Abstract

Metasurfaces have been widely investigated for various applications enabled by their strong light manipulation capabilities. Their monolithic designs offer the convenience to incorporate novel natural materials in order to realize advanced electromagnetic (EM) functionalities. Here, based on the usage of the phase change material vanadium dioxide (VO2), a switchable metasurface that could work at two different working states is proposed. With insulating VO2, we show that helicity-dependent metasurface could be rigorously designed by adopting two phase variables, i.e., initial phase and Pancharatnam-Berry (P-B) phase, which is verified by showing an asymmetric photonic spin Hall effect (APSHE). When VO2 goes into the metallic phase (e.g., by raising the operating temperature above ~341K), the loss factor of the unit cell will be enhanced, and in this case with the assistance of multi-mode resonances, the metasurface will turn into a perfect broadband circular-polarization-insensitive EM absorber. Based on these, switchable beam splitters and focus-lenses have been designed and discussed in the paper. The method proposed here may pave a new way to pursue active and multifunctional optical devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Metasurfaces, two-dimensional (2D) artificial structures made of subwavelength metallic or/and dielectric elements [1], have extraordinary properties and capabilities, in particular for wavefront reshaping. Compared to the traditional three-dimensional (3D) counterpart metamaterials, the 2D monolithic design possesses many unique advantages such as easy fabrication and functional integration. Enormous promising metasurface applications have been proposed or demonstrated, such as meta-lenses [2–6], spectrometers [7,8], beam generators [9,10], electromagnetic absorbers [11–13] or even invisible cloak [14,15]. However, most of these previous applications are limited to a single purpose or a fixed functionality. For the perspective of practice, it will be very interesting if one device could operate with multiple functionalities [16,17]. For this aspect, tunable materials, such as graphene, indium tin oxide (ITO) and phase change materials usually have been used in order to gain enough freedoms for complex field control [18–20]. VO2, as one of the classic phase change materials with a large refractive index difference between dielectric and metallic states [21] (hereafter referred to i-VO2 and m-VO2), has attracted increasing attention for the additional advantage of semiconductor compatible fabrication. Many devices have been proposed using the metal-insulator transition property of VO2. One main direction is to control the temperature or steer heat flux, such as thermostats [22], thermal rectifiers [23]. The other direction is for artificial tunable optical devices including switchable focus-lenses [24,25], switchable wave-plates [26–29], devices with tunable working frequency [28], asymmetric transmission [30] or beam steering [31] and so on [32–35]. However, most of these designs can only realize two specific functions or working under one specific incident state. On the other side, meta-atoms with geometrical P-B phase have been widely investigated to manipulate circularly polarized (CP) light with spatially gradient phase profiles. One of the classic applications is to generate the photonic spin Hall effect (PSHE) arising from the interaction between the photon spin and orbital angular momentum (i.e. spin-orbit coupling, SOC) [36–39]. For a usual P-B-element composed metasurface, the left and right circularly polarized (LCP and RCP) light components will experience a conjugated phase profile and thus cannot be individually manipulated to realize different functions. To break this limit, additional freedoms have to be introduced, as previously investigated by adding a dynamic or background phase [40–43]. However, their combination with tunable materials for the sake of multiple functionalities has not been discussed yet.

In this study, we propose a mid-infrared (λ ~4.55 μm) spin-dependent switchable metasurface by introducing a very thin VO2 film, which could realize two different device functionalities. At one state with i-VO2, as shown in Fig. 1, the device can give rise to the spin-dependent wavefront shaping effect (meta-lens), which is realized through the combination of the initial phase and P-B phase. On the other state with m-VO2 when the working temperature Tw is beyond the phase change point Tc, the proposed metasurface will turn into a satisfactory EM absorber. In this case, the size distribution of the elements consisting the metasurface associated with multi-mode dielectric resonances will be beneficial to yielding a large absorption bandwidth. The devices proposed here could work under the irradiation of strong laser as the VO2 film coatings have been generally employed to protect sensitive infrared detectors from laser irradiation [44].The specific applications are envisioned in the end, in particular for chiral-sensitive bio-imaging with an auto-overexposure protection capability.

 

Fig. 1 Schematic of the working diagram. From left to right, suppose LCP, RCP, LCP, RCP light incidence. The two on the left indicate the metasurface with insulating VO2 will reshape the wavefront as designed, and the two on the right shows the metasurface with metallic VO2 will absorb the incident light.

Download Full Size | PPT Slide | PDF

2. Results and discussion

A metasurface device with independent control on the LCP and RCP light components is highly desired for some applications. For this purpose, it is necessary to have enough freedom of variables to design the spatial phase profile besides the usual geometrical phase. Here, we will take into account the initial phase (hereinafter referred to as φinitial), originating from the absolute phase accumulation when light passes through the meta-atoms. φinitial can be controlled by both geometric and material parameters [45]. As for the P-B phase, the principle has already been well uncovered in the early studies [46,47]. For a structure possessing the function similar to the half-wave plate, the cross-polarized LCP and RCP component will experience an opposite phase delay by φPB = 2σθ (the spin-charge σ = ± 1, where the sign is decided by the incident polarization state) with negligible change on their amplitudes when the unit cell is rotated by θ [48]. In this case, the total phase change can be expressed as

ϕLCP,RCP=φinitial+φPBLCP,RCP
For the devices with target functions, the phase profiles ɸ for the LCP and RCP components are known. From Eq. (1), one could quickly retrieve the required distribution of φinitial and θ for the metasurface. In this work, reflection-type metasurfaces with a gold background are considered. P-B elements with different initial phase and nearly equal reflectivity will be designed. Meanwhile, to achieve multiple functions, we will incorporate VO2 in the unit cell and simultaneously optimize the two-phase EM responses in terms of the specific applications for meta-lenses and absorbers.

