Abstract

Coherent perfect absorber (CPA) is a novel strategy proposed and demonstrated for solving the challenge to attain efficient control of absorption by exploiting the inverse process of lasing. The operation condition of CPA results in narrow-band, which is the main limitation obstruct it from practical applications. Here, we demonstrate a CPA with tunable operation frequency employing the liquid metal made reconfigurable metasurface. The flow of liquid metal is restricted with a plastic pipe for realizing a controllable liquid metal cut-wire. The adjustable electric dipolar mode of the reconfigurable cur-wire metasurface ensures that the quasi-CPA point can be dynamically controlled; the measured CPA under proper phase modulation is in good agreement with the simulation results. The proposed CPA system involving liquid metal for dynamic control of operation frequency will have potential applications and may stimulate the exploitation of liquid based smart absorption control of optical waves.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Engineering the absorption of materials and associated processes are of great interests in both fundamental physics and practical applications [13]. Recently, coherent perfect absorber (CPA) was proposed for solving the challenge to attain efficient control of absorption by exploiting the inverse process of lasing [47]. However, the operation conditions of CPA always result in narrow operation band, which is one of the main aspects hindering it from practical applications. In a CPA system, the absorptive medium illuminated by two counter-propagating coherent light beams can either be homogenous [811] or structured resonator [1214] for improving the modulations on the coherent light beams. CPA provides coherence of light as an extra freedom for suppressing the scattering of light beams and localizing the light in the absorptive medium for complete absorption. The CPA has aroused huge interests and been discovered in many kinds of photonic structures ranging from microwave regime to visible light.

Metasurface, a class of metamaterial with few functional layers [1524], is made of rationally designed microstructures with extraordinary properties that cannot be found in natural mediums. The powerful control capability of light of metasurface has been demonstrated in realizing light fields with arbitrary local amplitude, phase, polarization, spatial distributions [2530]. The metasurface is selected to achieve absorbers in a specific frequency band primarily because of its ultra-thin profile, simple structure, and diverse functions. The subwavelength metasurfaces have been intensively utilized for ultra-thin absorbers with enhanced performance [31,32]. The dispersive response of the metasurface can be specifically designed for blocking the scattering of light at the interface between the metasurface and outside space, meanwhile the pathway of light in the metasurface should also be properly designed for realizing perfect absorption [3342]. By introducing the concept of CPA, the reflection and the transmission through the metasurface can be efficiently suppressed by coherently modulating the scatterings of the counter-propagating beams [43,44]. It is highly desirable to extend the operation band of these resonant structures based meta-devices by introducing tuning mechanisms, and there have been a lot of works related to dynamic or tunable metamaterials [4550]. Nevertheless, it is difficult to achieve coherent suppression of scatterings in a wide frequency range [51], in that the operation band of CPA is rather limited for applications demanding wide band. In this paper, we propose a coherent perfect absorber based on liquid metal made metasurface. The fluidity of the liquid metal can be exploited for simply adjusting the geometry of metasurface [52,53], which is helpful in realizing a dynamical controllable CPA as well as various active manipulation functions beyond solid metasurfaces.

2. Results and discussion

The schematic diagram for the proposed CPA based on liquid metal metasurface is presented in Fig. 1. Two important structure parameters w and m represents length and position of the liquid metal rod, respectively. The substrate is teflon with a dielectric constant of 2.65 and the loss angle tangent is 0.0004. The dimensions of the substrate are 47.54×22.14×1 mm3. An input beam 0 is firstly splitted into two counter-propagating beams with equal intensity through a power divider and then the two beams are guided to illuminate the metasurface in the counter-propagating configuration. The amplitudes of the scattered output beams for the input coherent optical beams (with amplitudes of I+ and I-) from the metasurface at two sides are O+ and O-, respectively.

 

Fig. 1. Schematic of a liquid metal-based metasurface and the setup with two counter-propagating input beams (I+ and I-), O+ and O- representing the amplitudes of output beams.

