Abstract

Thin-film organic distributed feedback (DFB) lasers processed with elastomeric polymers allow fabrication of flexible and continuously tunable coherent light sources. So far, the realized laser devices fall short on broad continuous tuning range. We demonstrate that the addition of plasticizers to the polymer matrix and the minimization of the thickness of the laser can reduce mechanical impact and, thus, extend the wavelength tuning range to the full gain range of the active medium. A contact-transfer method is used to transfer gently the ultra-thin membrane DFB laser to a silicone support. A continuous tuning of the laser wavelength up to 77 nm in the orange-red spectral range of a single laser dye was achieved by mechanical stretching of the supporting film with a DFB membrane laser on top.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Organic solid-state thin-film lasers are intensively studied in the last decades for their possible use as flexible and tunable light sources with coherent narrow-band emission [13]. In contrast to their inorganic counterparts, commercially available organic gain materials with broad photoluminescence spectra make it possible to build lasers emitting at all wavelengths from UV to IR range. One way to realize a thin-film laser is to use the distributed feedback (DFB) geometry. The resonating cavity of a DFB laser is formed by a periodically corrugated waveguide e.g., a surface relief grating (SRG). Kogelnik and Shank showed that the periodic corrugation allows coupling between forward and backward propagating waves inside the waveguide, leading to optical feedback necessary for lasing [4]. The resonant mode is amplified in the active material, which is distributed over the whole laser cavity. Choosing the grating period of the cavity allows adjusting precisely the emitted wavelength according to the Bragg condition. Light amplification by second order Bragg scattering leads to emission perpendicular to the plane that is more advantageous compared to an edge emitter due to simpler outcoupling of the laser emission.

With organic materials, low-priced as such, one can make use of solution-based fabrication processes like spin-coating, doctor-blading, roll-to-roll fabrication [5], or ink-jet printing [6]. Such cost-effective techniques are already utilized in commercially available organic electronic devices such as organic light emitting diodes and solar cells [7]. Using polymers, especially elastomers, allows creating flexible and stretchable devices. The stretchability enriches the DFB lasers with the ability to change the cavity’s corrugation period, thereby selecting the laser wavelength of a single device. Combining such lasers with actuation mechanism allows to create externally controlled, continuously tunable DFB lasers [812]. Such lasers show potential for applications in the fields of spectroscopy [13], label-free sensing [1416], data-communication [17] or security tagging [18]. It is also possible to incorporate such lasers, fabricated with biocompatible [19,20] materials as a coherent light source in on-chip structures [21,22] for in-situ studies.

So far, the tunability of solid-state DFB lasers was shown by various approaches, e.g., variation in the refractive index [14,23] or thickness [24] of the active material, or modulation of the grating period [25,26]. Yet, the tuning was either realized in a narrow spectral range or was not continuous. Discrete tuning, utilizing various gratings revealed a potential tuning range up to 115 nm on one active material [27]. However, the highest continuous tuning range was 55 nm, achieved by using a wedged active layer with gradual thickness change [13,28]. The tuning was attained by moving the sample relative to the pump spot. However, in this method the tuning range is limited by the cut-off thickness. If the waveguide layer is exceeding this thickness, it will support higher-order modes in addition to the fundamental mode, which leads to mode hopping in the laser output [29]. More promising for wide-range tuning is the modulation of the grating period. For the period variation it is possible to use a chirp in the grating or active strain by means of an actuator, for which the record tuning range up to date is 47 nm [11]. The latter requires elastic materials and a suitable strain mechanism.

In this work, we use the variation of the grating period for stepless wavelength tuning by utilizing elastic and stretchable polymers for the laser and the support. The elasticity of the used polymer matrix was increased by modifying it with a plasticizer. In this way, it was possible to increase the maximal strain of the grating before disintegration of the matrix through cracking occurs. Furthermore, the plasticizer reduced the mismatch of the Young’s moduli between the membrane laser and that of the support. This prevents the detachment of the membrane laser from the support and therefore solves the problem of translating the strain to the laser. Due to the maintaining of a good integrity of the grating during the tuning process, it was possible to generate single-mode laser emission over a wide spectral range. Moreover, in order to decrease the mechanical stress on the actuator, the thickness of the laser was decreased to a submicron range by detaching it from the substrate and using instead the corrugated active layer as a self-sufficient membrane laser. We were able to handle the film with the very low thickness by using a direct contact transfer so it was possible to place the membrane laser to an arbitrary support. The ultra-thin DFB laser design, combined with the improved polymer matrix properties, enables tuning over the full gain range of the used laser dyes by means of mechanical stretching of the grating. Ultimately, we show continuous emission tuning in the span 569 - 618 nm (49 nm) using the dye PM567, and 615 - 692 nm (77 nm) for DCM2, covering in total 123 nm of the orange-red spectral range.