The unit cell proposed here is shown in Fig. 2(a), which consists of Si nanofin and underneath VO2 and SiO2 films. At Tw < Tc, the i-VO2 layer will work as one part of the spacer adjusting the near-field interaction of the top Si nanofins with the bottom ground and play the role of loss center in the absorber at Tw > Tc. Loss-free refractive indices for Si (n = 3.42) and SiO2 (n = 1.37) are used for the mid-infrared band interested here. The SiO2 layer works as a spacer which will help to improve the absorbance of light by the thin m-VO2 layer. The bi-phase permittivity spectra of VO2 are plotted in Fig. 2(b) [21]. It is a normal dielectric material with high refractive index (n ~3.3) in the insulating phase and becomes highly lossy with larger complex index in the metallic phase. As the top Si nanofins work as optical antennas, the whole design will be a purely dielectric metasurface or a good absorber solely decided by the phase state of VO2. In our modeling, we utilize the frequency domain solver in commercial software CST Studio Suite, and the unit cell boundary condition is added for the x and y-axis directions and open (add space) condition for the z-axis direction. In order to get a high contrast for the initial phase at the designing wavelength of 4.55 μm, it is necessary to adopt tall Si nanofins, which could be realized by the current deep-Si anisotropic etching technology. Using parametric sweep, the optimized parameters for the unit cell we obtain are: t1 = 0.1 μm, t2 = 0.2 μm, t3 = 0.1 μm, t4 = 1.4 μm and p = 2.5 μm. The rest parameters length (a) and width (b) of Si nanofin are used as the major optimizing variables. Figure 2(c) and Fig. 2(d) plot the reflectivity and phase maps for the cross-polarized components of the meta-atom array as functions of a and b with i-VO2 and Fig. 2(e) gives the absorptivity map with m-VO2. Both are under the normal LCP light incidence. From these maps, we choose twelve combinations for a and b (as denoted by black rhombuses in Figs. 2(c)–2(e)) which can simultaneously satisfy both high reflectivity and gradient initial phases with i-VO2 and high absorptivity with m-VO2. The EM properties of these combinations are summarized in Fig. 2(f), from which we can see that the absorptivity is all higher than 0.8 and the reflected phase is almost the same as desired, but the reflectivity is lower than all-dielectric metasurfaces reported before [39,42]. The non-negligible loss from both i-VO2 and metal ground could be a main issue, while parametric optimization may help to improve the reflectivity but at a trade-off with the absorptivity. Using low-loss phase materials such as GeSbSeTe (GSST) film may further improve the device performance at their insulating state [49].

 

Fig. 2 (a) Schematic of the unit cell. From the bottom to the top, the thickness of each layer is: t1 = 0.1 μm, t2 = 0.2 μm, t3 = 0.1 μm, t4 = 1.4 μm, the lattice constant p = 2.5 μm, the length and width of the top Si nanofin are a and b ranging from 0.4~2.2 μm and 0.5~2.3 μm, respectively. (b) The bi-phase permittivity spectra of VO2 used in simulation. (c), (d), (e) The reflectivity and reflected phase of the RCP light component, and absorptivity as a function of structural variables a and b under the LCP light incidence. Black rhombuses represent the selected parameters. (f) The reflectivity and reflected phase of the RCP light component, and absorptivity of the selected nanofins under the LCP light incidence. Num is the order of nanofins.

Download Full Size | PPT Slide | PDF

The absorptivity for selected unit cells at the incident angles of 0° and 20° under the LCP light incidence in the wavelength range of 3-6 μm is shown in Fig. 3(a) and Fig. 3(b). The absorption curves vary with the size of Si nanofin and most of them have a higher absorptivity above 0.85 within a relative bandwidth (defined as the ratio of the absorption bandwidth to the central frequency) of 24% up to an incident angle of 20°. To have a deeper insight into the absorption mechanism, we pick out one situation (a = 1.3 μm, b = 0.9 μm, corresponding to the meta-atom number 8 labeled in Fig. 2(f)) for a further inspection. Figure 3(c) plots its absorption curves at the x-polarized (solid line) and y-polarized (dashed line) linearly light incidence. Multiple resonance absorption peaks are observed from each line. For both polarizations, the electric and magnetic field intensity patterns for the first resonance mode at 4.72 and 4.36 μm are plotted in Fig. 3(d). The mutual excitation of both electric and magnetic dipolar resonance modes is evidenced from the field patterns, which is very important here in order to obtain the impedance match with the incident space [50]. Note similar electric and magnetic double resonances have been previously employed to design a transmission-type metasurface. In our case, the m-VO2 layer will have a field shielding effect due to its high index contrast with silicon and its near-field coupling with the top dipolar mode will give rise to the local magnetic resonance. The electric-magnetic field patterns could also be regarded as an electric quadrupole if bottomed by a perfect background. In our design, the incident light is captured by the top Si nanofin antenna and then attenuated by the m-VO2 layer. The absorption band is broadened as the loss contribution from different resonance orders effectively stitch together assisted by their low Q-factors [13]. We also carry out the numerical evaluation about the performance robustness of our devices upon the fabrication error and find the device performance has a slight degradation when the structural parameters fluctuate at an amplitude about 10 nm, which is feasible using the state-of-art nanofabrication technologies.

 

Fig. 3 The absorption curves for the selected nanofins under (a) 0° and (b) 20° angle incidence of the LCP light. (c) The absorption curves under the x-polarized and y-polarized light incidence for the selected unit cell of a = 1.3 μm and b = 0.9 μm. (d) The electric and magnetic field intensity distributions under the x-polarized and y-polarized light incidence at the two peak wavelengths 4.72 and 4.36 μm. The white dashed lines profile the unit cell.

Download Full Size | PPT Slide | PDF

In the following, device applications are discussed using the VO2-enabled two-states meta-atoms. A switchable beam splitter is firstly proposed here. Traditionally, the beam splitter metasurfaces built on P-B phase unit cells can only separate the LCP and RCP light into opposite directions at the same deflected angle. Although asymmetrical beam splitting metasurfaces with different deflected angles have been reported before [42], they are only involved with a single function. Here, through combing APSHE and VO2, we numerically realize a switchable beam splitter which can deflect the LCP and RCP light to their desired angles when Tw < Tc and absorb all the incident light when Tw > Tc.