Download Full Size | PPT Slide | PDF

The complex scattering coefficients (O±) of the liquid metal-based metasurface can be written as follows (here we set both the amplitudes of the input beams as I since the beams coming from the power divider are of equal intensity):

$$\left( \begin{array}{l} {O_{+}}\\ {O_{-}} \end{array} \right){ = }{S_\textrm{g}}\left( \begin{array}{l} {I_ + }\\ {I_ - } \end{array} \right) = \left( {\begin{array}{{cc}} {{t_ + }}&{{r_ - }}\\ {{r_ + }}&{{t_ - }} \end{array}} \right)\left( \begin{array}{l} I{e^{i{\varphi_ + }}}\\ I{e^{i{\varphi_ - }}} \end{array} \right),$$
where Sg is the scattering matrix, (t/r)+ and (t/r)- are scattering elements of forward (irradiate towards positive direction of z-axis) and backward (irradiate towards negative direction of z-axis) beams. Since the liquid metal-based metasurface is reciprocal and symmetric, the scattering matrix can be simplified and the amplitudes of the scattering coefficients would be
$$|{{O_ + }} |= |{{O_ - }} |= |{tI{e^{i{\varphi_ + }}} + rI{e^{i{\varphi_ - }}}} |.$$
CPA requires the scattering coefficients being suppressed: $|{{O_ + }} |= |{{O_ - }} |= 0.$ So the CPA condition $tI{e^{i{\varphi _ + }}} = - rI{e^{i{\varphi _ - }}}$ can be derived from Eq. (2), implying that the CPA can be demonstrated at the frequency where the scattering coefficients fulfills $|r |= |t |.$ This frequency is defined as the quasi-CPA point which ensures the realization for CPA under incidences with proper phase modulation.

It is crucial to get the quasi-CPA point of metasurface firstly. We calculated the scatterings ($|r |$ and $|t |$) of the metasurfaces with an electromagnetic solver based on the Finite-Difference Time-Domain (FDTD) method, the transmission and reflection spectra of a metasurface (with w = 22 mm, m = 6 mm) is shown in Fig. 2(a). It is obvious there exists a frequency (of 4.97 GHz) fulfills the condition $|r |= |t |,$ the point is the intersection of the sample’s transmission curve and reflection curve and we call it quasi-CPA point.

 

Fig. 2. Designing of the CPA metasurface. (a) Transmission coefficient |t| and reflection coefficient |r| of a liquid metal metasurface (with w = 22 mm and m = 6 mm). (b) The normalized intensity of outgoing wave O+ (or O-) as function of the modulated phase difference at the quasi-CPA point and a frequency near the quasi-CPA point.

Download Full Size | PPT Slide | PDF

It is known that the CPA can be achieved when two incident coherent modulated lights have a specific phase difference. Figure 2(b) shows the normalized scattering coefficients at the quasi-CPA frequency (blue line) and a frequency near the quasi-CPA point (orange line) as a function of phase modulation($\Delta \varphi$). It can be seen that specific phase modulation ($\Delta \varphi = 1.44\pi$) on the input coherent beams leads to significant reduction of the scattering outputs even to zero at the quasi-CPA frequency. The scattering of coherent beams can be perfectly suppressed for absorption at the quasi-CPA point while the suppression of scatterings cannot be perfectly realized for CPA outside the quasi-CPA point.

To demonstrate the reconfigurable feature of the proposed liquid metal based metasurface CPA. Liquid metal based metasurfaces were prepared with dielectric substrate and plastic pipes with exactly the same dimensions as in numerical simulations. Liquid metal alloy (eutectic gallium-indium, EGaIn) was injected into the tiny pipes and restricted or controlled with connected peristaltic pumps. Photographs of the experimental setup used for characterizing the sample is shown Figs. 3(a) and 3(b), the two sides of a standard waveguide (WR-187) are connected to a power divider through cables of same model with stabilized amplitude and phase for coherent and counter propagating electromagnetic beams on the sample (Fig. 3(c)) . We first choose a set of parameters as w = 22 mm and m = 6 mm as that used in case study of Fig. 2. As shown in Fig. 3(d), we can see from the measured transmission and reflection spectra a quasi-CPA point is at the frequency of 5.21 GHz, at which the necessary condition for complete coherent scattering suppression was achieved. The CPA can be realized at the frequency with proper phase modulation as will be discussed later.

