Mao, L.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

Mao, X. S.

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Namdar, A.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Palacios, E.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Papaioannou, M.

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

Papasimakis, N.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

Park, Q. H.

S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
[Crossref]

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Plum, E.

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Porath, D.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Powell, D. A.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Qian, K. F.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Qian, L. B.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Qing, Y. M.

Ra’di, Y.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Rashidi, A.

Raybould, T. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Ren, Y. Z.

Rezeq, M.

M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016).
[Crossref]

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Rodrigues, S. P.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Rogers, E. T. F.

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

Rotem, D.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Savinov, V.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

Semchenko, I. V.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Shadrivov, I. V.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Shan, M.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Shang, S.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Simpson, R. E.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Soukoulis, C.

Soukoulis, C. M.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Sun, H. B.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Taghinejad, M.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Tang, B.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tretyakov, S. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Tsai, D. P.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Urbas, A.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, J.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Wang, P.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Wang, R.

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Wang, Z.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

Wang, Z. J.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Wegener, M.

Wei, C.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013).
[Crossref] [PubMed]

Wen, G. J.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Werner, D. H.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Wu, J.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Wu, T.

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

Xia, Y. S.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Yang, H. L.

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Yang, S. Z.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Yang, Y. H.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Yang, Y. L.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Yao, K.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Yeh, P.

Yokoyama, A.

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Yoo, S.

S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
[Crossref]

Yoshida, M.

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Youngs, I. J.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Yu, S.

Zhang, L.

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhao, J. C.

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Zhao, X. P.

Zhao, Z.

Zheludev, N. I.

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Zheng, B.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Zhong, J. P.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Zhou, Y. J.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhu, W. R.

ACS Photonics (1)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Adv. Mater. (1)

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

IEEE Trans. Compon., Packag., Manuf. Technol. (1)

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

J. Appl. Phys. (1)

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

J. Mod. Opt. (1)

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Light Sci. Appl. (1)

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

Mod. Phys. Lett. B (1)

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Nano Lett. (2)

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
[Crossref]

Nanoscale (1)

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

Nanotechnol. Rev. (2)

M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016).
[Crossref]

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

Nat. Commun. (2)

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Opt. Express (8)

Opt. Mater. Express (1)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. B (1)

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Phys. Rev. Lett. (2)

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Phys. Rev. X (2)

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Sci. Rep. (1)

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of the proposed CSMA. (b) The top view of the unit cell. (c) Photograph of a portion of the fabricated sample.
Fig. 2
Fig. 2 (a) Simulated reflectance and (b) absorption spectra of LCP and RCP waves. (c) and (d) are the experimental results corresponding to (a) and (b). Absorptive CD ab spectra corresponds to the right y-coordinate in (b, d) with blue values.
Fig. 3
Fig. 3 Absorption spectra for (a, c) LCP and (b, d) RCP illumination at different incident angles. (e)-(f) PCR curves at different incident angles for RCP illumination. (a, b, e) and (c, d, f) are with the wave vectors confined in the x-z plane and y-z plane, respectively.
Fig. 4
Fig. 4 (a)-(d) The power loss distributions: (a) and (b) are for RCP and LCP illumination at 12.04 GHz; (c) and (d) are for RCP and LCP illumination at 14.22 GHz. (e) and (f) are electric-field components E z for LCP illumination at 12.04 GHz and 14.22 GHz. (a)-(f) Cross section calculated at an x-y plane located in the middle between the front and bottom metallic layers. (g) and (h) are the distributions of the surface current for LCP illumination on the top layer (solid line) and the bottom metallic plate (dashed line).
Fig. 5
Fig. 5 The CD ab spectra of the proposed CSMA with varied parameters of (a) a, (b) b, (c) c, and (d) d.
Fig. 6
Fig. 6 (a) The CD ab spectra of the CSMA with various rotation angles between L2 and L3. (b) Simulated absorption of the chiral structure in mid-infrared band (The insets are power loss distributions of top metallic resonator for the lower and higher resonance, respectively).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( E r + E r )=( r ++ r + r + r )( E i + E i )= R circ ( E i + E i ),
R circ =( r ++ r + r + r )= 1 2 ( ( r xx + r yy )+i( r xy r yx ) ( r xx r yy )i( r xy + r yx ) ( r xx r yy )+i( r xy + r yx ) ( r xx + r yy )i( r xy r yx ) ),
A =1 ( r + ) 2 ( r ) 2 =1 R + R ,
A + =1 ( r + ) 2 ( r ++ ) 2 =1 R + R ++ .
CD ab = A A + .
PCR= r ++ 2 r ++ 2 + r + 2 = R ++ R ++ + R + .

Metrics