Figure 4(a) shows the schematic of the splitter. Unlike the supercell designed before which only consisting of rotating unit cells [51], here (the component with the red box) it is realized by varying the sizes and rotation angles of Si nanofins together. As the example, the phase gradient designed here is 0.42 and 0.84 rad/μm for the LCP and RCP incidence at the wavelength of 4.55 μm, respectively. According to the generalized Snell’s laws of reflection and refraction [52], the deflection angle can be computed using

sinθrsinθi=λ02πnidΦdx
where θr and θi are the reflection and incident angle, respectively, λ0 is the vacuum wavelength, ni is the refractive index of the incident space and dΦdx means the imposed boundary phase discontinuity. The ideal deflected angle is −17.7° and 37.3° for the LCP and RCP light incidence, respectively. Figure 4(b) and Fig. 4(c) plot the reflected electrical field distribution, which indicate a well-defined straight wavefront for both chirality. At the same time, the deflected angles calculated from the far-field pattern (Fig. 4(d)), are −17.3° and 37.1° for the LCP and RCP light incidence, respectively, which agree with the theoretical values quite well. Moreover, the reflected wave has a good directionality with a 3-dB width of 5.4° and 6.4°, respectively. Therefore, the designed metasurface can accurately steer the wavefront through engineering the reflected phase profiles. The integrated reflectivity is 78.4% and 81.2%. When the same structure changes to the metallic state, the absorptivity is 94.1% and 94.0%. In this case, the absorptive metasurface still has the circular polarization-dependent property. However, the converted light component is rather weak and practically may be neglected when compared with the incidence. In addition, the initial phase is also different from the sample with i-VO2. With these conditions, it may not be meaningful to discuss the phase distribution of the designed metasurface with m-VO2. The maximum deflection angle using our unit cells is 65° calculated through Eq. (2). However, the diffraction efficiency may degrade at large deflection angles [53]. In principle, larger deflection angles with high diffraction efficiency can be achieved for example with independently controlled local phase and magnitude [53] or using bianisotropic element [54]. Note due to the limit of finite element size and the number of available phase points, changing the designing deflection angle will degrade the device performance by reducing reflectivity or absorptivity for the two different working states. At some specific deflection angles, the actual phase distribution may differ greatly from the ideal one, which will reduce the reflectivity and broaden the 3-dB width. This problem may be overcome by adding more numbers of unit cells or using some algorithms, for example, Gerchberg–Saxton (GS) algorithm [55] to optimize the phase distribution. Nonetheless, a switchable metasurface between an unconventional beam splitter and an absorber is numerically shown here based on two phase variables and VO2.

 

Fig. 4 (a) Schematic of the designed switchable beam splitter. The component with the red box includes one supercell. (b), (c) The reflected electric field with the LCP and RCP light incidence, respectively. (d) Calculated far-field radiation pattern.

Download Full Size | PPT Slide | PDF

As a second application, a switchable focus-lens is designed, which can focus the LCP and RCP components into different focus positions at low temperatures and totally absorb them at high temperatures. Most of the previous meta-lenses for CP light have dependent operation features for the LCP and RCP components. To achieve the isolated function, the phase distribution for LCP and RCP should be able to satisfy their own equations, i.e.,

φLCP(x,y)=2πλ(x2+y2+fLCP2fLCP)
φRCP(x,y)=2πλ(x2+y2+fRCP2fRCP)
where λ is the incident wavelength. Limited by the computer memory, as shown in Fig. 5(a), we model the meta-lens structure composed of 36 unit cells with open boundary condition for the x and z-axis directions and periodic boundary condition for the y-axis. The numerical aperture (NA) for the LCP (RCP) meta-lens is set as 0.5 (0.6), corresponding to the focal length of 77.9 μm (60 μm). Figure 5(b) plots the spatial distributions for the phase component of the rotation angle (θ) and the initial phase (φinitial). The summation of these two phases in terms of Eq. (1) is plotted in Fig. 5(c) for our meta-lens. The red and blue lines represent the theoretical values, and the symbols (circle and diamond) mean the actual values realized using our unit cells. Light is perpendicularly incident along the z-direction. The electric field intensity patterns with i-VO2 for the LCP and RCP light incidence are plotted in Fig. 5(d) and Fig. 5(e), respectively. The incident light is reflected and focused to different positions (z = 76.7 μm and z = 56.9 μm) according to the spin charge of the incident light. The field intensity along the focus line is plotted in Fig. 5(f), which shows a good focus property with a strong and diffraction-limited focusing spot. The full width at half maximum (FWHM) of the two focus spots is 4.4 μm and 3.4 μm, respectively, which are slightly larger than the theoretical diffraction limit (4.0 μm and 3.3 μm). The simulated results of the focal length and FWHM both deviate a little bit compared with the theoretical values, mainly due to a discrete phase rather than a continuous phase used to fit the desired phase distribution, i.e., with imperfect wavefront shaping. The focus efficiency(η), defined as the ratio of the focusing power to the total incident power, is calculated as 49.63% and 49.32%, respectively, for the LCP and RCP incidence. When VO2 becomes metallic at high temperature, they will be lossy and have an almost equal absorptivity of ~90%. The efficiency can be enhanced by improving the unit cells’ properties through further parametric optimization. But as mentioned before, a trade-off should be made between efficiency and absorptivity. The performance parameters of the meta-lens at different incident light and VO2 phases are summarized in Table 1. Obviously, the designed metasurface works as a good spin-controlled focus-lens with i-VO2 and changes into a good absorber with m-VO2.

 

Fig. 5 (a) Schematic of the designed switchable focus lens. (b) The distribution for the phase component corresponding to the rotation angle (equal to half of the P-B phase) and the initial phase. (c) The phase distribution of the meta-lens for the LCP and RCP incidence. The red and blue lines represent the theoretical values, and the symbols (circle and diamond) mean the actual values realized using our unit cells. (d), (e) The electric field intensity distribution in the y = 0 plane under the LCP and RCP light incidence, respectively. The white dashed line represents the focal position. (f) The electric field intensity distribution along the white dashed lines in (d) and (e), w meaning the FWHM.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Properties of the switchable focus lens for differently polarized incident light.

3. Conclusion

In conclusion, spin-controlled switchable metasurfaces are designed in this paper. The metasurface proposed in Ref [32] similarly realize the function of deflecting and absorption using VO2, and can manipulate the x and y-polarized light individually using anisotropic elements. The key difference is that our metasurfaces proposed here can control LCP and RCP light components independently when VO2 is insulative (Tw < Tc), and will switch into a good absorber for both polarizations when VO2 changes into the metallic phase (Tw > Tc). Since the phase change of VO2 can be triggered by an external heater or bias voltage, the metasurface proposed here can be used in multifunctional or active devices. Notably, Tc is ~341K for VO2 which could be excited by a normal laser and more importantly, it could happen within a very small timescale in nanoseconds [56], therefore, the phase change can also be excited through high power light incidence. This means in some cases that the metasurface can automatically protect other instruments/systems or materials from damage caused by high input energy. A spin-charge dependent overdose auto-protection optical lens may be designed, which may find important application in non-linear bio-imaging. Since VO2 will show obvious property changes from near-infrared to far-infrared with the phase change, the method proposed here can be extended to other interesting wavelengths as well to generate multifunctional and active devices.