 

Fig. 3. Experimental setup and the demonstration of a quasi-CPA point. (a) A standard waveguide with 2 ports was used to fix and measure the scatterings of the liquid metal metasurface (c). (b) A power divider connected to both the ports of the waveguide providing coherently counter-propagating electromagnetic beams. (d) Measured transmission and reflection spectra of a liquid metal metasurface (w = 22 mm, m = 6 mm).

Download Full Size | PPT Slide | PDF

The proposed reconfigurable metasurface can be easily tuned by exploiting the fluidity of the liquid metal in tiny pipes for tunable CPA. We first consider the geometric tunability of the liquid metal-based CPA. It was found that the length and position to center of the simple liquid metal rod structure are crucial in influencing the scatterings of metasurface and thus the quasi-CPA point. The scattering coefficients for metasurfaces with liquid rods at different positions (i.e. m = 0 mm, 2 mm, 4 mm, and 6 mm; the length was fixed as w = 22 mm) are presented in Fig. 4 (left: numerical simulations; right measured data), the solid and dashed curves represent transmission and reflection spectra, respectively. There is an electric dipolar resonance in the measured frequency range, which induced significant modulation on the scattering coefficients. The quasi-CPA point associated to the dipolar resonance lies just in the measuring band of the waveguide. Both the numerical and experimental results show that the quasi-CPA point moves to low frequency (from 5.95 GHz to 5.21 GHz in experiments) as the rod moves away from the center, the red-shift of the resonant frequency or dispersion of the electric dipolar mode is due to the inhomogeneous field of the waveguide mode in the experimental setup which is similar to the results of previous study (blue-shift for the magnetic mode) [54].

 

Fig. 4. Tunability of the quasi-CPA point by changing the position (m = 6 mm, 4 mm, 2 mm, 0 mm; the length was fixed as w = 22 mm) of the liquid metal rod in simulations (a, c) and in experiments (b, d). The solid and dashed curves represent transmission coefficient and the reflection coefficient, respectively.

Download Full Size | PPT Slide | PDF

Then the length of the liquid metal rod is further studied for the tunability of the quasi-CPA. Figure 5 shows the simulated (Figs. 5(a) and 5(c)) and experimentally measured (Figs. 5(b) and 5(d)) scattering coefficients for liquid metal rod with different length (w = 19 mm, 20 mm, 21 mm, 22 mm) and the position fixed as m = 6 mm. Similarly to the previous case, an electric dipolar resonance exists for all the samples, the resonance can be tuned to low frequency by increasing the length of the rod. The associated quasi-CPA can be tuned in a larger range as in simulations, and an additional quasi-CPA appears in the working range of the experimental setup as in Fig. 4(d). The experimental results agree well with the simulated ones as can be seen from these results in Fig. 4 and Fig. 5, and both of them shows that the operation frequency or quasi-CPA point can be flexibly tuned by controlling the geometric size and placement in the measurement setup.

 

Fig. 5. Tunability of the quasi-CPA point by changing the length of the liquid metal rod (w = 22 mm, 21 mm, 20 mm, 19 mm; the position is fixed as m = 6 mm) of the liquid metal rod in simulations (a, c) and in experiments (b), (d). The solid and dashed curves represent transmission coefficient and the reflection coefficient, respectively.

Download Full Size | PPT Slide | PDF

One step further, we continuously to put proper modulation on the phase difference for counter-propagating beams for direct observation of perfect suppression of scatterings and CPA. We used a power divider and two identical-length coaxial cables to divide the incident wave from into two equal-amplitude coherent beams. The two beams fed into the waveguide are completely coherent in the setup. Then we can get proper phase modulation by changing the position of the sample in the waveguide. Thus we can control appearance or vanishment of the CPA by changing position of substrate. And by exploiting the liquid fluidity and geometric tunability of liquid metal based metasurface, we have realized a switching and dynamic regulation of the quasi-CPA. The blue solid and dashed curves Fig. 6 represent the transmission or reflection spectra for several cases or samples: (a) no liquid metal rod; (b) w = 19 mm, m = 6 mm; (c) w = 22 mm, m = 4 mm; (d) w = 21 mm, m = 5 mm; (e) w = 21 mm, m = 6 mm.

 

Fig. 6. Spectra of the transmission coefficient (blue solid line) and reflection coefficient (blue dotted line) obtained through double port measurement. The redline indicate the reflection coefficient under single port measurement for different structures. (a) Without liquid metal. The length and location of liquid metal rod are (b) w = 19 mm, m = 6 mm, (c) w = 22 mm, m = 4 mm, (d) w = 21 mm, m = 5 mm, (e) w = 21 mm, m = 6 mm.

Download Full Size | PPT Slide | PDF

For the case without liquid metal rod, there is no quasi-CPA point, and we did not measured suppression of reflection as well as the CPA. For the cases taking from Fig. 4 and Fig. 5, indeed perfect suppression of reflection from the sample can be achieved at the CPA points as shown in Figs. 6(b)–6(e), i.e. the coherent beams cannot escaping from the absorbing channel of the liquid metal-based metasurface, which corresponds to complete absorption or CPA. There are deep valleys of reflection coefficient below −25 dB corresponding to the absorption are higher than 99%.

3. Conclusion

In summary, we demonstrate a simple metasurface made of liquid metal alloy for controllable coherent perfect absorber. The operation frequency of CPA can be tuned by various geometric properties due to the liquid fluidity and geometric tunability of the liquid metal-based metasurface. Moreover, the properties of the proposed coherent modulator can be enriched by exploiting complex metasurface design, and it is compatible with the microfluidic chips for functional devices in terahertz range [52,55]. The proposed liquid metal metasurface for coherent manipulation is also promising in steerable detections, sensing, and signal processing since liquid metal possess metallic properties and fluidity simultaneously.

Funding

National Natural Science Foundation of China (11674248, 11674266, 11774057, 61505164, 61771402); Hong Kong Scholars Program (XJ2017006); Natural Science Foundation of Shaanxi Province (2017JM6094, 2018JM6024); Shenzhen Science and Technology Innovation Commission (JCYJ20170817162221169);Fundamental Research Funds for the Central Universities (3102017zy033, 3102018jgc008).

References

1. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef]  

2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012). [CrossRef]  

3. S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [CrossRef]  

4. S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010). [CrossRef]  

5. C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010). [CrossRef]  

6. S. Dutta-Gupta, O. J. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012). [CrossRef]  

7. D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017). [CrossRef]  

8. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012). [CrossRef]  

9. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012). [CrossRef]  

10. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014). [CrossRef]  

11. S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015). [CrossRef]  

12. J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012). [CrossRef]  

13. X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014). [CrossRef]  

14. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015). [CrossRef]  

15. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013). [CrossRef]  

16. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014). [CrossRef]  

17. G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014). [CrossRef]  

18. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014). [CrossRef]  

19. H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015). [CrossRef]  

20. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016). [CrossRef]  

21. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016). [CrossRef]  

22. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018). [CrossRef]  

23. H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019). [CrossRef]  

24. Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019). [CrossRef]  

25. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011). [CrossRef]  

26. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016). [CrossRef]  

27. Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016). [CrossRef]  

28. Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018). [CrossRef]  

29. Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019). [CrossRef]  

30. S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019). [CrossRef]  

31. Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011). [CrossRef]  

32. C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017). [CrossRef]  

33. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010). [CrossRef]  

34. W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011). [CrossRef]  

35. J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012). [CrossRef]  

36. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012). [CrossRef]  

37. M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. S. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013). [CrossRef]  

38. M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014). [CrossRef]  

39. P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016). [CrossRef]  

40. A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018). [CrossRef]  

41. A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019). [CrossRef]  

42. T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).

43. S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014). [CrossRef]  

44. X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016). [CrossRef]  

45. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019). [CrossRef]  

46. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019). [CrossRef]  

47. H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef]  

48. L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016). [CrossRef]  

49. Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018). [CrossRef]  

50. R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019). [CrossRef]  

51. W. J. Lv, J. G. Bing, Y. Y. Deng, D. Duan, Z. Zhu, Y. X. Li, C. Y. Guan, and J. H. Shi, “Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials,” Opt. Express 26(13), 17236–17244 (2018). [CrossRef]  

52. J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014). [CrossRef]  

53. J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019). [CrossRef]  

54. F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

55. P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [Crossref]
  3. S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref]
  4. S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
    [Crossref]
  5. C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010).
    [Crossref]
  6. S. Dutta-Gupta, O. J. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
    [Crossref]
  7. D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
    [Crossref]
  8. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  9. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
    [Crossref]
  10. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
    [Crossref]
  11. S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
    [Crossref]
  12. J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
    [Crossref]
  13. X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
    [Crossref]
  14. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
    [Crossref]
  15. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref]
  16. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref]
  17. G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
    [Crossref]
  18. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  19. H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
    [Crossref]
  20. H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref]
  21. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  22. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
    [Crossref]
  23. H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
    [Crossref]
  24. Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
    [Crossref]
  25. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [Crossref]
  26. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref]
  27. Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
    [Crossref]
  28. Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
    [Crossref]
  29. Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
    [Crossref]
  30. S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
    [Crossref]
  31. Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
    [Crossref]
  32. C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
    [Crossref]
  33. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [Crossref]
  34. W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
    [Crossref]
  35. J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
    [Crossref]
  36. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
    [Crossref]
  37. M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. S. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
    [Crossref]
  38. M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
    [Crossref]
  39. P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
    [Crossref]
  40. A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
    [Crossref]
  41. A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
    [Crossref]
  42. T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).
  43. S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
    [Crossref]
  44. X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
    [Crossref]
  45. Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
    [Crossref]
  46. M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
    [Crossref]
  47. H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref]
  48. L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
    [Crossref]
  49. Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
    [Crossref]
  50. R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
    [Crossref]
  51. W. J. Lv, J. G. Bing, Y. Y. Deng, D. Duan, Z. Zhu, Y. X. Li, C. Y. Guan, and J. H. Shi, “Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials,” Opt. Express 26(13), 17236–17244 (2018).
    [Crossref]
  52. J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
    [Crossref]
  53. J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
    [Crossref]
  54. F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).
  55. P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
    [Crossref]

2019 (9)

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
[Crossref]

2018 (5)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

W. J. Lv, J. G. Bing, Y. Y. Deng, D. Duan, Z. Zhu, Y. X. Li, C. Y. Guan, and J. H. Shi, “Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials,” Opt. Express 26(13), 17236–17244 (2018).
[Crossref]

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

2017 (2)

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

2016 (7)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

2015 (4)

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

2014 (8)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

2013 (2)

2012 (8)

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
[Crossref]

S. Dutta-Gupta, O. J. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
[Crossref]

2011 (3)

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

2010 (4)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[Crossref]

C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Agarwal, G. S.

Alù, A.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Argyropoulos, C.

T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Bai, P.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Baranov, D. G.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Bing, J. G.

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Bo, H.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Cai, G.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Cai, W.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Cao, H.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Capasso, F.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chan, C. T.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Chen, J.

Chen, Q.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Chen, S.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Cheng, H.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

Chong, Y.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Chong, Y. D.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref]

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Chu, Q.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Deng, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Deng, Y. Y.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Ding, F.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Ding, K.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Dong, J. J.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Dong, L.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Duan, D.

Dutta-Gupta, S.

Faccio, D.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

Fan, Y.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Fan, Y. C.

J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Fang, X.

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Feng, Q.

Fj, G. D. A.

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Fu, Q.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Fu, Q. H.

J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Ge, L.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Gmachl, C. F.

C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010).
[Crossref]

Gokkavas, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Gu, B.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Guan, C. Y.

Guo, Q. H.

Guo, T.

T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).

Gupta, S. D.

Guruswamy, S.