Funding

NSFC (61775195); Natural Science Foundation of Zhejiang Province (LR15F050001 and LZ17A040001); National Key Research and Development Program of China (2017YFA0205700).

References

1. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016). [CrossRef]   [PubMed]  

2. H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017). [CrossRef]  

3. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015). [CrossRef]   [PubMed]  

4. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016). [CrossRef]   [PubMed]  

5. J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017). [CrossRef]  

6. L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013). [CrossRef]  

7. M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016). [CrossRef]   [PubMed]  

8. Y. Zhou, R. Chen, and Y. Ma, “Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens,” Appl. Sci. (Basel) 8(3), 321 (2018). [CrossRef]  

9. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014). [CrossRef]   [PubMed]  

10. N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011). [CrossRef]   [PubMed]  

11. G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017). [CrossRef]   [PubMed]  

12. M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018). [CrossRef]  

13. S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014). [CrossRef]  

14. Y. Liu, J. Xu, S. Xiao, X. Chen, and J. Li, “Metasurface Approach to External Cloak and Designer Cavities,” ACS Photonics 5(5), 1749–1754 (2018). [CrossRef]  

15. C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017). [CrossRef]  

16. Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014). [CrossRef]   [PubMed]  

17. S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional Metamirror: Polarization Splitting and Focusing,” ACS Photonics 5(5), 1648–1653 (2017). [CrossRef]  

18. K. Rouhi, H. Rajabalipanah, and A. Abdolali, “Real-Time and Broadband Terahertz Wave Scattering Manipulation via Polarization-Insensitive Conformal Graphene-Based Coding Metasurfaces,” Ann. Phys. 530(4), 1700310 (2018). [CrossRef]  

19. N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017). [CrossRef]  

20. K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance,” Adv. Mater. 29(31), 1701044 (2017). [CrossRef]   [PubMed]  

21. A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966). [CrossRef]  

22. W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018). [CrossRef]  

23. K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105(25), 253503 (2014). [CrossRef]  

24. P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018). [CrossRef]  

25. J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016). [CrossRef]  

26. M. T. Nouman, J. H. Hwang, M. Faiyaz, K. J. Lee, D. Y. Noh, and J. H. Jang, “Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control,” Opt. Express 26(10), 12922–12929 (2018). [CrossRef]   [PubMed]  

27. S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund Jr., and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017). [CrossRef]  

28. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015). [CrossRef]   [PubMed]  

29. F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018). [CrossRef]  

30. M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019). [CrossRef]   [PubMed]  

31. M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016). [CrossRef]   [PubMed]  

32. X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019). [CrossRef]   [PubMed]  

33. M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980 (2016). [CrossRef]  

34. L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018). [CrossRef]   [PubMed]  

35. J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. S. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Lett. 40(19), 4408-4411 (2015).

36. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004). [CrossRef]   [PubMed]  

37. K. Yu. Bliokh and Y. P. Bliokh, “Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect in Reflection and Refraction of an Electromagnetic Wave Packet,” Phys. Rev. Lett. 96(7), 073903 (2006). [CrossRef]   [PubMed]  

38. X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015). [CrossRef]  

39. W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015). [CrossRef]  

40. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017). [CrossRef]   [PubMed]  

41. J. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” Jpn. J. Appl. Phys. 56(11), 110311 (2017). [CrossRef]  

42. S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019). [CrossRef]  

43. H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019). [CrossRef]  

44. S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004). [CrossRef]  

45. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016). [CrossRef]   [PubMed]  

46. D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015). [CrossRef]  

47. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015). [CrossRef]   [PubMed]  

48. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012). [CrossRef]   [PubMed]  

49. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018). [CrossRef]   [PubMed]  

50. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015). [CrossRef]  

51. W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018). [CrossRef]  

52. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011). [CrossRef]   [PubMed]  

53. N. Mohammadi Estakhri and A. Alù, “Wave-front Transformation with Gradient Metasurfaces,” Phys. Rev. X 6(4), 041008 (2016). [CrossRef]  

54. A. Epstein and G. V. Eleftheriades, “Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection,” Phys. Rev. Lett. 117(25), 256103 (2016). [CrossRef]   [PubMed]  

55. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef]   [PubMed]  