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Heitz, J. J. F.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Hu, C.

Huang, C.

Jain, A.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Jiang, H. W.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Kafesaki, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Kang, M.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

M. Kang, F. Liu, T. F. Li, Q. H. Guo, J. S. Li, and J. Chen, “Polarization-independent coherent perfect absorption by a dipole-like metasurface,” Opt. Lett. 38(16), 3086–3088 (2013).
[Crossref]

Karvounis, A.

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Koppens, F. H.

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Koschny, T.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Krasnok, A.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Lai, Y.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Li, C.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

Li, H. H.

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

Li, H. Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Li, J. S.

Li, S.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Li, T. F.

Li, Y. X.

Li, Z.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

Liang, L.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Liu, F.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Liu, P.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Liu, Q. H.

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Liu, S. C.

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Liu, W.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

Liu, Y.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

Longhi, S.

S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[Crossref]

Lu, W.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Luo, J.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Luo, X.

Lv, W. J.

Lyons, A.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Ma, G. C.

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Ma, X.

MacDonald, K. F.

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Manceau, J. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Martin, O. J.

Martin, O. J. F.

Massaouti, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Meng, C.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nahata, A.

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Nalla, V.

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

Noh, H.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Oren, D.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Ou, J. Y.

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Ozbay, E.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Plum, E.

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

Pors, A.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Premaratne, M.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Pu, M.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Qian, D.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Qiang, Y.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Qiu, K.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rao, S. M.

Roger, T.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

S. M. Rao, J. J. F. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
[Crossref]

Savinov, V.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Segev, M.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shegai, T.

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Shen, N. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Shen, N.-H.

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Sheng, P.

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Shi, J. H.

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Song, J. M.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Song, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Soukoulis, C. M.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Stone, A. D.

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref]

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

Tang, S. T.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Tian, J.

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Tseng, M. L.

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

Tzortzakis, S.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

Valente, J.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Vezzoli, S.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Wan, W. J.

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

Wang, C.

Wang, G.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Wang, H. T.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Wang, J. Q.

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Wang, M.

Wang, Q. G.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Wang, X. B.

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

Wang, Z.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

Wei, M.

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

Wei, Z. Y.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Wen, W.

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

Wen, Y. Z.

Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
[Crossref]

Westerberg, N.

Wu, H. J.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Wu, Y.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Xiao, S. W.

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Xu, J.

Yang, M.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Yang, R.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Yang, R. S.

Yang, S. M.

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yang, Z. Y.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Ye, L.

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Yu, N.

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Zhang, F.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Zhang, F. L.

J. Xu, Y. C. Fan, R. S. Yang, Q. H. Fu, and F. L. Zhang, “Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal,” Opt. Express 27(3), 2837–2843 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, J.

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zhang, J. F.

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zhang, L.

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Zhang, P.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, S.

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

Zhang, W.

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Zhang, X. N.

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

Zhang, Z. Q.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Zhao, Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Zhao, Z.

Zheludev, N. I.

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Zhou, J.

Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
[Crossref]

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Zhou, Y.

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Zhu, W. R.

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

Zhu, Z.

Zide, J. M.

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

ACS Photonics (1)

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, Z. Y. Wei, P. Zhang, J. J. Dong, Q. H. Fu, H. Q. Li, and C. M. Soukoulis, “Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances,” ACS Photonics 5(4), 1612–1618 (2018).
[Crossref]

Adv. Mater. (4)

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, “From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces,” Adv. Mater. 31(16), 1802458 (2019).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[Crossref]

H. Cheng, Z. Liu, S. Chen, and J. Tian, “Emergent Functionality and Controllability in Few-Layer Metasurfaces,” Adv. Mater. 27(36), 5410–5421 (2015).
[Crossref]

A. Karvounis, V. Nalla, K. F. MacDonald, and N. I. Zheludev, “Ultrafast Coherent Absorption in Diamond Metamaterials,” Adv. Mater. 30(14), 1707354 (2018).
[Crossref]

Adv. Opt. Mater. (3)

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and C. M. Soukoulis, “Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