56. A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016).
    [Crossref] [PubMed]
  2. H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
    [Crossref]
  3. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
    [Crossref] [PubMed]
  4. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  5. J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017).
    [Crossref]
  6. L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
    [Crossref]
  7. M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
    [Crossref] [PubMed]
  8. Y. Zhou, R. Chen, and Y. Ma, “Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens,” Appl. Sci. (Basel) 8(3), 321 (2018).
    [Crossref]
  9. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  10. N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011).
    [Crossref] [PubMed]
  11. G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
    [Crossref] [PubMed]
  12. M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
    [Crossref]
  13. S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
    [Crossref]
  14. Y. Liu, J. Xu, S. Xiao, X. Chen, and J. Li, “Metasurface Approach to External Cloak and Designer Cavities,” ACS Photonics 5(5), 1749–1754 (2018).
    [Crossref]
  15. C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
    [Crossref]
  16. Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
    [Crossref] [PubMed]
  17. S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional Metamirror: Polarization Splitting and Focusing,” ACS Photonics 5(5), 1648–1653 (2017).
    [Crossref]
  18. K. Rouhi, H. Rajabalipanah, and A. Abdolali, “Real-Time and Broadband Terahertz Wave Scattering Manipulation via Polarization-Insensitive Conformal Graphene-Based Coding Metasurfaces,” Ann. Phys. 530(4), 1700310 (2018).
    [Crossref]
  19. N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
    [Crossref]
  20. K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance,” Adv. Mater. 29(31), 1701044 (2017).
    [Crossref] [PubMed]
  21. A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
    [Crossref]
  22. W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
    [Crossref]
  23. K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105(25), 253503 (2014).
    [Crossref]
  24. P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
    [Crossref]
  25. J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
    [Crossref]
  26. M. T. Nouman, J. H. Hwang, M. Faiyaz, K. J. Lee, D. Y. Noh, and J. H. Jang, “Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control,” Opt. Express 26(10), 12922–12929 (2018).
    [Crossref] [PubMed]
  27. S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
    [Crossref]
  28. D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
    [Crossref] [PubMed]
  29. F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
    [Crossref]
  30. M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
    [Crossref] [PubMed]
  31. M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
    [Crossref] [PubMed]
  32. X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
    [Crossref] [PubMed]
  33. M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980 (2016).
    [Crossref]
  34. L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
    [Crossref] [PubMed]
  35. J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. S. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Lett. 40(19), 4408-4411 (2015).
  36. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
    [Crossref] [PubMed]
  37. K. Yu. Bliokh and Y. P. Bliokh, “Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect in Reflection and Refraction of an Electromagnetic Wave Packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
    [Crossref] [PubMed]
  38. X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
    [Crossref]
  39. W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
    [Crossref]
  40. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref] [PubMed]
  41. J. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” Jpn. J. Appl. Phys. 56(11), 110311 (2017).
    [Crossref]
  42. S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
    [Crossref]
  43. H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
    [Crossref]
  44. S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
    [Crossref]
  45. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
    [Crossref] [PubMed]
  46. D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
    [Crossref]
  47. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref] [PubMed]
  48. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref] [PubMed]
  49. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
    [Crossref] [PubMed]
  50. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
    [Crossref]
  51. W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
    [Crossref]
  52. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  53. N. Mohammadi Estakhri and A. Alù, “Wave-front Transformation with Gradient Metasurfaces,” Phys. Rev. X 6(4), 041008 (2016).
    [Crossref]
  54. A. Epstein and G. V. Eleftheriades, “Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection,” Phys. Rev. Lett. 117(25), 256103 (2016).
    [Crossref] [PubMed]
  55. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref] [PubMed]
  56. A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
    [Crossref]

2019 (4)

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

2018 (11)

Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref] [PubMed]

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Y. Liu, J. Xu, S. Xiao, X. Chen, and J. Li, “Metasurface Approach to External Cloak and Designer Cavities,” ACS Photonics 5(5), 1749–1754 (2018).
[Crossref]

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

M. T. Nouman, J. H. Hwang, M. Faiyaz, K. J. Lee, D. Y. Noh, and J. H. Jang, “Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control,” Opt. Express 26(10), 12922–12929 (2018).
[Crossref] [PubMed]

Y. Zhou, R. Chen, and Y. Ma, “Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens,” Appl. Sci. (Basel) 8(3), 321 (2018).
[Crossref]

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

K. Rouhi, H. Rajabalipanah, and A. Abdolali, “Real-Time and Broadband Terahertz Wave Scattering Manipulation via Polarization-Insensitive Conformal Graphene-Based Coding Metasurfaces,” Ann. Phys. 530(4), 1700310 (2018).
[Crossref]

2017 (10)

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance,” Adv. Mater. 29(31), 1701044 (2017).
[Crossref] [PubMed]

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref] [PubMed]

J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017).
[Crossref]

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
[Crossref]

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional Metamirror: Polarization Splitting and Focusing,” ACS Photonics 5(5), 1648–1653 (2017).
[Crossref]

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

J. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” Jpn. J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

2016 (9)

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

N. Mohammadi Estakhri and A. Alù, “Wave-front Transformation with Gradient Metasurfaces,” Phys. Rev. X 6(4), 041008 (2016).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection,” Phys. Rev. Lett. 117(25), 256103 (2016).
[Crossref] [PubMed]

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980 (2016).
[Crossref]

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

2015 (8)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

J. Jeong, A. Joushaghani, S. Paradis, D. Alain, and J. K. S. Poon, “Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide,” Opt. Lett. 40(19), 4408-4411 (2015).

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

2014 (4)

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105(25), 253503 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

2013 (1)

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

2012 (1)

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

2006 (1)

K. Yu. Bliokh and Y. P. Bliokh, “Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect in Reflection and Refraction of an Electromagnetic Wave Packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

2004 (3)

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

1982 (1)

1966 (1)

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Abdolali, A.

K. Rouhi, H. Rajabalipanah, and A. Abdolali, “Real-Time and Broadband Terahertz Wave Scattering Manipulation via Polarization-Insensitive Conformal Graphene-Based Coding Metasurfaces,” Ann. Phys. 530(4), 1700310 (2018).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alain, D.

Alù, A.

N. Mohammadi Estakhri and A. Alù, “Wave-front Transformation with Gradient Metasurfaces,” Phys. Rev. X 6(4), 041008 (2016).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Arbabi, E.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016).
[Crossref] [PubMed]

Atwater, H. A.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance,” Adv. Mater. 29(31), 1701044 (2017).
[Crossref] [PubMed]

Azad, A. K.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Balthasar Mueller, J. P.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Barker, A. S.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Bhaskaran, M.

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

Bliokh, K. Yu.

K. Yu. Bliokh and Y. P. Bliokh, “Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect in Reflection and Refraction of an Electromagnetic Wave Packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Bliokh, Y. P.

K. Yu. Bliokh and Y. P. Bliokh, “Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect in Reflection and Refraction of an Electromagnetic Wave Packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Boroviks, S.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional Metamirror: Polarization Splitting and Focusing,” ACS Photonics 5(5), 1648–1653 (2017).
[Crossref]

Bozhevolnyi, S. I.

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional Metamirror: Polarization Splitting and Focusing,” ACS Photonics 5(5), 1648–1653 (2017).
[Crossref]

Bretner, I.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Butakov, N. A.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Cai, J.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Capasso, F.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cavalleri, A.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Chen, R.

Y. Zhou, R. Chen, and Y. Ma, “Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens,” Appl. Sci. (Basel) 8(3), 321 (2018).
[Crossref]

J. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” Jpn. J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

Chen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Chen, W. T.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Y. Liu, J. Xu, S. Xiao, X. Chen, and J. Li, “Metasurface Approach to External Cloak and Designer Cavities,” ACS Photonics 5(5), 1749–1754 (2018).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Chernykh, I. A.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Choi, D.-Y.

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

Chong, H. H. W.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Dalvit, D. A. R.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Deng, L.

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

Deshpande, R. A.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional Metamirror: Polarization Splitting and Focusing,” ACS Photonics 5(5), 1648–1653 (2017).
[Crossref]

Devlin, R. C.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Ding, F.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Earl, S. K.

S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
[Crossref]

Eleftheriades, G. V.

M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980 (2016).
[Crossref]

A. Epstein and G. V. Eleftheriades, “Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection,” Phys. Rev. Lett. 117(25), 256103 (2016).
[Crossref] [PubMed]

Epstein, A.

A. Epstein and G. V. Eleftheriades, “Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection,” Phys. Rev. Lett. 117(25), 256103 (2016).
[Crossref] [PubMed]

Esaulkov, M. N.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Faiyaz, M.

Fan, D.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Fienup, J. R.

Fourmaux, S.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Fumeaux, C.

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gai, X.

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Gao, P.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Glover, T. E.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Gómez, D. E.

S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
[Crossref]

Gong, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Gorodetski, Y.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Groever, B.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Gu, T.

Gu, Y.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Guggenheim, H. J.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Haglund, R. F.

S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
[Crossref]

Han, J.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Han, L.

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Hashemi, M. R. M.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Hasman, E.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

He, J.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

He, Q.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

He, S.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Headland, D.

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

Heimann, P. A.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Hong, M.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Hong, W.

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Hu, J.

Huang, C.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Hwang, J. H.

Iizuka, H.

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105(25), 253503 (2014).
[Crossref]

Ito, K.

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105(25), 253503 (2014).
[Crossref]

James, T. D.

S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
[Crossref]

Jang, J. H.

Jarrahi, M.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Jeong, J.

Ji, Y.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Jian, L.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Jiang, T.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

Jiang, W.

J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017).
[Crossref]

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Joushaghani, A.

Kamali, S. M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016).
[Crossref] [PubMed]

Kameshkov, O. E.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kaul, A. R.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Ke, C.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kieffer, J. C.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Kim, M.

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref] [PubMed]

M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980 (2016).
[Crossref]

Kleiner, V.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Knyazev, B. A.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Kort-Kamp, W. J. M.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Kramadhati, S.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kulikov, I. V.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Lan, L.

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

Lee, K. J.

Lee, W. S. L.

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

Lewi, T.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Li, H.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Li, J.

Li, S.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

Li, X.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Li, Y.

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Lin, Y.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Ling, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Liu, M.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Liu, S.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

Liu, Y.

Y. Liu, J. Xu, S. Xiao, X. Chen, and J. Li, “Metasurface Approach to External Cloak and Designer Cavities,” ACS Photonics 5(5), 1749–1754 (2018).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Luo, H.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Luo, W.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Luo, X.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Luther-Davies, B.

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

Ma, H.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Ma, P.

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

Ma, R.

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref] [PubMed]

Ma, Y.

Y. Zhou, R. Chen, and Y. Ma, “Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens,” Appl. Sci. (Basel) 8(3), 321 (2018).
[Crossref]

J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017).
[Crossref]

J. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” Jpn. J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

Makarevich, A. M.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Marvel, R. E.

S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
[Crossref]

Mehmood, M. Q.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Mikhailovsky, A. A.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Mishra, I.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Mohammadi Estakhri, N.

N. Mohammadi Estakhri and A. Alù, “Wave-front Transformation with Gradient Metasurfaces,” Phys. Rev. X 6(4), 041008 (2016).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Mortensen, N. A.

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional Metamirror: Polarization Splitting and Focusing,” ACS Photonics 5(5), 1648–1653 (2017).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Mun, B. S.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Mun, J.

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref] [PubMed]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Neshev, D. N.

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

Nirantar, S.

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

Nishikawa, K.

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105(25), 253503 (2014).
[Crossref]

Noh, D. Y.

Nouman, M. T.

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Ou, Y.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Padmore, H. A.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Paradis, S.

Plum, E.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Poon, J. K. S.

Pu, M.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Qiu, C.-W.

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Rajabalipanah, H.

K. Rouhi, H. Rajabalipanah, and A. Abdolali, “Real-Time and Broadband Terahertz Wave Scattering Manipulation via Polarization-Insensitive Conformal Graphene-Based Coding Metasurfaces,” Ann. Phys. 530(4), 1700310 (2018).
[Crossref]

Raza, M.

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Reiten, M. T.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Ren, Z.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Rho, J.

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref] [PubMed]

Roberts, A.

S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
[Crossref]

Roques-Carmes, C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

Rouhi, K.

K. Rouhi, H. Rajabalipanah, and A. Abdolali, “Real-Time and Broadband Terahertz Wave Scattering Manipulation via Polarization-Insensitive Conformal Graphene-Based Coding Metasurfaces,” Ann. Phys. 530(4), 1700310 (2018).
[Crossref]

Rubin, N. A.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Schoenlein, R. W.

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Schuller, I. K.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Schuller, J. A.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Sepúlveda, N.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Sharovarov, D. I.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Shitrit, N.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

Shkurinov, A. P.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Shu, W.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

So, S.

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref] [PubMed]

Sokhoyan, R.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance,” Adv. Mater. 29(31), 1701044 (2017).
[Crossref] [PubMed]

Solyankin, P. M.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Song, J.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

Soref, R.

Sriram, S.

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

Srivastava, A.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Sun, Q.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

Sun, S.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Sun, W.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Sun, Y.

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Tang, D.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Tang, S.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thyagarajan, K.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance,” Adv. Mater. 29(31), 1701044 (2017).
[Crossref] [PubMed]

Toshiyoshi, H.

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105(25), 253503 (2014).
[Crossref]

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Urban, C.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Valmianski, I.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Venkatesan, T.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Verleur, H. W.

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Wang, C.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Wang, D.

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Wang, G.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

Wang, H.

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Wang, L.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

Wang, S.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Wang, T.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, X.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Wang, Y.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

Wen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Wilson, S. D.

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

Withayachumnankul, W.

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Wu, W.

J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017).
[Crossref]

Wu, X.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

Xiao, S.

Y. Liu, J. Xu, S. Xiao, X. Chen, and J. Li, “Metasurface Approach to External Cloak and Designer Cavities,” ACS Photonics 5(5), 1749–1754 (2018).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Xie, Z.

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Xiong, T.

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Xu, H.-X.