J. Q. Wang, S. C. Liu, S. Guruswamy, and A. Nahata, “Injection Molding of Free-Standing, Three-Dimensional, All-Metal Terahertz Metamaterials,” Adv. Opt. Mater. 2(7), 663–669 (2014).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Q. Zhao, H. J. Wu, Q. H. Fu, Z. Y. Wei, H. Q. Li, and C. M. Soukoulis, “Graphene Plasmonics: A Platform for 2D Optics,” Adv. Opt. Mater. 7(3), 1800537 (2019).
[Crossref]

Appl. Phys. Express (1)

Q. Chu, Z. Song, and Q. H. Liu, “Omnidirectional tunable terahertz analog of electromagnetically induced transparency realized by isotropic vanadium dioxide metasurfaces,” Appl. Phys. Express 11(8), 082203 (2018).
[Crossref]

Appl. Phys. Lett. (5)

H. H. Li, X. B. Wang, and J. Zhou, “Thermally tunable asymmetric metamolecule,” Appl. Phys. Lett. 114(8), 082901 (2019).
[Crossref]

M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, and M. Premaratne, “Critical route for coherent perfect absorption in a Fano resonance plasmonic system,” Appl. Phys. Lett. 105(13), 131103 (2014).
[Crossref]

S. Li, D. Qian, S. Li, Y. Qiang, W. Lu, L. Liang, B. Gu, H. Bo, and W. Wen, “Perfect electromagnetic absorption at one-atom-thick scale,” Appl. Phys. Lett. 107(18), 181112 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, and K. F. Macdonald, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104(14), 141102 (2014).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

IEEE Photonics J. (1)

Z. Song, M. Wei, Z. Wang, G. Cai, Y. Liu, and Y. Zhou, “Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces,” IEEE Photonics J. 11(2), 1–7 (2019).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

L. Zhang, S. Zhang, Z. Song, Y. Liu, L. Ye, and Q. H. Liu, “Adaptive decoupling using tunable metamaterials,” IEEE Trans. Microwave Theory Tech. 64(9), 2730–2739 (2016).
[Crossref]

J. Appl. Phys. (1)

P. Liu, S. M. Yang, A. Jain, Q. G. Wang, H. W. Jiang, J. M. Song, T. Koschny, C. M. Soukoulis, and L. Dong, “Tunable meta-atom using liquid metal embedded in stretchable polymer,” J. Appl. Phys. 118(1), 014504 (2015).
[Crossref]

Light: Sci. Appl. (2)

J. Zhang, K. F. Macdonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

J. F. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1(7), e18 (2012).
[Crossref]

Mater. Lett. (1)

M. Wei, Z. Song, Y. Deng, Y. Liu, and Q. Chen, “Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces,” Mater. Lett. 236, 350–353 (2019).
[Crossref]

Mater. Today (1)

Y. Z. Wen and J. Zhou, “Metamaterial route to direct photoelectric conversion,” Mater. Today 23, 37–44 (2019).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

G. C. Ma, M. Yang, S. W. Xiao, Z. Y. Yang, and P. Sheng, “Acoustic metasurface with hybrid resonances,” Nat. Mater. 13(9), 873–878 (2014).
[Crossref]

Nat. Photonics (1)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Nat. Rev. Mater. (1)

D. G. Baranov, A. Krasnok, T. Shegai, A. Alù, and Y. Chong, “Coherent perfect absorbers: linear control of light with light,” Nat. Rev. Mater. 2(12), 17064 (2017).
[Crossref]

Nature (2)

C. F. Gmachl, “Laser science: Suckers for light,” Nature 467(7311), 37–39 (2010).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Photonics Res. (1)

R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F. Zhang, “Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators,” Photonics Res. 7(9), 955–960 (2019).
[Crossref]

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Phys. Rev. A (2)

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

A. Lyons, D. Oren, T. Roger, V. Savinov, J. Valente, S. Vezzoli, N. I. Zheludev, M. Segev, and D. Faccio, “Coherent metamaterial absorption of two-photon states with 40% efficiency,” Phys. Rev. A 99(1), 011801 (2019).
[Crossref]