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Xu, J.

Y. Liu, J. Xu, S. Xiao, X. Chen, and J. Li, “Metasurface Approach to External Cloak and Designer Cavities,” ACS Photonics 5(5), 1749–1754 (2018).
[Crossref]

Xu, L.

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

Xu, Q.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Yang, J.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

Yang, S.-H.

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

Yang, Y.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yi, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Yin, G.

J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017).
[Crossref]

Yoon, G.

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref] [PubMed]

Yu, H.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, J.

J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017).
[Crossref]

J. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” Jpn. J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

Zanaveskin, M. L.

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

Zeng, C.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, B.

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

Zhang, C.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

Zhang, F.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, L.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Zhang, Q.

Zhang, S.

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Zhang, W.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Zhang, X.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Zhang, Y.

Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref] [PubMed]

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Zhao, J.

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Zhao, W.

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

Zhao, Z.

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Zhong, S.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Zhou, J.

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

Zhou, L.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Zhou, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Zhou, Y.

Y. Zhou, R. Chen, and Y. Ma, “Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens,” Appl. Sci. (Basel) 8(3), 321 (2018).
[Crossref]

J. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” Jpn. J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

Zhu, A. Y.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zhu, J.

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

Zornberg, L.

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance,” Adv. Mater. 29(31), 1701044 (2017).
[Crossref] [PubMed]

Zou, C.

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

Zuo, H.

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

ACS Photonics (6)

Y. Liu, J. Xu, S. Xiao, X. Chen, and J. Li, “Metasurface Approach to External Cloak and Designer Cavities,” ACS Photonics 5(5), 1749–1754 (2018).
[Crossref]

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

S. Boroviks, R. A. Deshpande, N. A. Mortensen, and S. I. Bozhevolnyi, “Multifunctional Metamirror: Polarization Splitting and Focusing,” ACS Photonics 5(5), 1648–1653 (2017).
[Crossref]

N. A. Butakov, I. Valmianski, T. Lewi, C. Urban, Z. Ren, A. A. Mikhailovsky, S. D. Wilson, I. K. Schuller, and J. A. Schuller, “Switchable Plasmonic–Dielectric Resonators with Metal–Insulator Transitions,” ACS Photonics 5(2), 371–377 (2017).
[Crossref]

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

H.-X. Xu, L. Han, Y. Li, Y. Sun, J. Zhao, S. Zhang, and C.-W. Qiu, “Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Adv. Mater. (2)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry Metasurface with Maximal Cross-Polarization Efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

K. Thyagarajan, R. Sokhoyan, L. Zornberg, and H. A. Atwater, “Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance,” Adv. Mater. 29(31), 1701044 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (5)

H. Zuo, D.-Y. Choi, X. Gai, P. Ma, L. Xu, D. N. Neshev, B. Zhang, and B. Luther-Davies, “High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging,” Adv. Opt. Mater. 5(23), 1700585 (2017).
[Crossref]

F. Ding, S. Zhong, and S. I. Bozhevolnyi, “Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

W. S. L. Lee, S. Nirantar, D. Headland, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, “Broadband Terahertz Circular-Polarization Beam Splitter,” Adv. Opt. Mater. 6(3), 1700852 (2018).
[Crossref]

S. Li, X. Li, G. Wang, S. Liu, L. Zhang, C. Zeng, L. Wang, Q. Sun, W. Zhao, and W. Zhang, “Multidimensional Manipulation of Photonic Spin Hall Effect with a Single-Layer Dielectric Metasurface,” Adv. Opt. Mater. 7(5), 1801365 (2019).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic Spin Hall Effect with Nearly 100% Efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Ann. Phys. (1)

K. Rouhi, H. Rajabalipanah, and A. Abdolali, “Real-Time and Broadband Terahertz Wave Scattering Manipulation via Polarization-Insensitive Conformal Graphene-Based Coding Metasurfaces,” Ann. Phys. 530(4), 1700310 (2018).
[Crossref]

APL Photonics (1)

S. K. Earl, T. D. James, D. E. Gómez, R. E. Marvel, R. F. Haglund, and A. Roberts, “Switchable polarization rotation of visible light using a plasmonic metasurface,” APL Photonics 2(1), 016103 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, “Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105(25), 253503 (2014).
[Crossref]

L. Lan, W. Jiang, and Y. Ma, “Three dimensional subwavelength focus by a near-field plate lens,” Appl. Phys. Lett. 102(23), 231119 (2013).
[Crossref]

Appl. Sci. (Basel) (1)

Y. Zhou, R. Chen, and Y. Ma, “Characteristic Analysis of Compact Spectrometer Based on Off-Axis Meta-Lens,” Appl. Sci. (Basel) 8(3), 321 (2018).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

P. M. Solyankin, M. N. Esaulkov, I. A. Chernykh, I. V. Kulikov, M. L. Zanaveskin, A. R. Kaul, A. M. Makarevich, D. I. Sharovarov, O. E. Kameshkov, B. A. Knyazev, and A. P. Shkurinov, “Terahertz Switching Focuser Based on Thin Film Vanadium Dioxide Zone Plate,” J. Infrared Millim. Terahertz Waves 39(12), 1203–1210 (2018).
[Crossref]

J. Opt. (1)

J. Yuan, G. Yin, W. Jiang, W. Wu, and Y. Ma, “Design of mechanically robust metasurface lenses for RGB colors,” J. Opt. 19(10), 105002 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

J. Yuan, Y. Zhou, R. Chen, and Y. Ma, “Photonic spin Hall effect with controlled transmission by metasurfaces,” Jpn. J. Appl. Phys. 56(11), 110311 (2017).
[Crossref]

Laser Photonics Rev. (1)

D. Tang, C. Wang, Z. Zhao, Y. Wang, M. Pu, X. Li, P. Gao, and X. Luo, “Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing,” Laser Photonics Rev. 9(6), 713–719 (2015).
[Crossref]

Light Sci. Appl. (1)

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4(5), e290 (2015).
[Crossref]

Materials (Basel) (1)

L. Wang, W. Hong, L. Deng, S. Li, C. Zhang, J. Zhu, and H. Wang, “Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies,” Materials (Basel) 11(10), 2040 (2018).
[Crossref] [PubMed]

Nano Converg. (1)

G. Yoon, S. So, M. Kim, J. Mun, R. Ma, and J. Rho, “Electrically tunable metasurface perfect absorber for infrared frequencies,” Nano Converg. 4(1), 36 (2017).
[Crossref] [PubMed]

Nano Lett. (5)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical Spin Hall Effects in Plasmonic Chains,” Nano Lett. 11(5), 2038–2042 (2011).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy,” Nano Lett. 16(6), 3732–3737 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-Insensitive Metalenses at Visible Wavelengths,” Nano Lett. 16(11), 7229–7234 (2016).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless Phase Discontinuities for Controlling Light Propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

M. Zhang, F. Zhang, Y. Ou, J. Cai, and H. Yu, “Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface,” Nanophotonics 8(1), 117–125 (2018).
[Crossref]

Nat. Commun. (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6(1), 7069 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Appl. (1)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

A. Cavalleri, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, B. S. Mun, H. A. Padmore, and R. W. Schoenlein, “Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO 2,” Phys. Rev. B Condens. Matter Mater. Phys. 69(15), 153106 (2004).
[Crossref]

Phys. Rev. Lett. (6)

A. Epstein and G. V. Eleftheriades, “Synthesis of Passive Lossless Metasurfaces Using Auxiliary Fields for Reflectionless Beam Splitting and Perfect Reflection,” Phys. Rev. Lett. 117(25), 256103 (2016).
[Crossref] [PubMed]

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

K. Yu. Bliokh and Y. P. Bliokh, “Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect in Reflection and Refraction of an Electromagnetic Wave Packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Y. Ma, Y. Liu, M. Raza, Y. Wang, and S. He, “Experimental Demonstration of a Multiphysics Cloak: manipulating Heat Flux and Electric Current Simultaneously,” Phys. Rev. Lett. 113(20), 205501 (2014).
[Crossref] [PubMed]

A. S. Barker, H. W. Verleur, and H. J. Guggenheim, “Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature,” Phys. Rev. Lett. 17(26), 1286–1289 (1966).
[Crossref]

Phys. Rev. X (1)

N. Mohammadi Estakhri and A. Alù, “Wave-front Transformation with Gradient Metasurfaces,” Phys. Rev. X 6(4), 041008 (2016).
[Crossref]

Plasmonics (1)

J. He, Z. Xie, W. Sun, X. Wang, Y. Ji, S. Wang, Y. Lin, and Y. Zhang, “Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition,” Plasmonics 11(5), 1285–1290 (2016).
[Crossref]

Sci. Rep. (5)

D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface,” Sci. Rep. 5(1), 15020 (2015).
[Crossref] [PubMed]

M. Liu, Q. Xu, X. Chen, E. Plum, H. Li, X. Zhang, C. Zhang, C. Zou, J. Han, and W. Zhang, “Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves,” Sci. Rep. 9(1), 4097 (2019).
[Crossref] [PubMed]

M. R. M. Hashemi, S.-H. Yang, T. Wang, N. Sepúlveda, and M. Jarrahi, “Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces,” Sci. Rep. 6(1), 35439 (2016).
[Crossref] [PubMed]

X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, and J. Zhou, “Switchable multifunctional terahertz metasurfaces employing vanadium dioxide,” Sci. Rep. 9(1), 5454 (2019).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength metasurfaces through spatial multiplexing,” Sci. Rep. 6(1), 32803 (2016).
[Crossref] [PubMed]

Science (2)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

S. Chen, H. Ma, X. Yi, T. Xiong, H. Wang, and C. Ke, “Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,” Sens. Actuators A Phys. 115(1), 28–31 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the working diagram. From left to right, suppose LCP, RCP, LCP, RCP light incidence. The two on the left indicate the metasurface with insulating VO2 will reshape the wavefront as designed, and the two on the right shows the metasurface with metallic VO2 will absorb the incident light.
Fig. 2
Fig. 2 (a) Schematic of the unit cell. From the bottom to the top, the thickness of each layer is: t1 = 0.1 μm, t2 = 0.2 μm, t3 = 0.1 μm, t4 = 1.4 μm, the lattice constant p = 2.5 μm, the length and width of the top Si nanofin are a and b ranging from 0.4~2.2 μm and 0.5~2.3 μm, respectively. (b) The bi-phase permittivity spectra of VO2 used in simulation. (c), (d), (e) The reflectivity and reflected phase of the RCP light component, and absorptivity as a function of structural variables a and b under the LCP light incidence. Black rhombuses represent the selected parameters. (f) The reflectivity and reflected phase of the RCP light component, and absorptivity of the selected nanofins under the LCP light incidence. Num is the order of nanofins.
Fig. 3
Fig. 3 The absorption curves for the selected nanofins under (a) 0° and (b) 20° angle incidence of the LCP light. (c) The absorption curves under the x-polarized and y-polarized light incidence for the selected unit cell of a = 1.3 μm and b = 0.9 μm. (d) The electric and magnetic field intensity distributions under the x-polarized and y-polarized light incidence at the two peak wavelengths 4.72 and 4.36 μm. The white dashed lines profile the unit cell.
Fig. 4
Fig. 4 (a) Schematic of the designed switchable beam splitter. The component with the red box includes one supercell. (b), (c) The reflected electric field with the LCP and RCP light incidence, respectively. (d) Calculated far-field radiation pattern.
Fig. 5
Fig. 5 (a) Schematic of the designed switchable focus lens. (b) The distribution for the phase component corresponding to the rotation angle (equal to half of the P-B phase) and the initial phase. (c) The phase distribution of the meta-lens for the LCP and RCP incidence. The red and blue lines represent the theoretical values, and the symbols (circle and diamond) mean the actual values realized using our unit cells. (d), (e) The electric field intensity distribution in the y = 0 plane under the LCP and RCP light incidence, respectively. The white dashed line represents the focal position. (f) The electric field intensity distribution along the white dashed lines in (d) and (e), w meaning the FWHM.

Tables (1)

Tables Icon

Table 1 Properties of the switchable focus lens for differently polarized incident light.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ LCP,RCP = φ initial + φ PB LCP,RCP
sin θ r sin θ i = λ 0 2π n i dΦ dx
φ LCP (x,y)= 2π λ ( x 2 + y 2 + f LCP 2 f LCP )
φ RCP (x,y)= 2π λ ( x 2 + y 2 + f RCP 2 f RCP )

Metrics