Phys. Rev. Lett. (4)

Y. D. Chong and A. D. Stone, “Hidden Black: Coherent Enhancement of Absorption in Strongly Scattering Media,” Phys. Rev. Lett. 107(16), 163901 (2011).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically Implemented Broadband Blueshift Switch in the Terahertz Regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[Crossref]

S. Thongrattanasiri, F. H. Koppens, and G. D. A. Fj, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref]

Physics (1)

S. Longhi, “Viewpoint: Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[Crossref]

Rep. Prog. Phys. (2)

H. T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Sci. Rep. (3)

C. Meng, X. N. Zhang, S. T. Tang, M. Yang, and Z. Y. Yang, “Acoustic Coherent Perfect Absorbers as Sensitive Null Detectors,” Sci. Rep. 7(1), 43574 (2017).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref]

X. Fang, K. F. MacDonald, E. Plum, and N. I. Zheludev, “Coherent control of light-matter interactions in polarization standing waves,” Sci. Rep. 6(1), 31141 (2016).
[Crossref]

Science (3)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

W. J. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-Reversed Lasing and Interferometric Control of Absorption,” Science 331(6019), 889–892 (2011).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref]

Other (2)

T. Guo and C. Argyropoulos, “Broadband and Polarization-Insensitive Coherent Perfect Absorption by Black Phosphorus Metasurfaces,” arXiv preprint arXiv:1904.04165 (2019).

F. Zhang, C. Li, Y. Fan, R. Yang, N.-H. Shen, Q. Fu, W. Zhang, Q. Zhao, J. Zhou, T. Koschny, and C. M. Soukoulis, “Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials,” Adv. Mater. DOI: 10.1002/adma.201903206 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of a liquid metal-based metasurface and the setup with two counter-propagating input beams (I+ and I-), O+ and O- representing the amplitudes of output beams.
Fig. 2.
Fig. 2. Designing of the CPA metasurface. (a) Transmission coefficient |t| and reflection coefficient |r| of a liquid metal metasurface (with w = 22 mm and m = 6 mm). (b) The normalized intensity of outgoing wave O+ (or O-) as function of the modulated phase difference at the quasi-CPA point and a frequency near the quasi-CPA point.
Fig. 3.
Fig. 3. Experimental setup and the demonstration of a quasi-CPA point. (a) A standard waveguide with 2 ports was used to fix and measure the scatterings of the liquid metal metasurface (c). (b) A power divider connected to both the ports of the waveguide providing coherently counter-propagating electromagnetic beams. (d) Measured transmission and reflection spectra of a liquid metal metasurface (w = 22 mm, m = 6 mm).
Fig. 4.
Fig. 4. Tunability of the quasi-CPA point by changing the position (m = 6 mm, 4 mm, 2 mm, 0 mm; the length was fixed as w = 22 mm) of the liquid metal rod in simulations (a, c) and in experiments (b, d). The solid and dashed curves represent transmission coefficient and the reflection coefficient, respectively.
Fig. 5.
Fig. 5. Tunability of the quasi-CPA point by changing the length of the liquid metal rod (w = 22 mm, 21 mm, 20 mm, 19 mm; the position is fixed as m = 6 mm) of the liquid metal rod in simulations (a, c) and in experiments (b), (d). The solid and dashed curves represent transmission coefficient and the reflection coefficient, respectively.
Fig. 6.
Fig. 6. Spectra of the transmission coefficient (blue solid line) and reflection coefficient (blue dotted line) obtained through double port measurement. The redline indicate the reflection coefficient under single port measurement for different structures. (a) Without liquid metal. The length and location of liquid metal rod are (b) w = 19 mm, m = 6 mm, (c) w = 22 mm, m = 4 mm, (d) w = 21 mm, m = 5 mm, (e) w = 21 mm, m = 6 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( O + O ) = S g ( I + I ) = ( t + r r + t ) ( I e i φ + I e i φ ) ,
| O + | = | O | = | t I e i φ + + r I e i φ | .

Metrics