2. Experimental

Sample preparation. For the master gratings, a solution of azobenzene containing polymer poly(Disperse Red 1 methacrylate) (Sigma-Aldrich) in chloroform (5 mg / 100 $\mu$l) was spincoated with 1500 RPM on a microscope glass slide. Subsequently, a holography setup in the Lloyd configuration [30] was used to inscribe the SRG using a 488 nm cw laser (Genesis CX 488-2000 SLM, Coherent). The laser beam was expanded and collimated to a diameter of approx. 1 cm, which was then split into two rays and coincide on the sample. The interference period was set by controlling the angle of incidence of the laser beam with respect to the sample normal. The p-polarized beam illuminated the sample for 2 minutes with power density of 0.3 W/cm$^{2}$. The inscribed grating profile was measured with an atomic force microscope (AFM; Dimension 3100, Veeco Instruments) in tapping mode. For replication of the grating in Polydimethylsiloxane (PDMS, SYLGARD 184, Dow Corning), a cell was prepared with spacers of 200 $\mu$m height. A 1:10 mixture of the PDMS (n = 1.412) was filled into the cell by capillary force. After 2 hours curing at 80 $^{\circ }$C in an oven, the cell was opened. For the active layer, Polyvinyl acetate (PVAc, Sigma-Aldrich, MW = 500000, n = 1.4665) was dissolved in methyl ethyl ketone (MEK) (7,5 g / 100 ml). Subsequently, 4 wt-% (in respect to the polymer weight) of the laser dyes DCM2 (4-(Dicyanomethylene)-2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo [ij]quinolizin-9-yl)vinyl]-4H-pyran) or PM567 (4,4-difluoro-1,3,5,7,8-pentamethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene) was dissolved in the polymer solution. For the plasticized samples, 10 wt-% 2-(2-methoxyethoxy) ethanol (DEGME) was added to the solution. A film of the active layer was spincoated on the PDMS grating replica with 5000 RPM of 50 $\mu$l dye/matrix solution using dynamic dispense. The film thickness was determined by a stylus profilometer (Dektak 150, Veeco Instruments Inc.).

Mechanical characterization. For material testing, a 50 $\mu$m film of PVAc with 0 wt-%, 10 wt-% and 20 wt-% DEGME was casted using doctor blade. The films were cut into 10 mm wide stripes and clamped with a freestanding length of 34 mm into a tensile testing machine (5N force sensor, Kd40s, ME-Messsysteme) and stretched with a linear stage (M-404, Physik Instrumente) at a speed of 17 mm/min.

Optical characterization. The optical setup consists of a frequency-tripled Nd:YAG laser (Quanta-Ray Lab-130-10, Spectra-Physics) which is used to operate an optical parametric oscillator (OPO; versaScan/MB, Spectra-Physics). The OPO delivers 5 ns pulses at 10 Hz repetition rate and was set to emission at 500 nm. For the gain measurements, the beam was focused into a 100 $\mu$m $\times$ 4 mm stripe, which was measured by a beam profiler (LBP2-H2-VIS2, Newport). A linear actuator moved the stripe on the sample with a step size of 50 $\mu$m. Simultaneously, the edge emission was imaged by a pair of lenses onto the entrance slit of a spectrometer (SR-303i-B/Newton CCD, Andor) with 0.1 nm spectral resolution. For laser characteristics, the beam was focused into a round spot with 1 mm in diameter on the sample. The excitation energy was electronically controlled by rotation of a half-wave plate between two polarizers. An optical fiber was used to couple the emitted light into the spectrometer (300 l/mm and 1200 l/mm gratings) for spectral analysis. The angle resolved emission was characterized using an inverted microscope with a 20$\times$ magnification, 0.4 NA objective. The back focal plane of the objective was imaged onto the center of the entrance slit of the spectrometer. The slit of the spectrometer restricts the angle along the grating lines to zero, while emission spectra as a function of the angle perpendicular to the grating lines is measured. The sample was pumped through the objective with a Gaussian spot approximately 200$\mu$m in diameter using a dichroic mirror to separate the pump and emission wavelengths. The input-output characteristics were acquired with a power meter (LabMax, Coherent). For lifetime measurements the samples were pumped with 300 ps pulses at 100 Hz with a pulse energy of 25 $\mu$J at 532 nm (PNG-M02010-120, teem photonics).

Tuning. For the tuning, the laser setup from above was used as excitation source. A film of PDMS was clamped in a mechanical stretching device, consisting of two translation stages, operated by a micrometer screw. A PDMS film was surface-activated and cleaned using UV-ozone (UV/Ozone ProCleaner, BioForce Nanosciences). This film was then clamped in the stretching device. The membrane laser was transferred by direct contact to the new substrate.

3. Results and discussion

3.1. Fabrication

As the first step in creating a thin film laser resonator, master SRGs were fabricated, which can be replicated multiple times. In order to reach low laser thresholds, it is important to use gratings with high corrugation depth and smooth surface [31]. To achieve this, holographic lithography [32] was used to inscribe sinusoidal SRGs with submicron periods onto thin light-responsive films containing azobenzene moieties.[3335]. The isomerization of azobenzenes allows fast inscription of high-quality gratings with arbitrary periods that are suitable to be utilized in photonics [36] and microstructuring [37], e.g., for DFB lasers [3841]. The interference pattern on the sample induces mass migration from the areas with high intensities to the dark regions creating a periodic corrugation on the surface (Fig. 1). The atomic force microscopy (AFM) measurements of the inscribed gratings shown in Fig. 2 revealed uniform corrugations with a depth of approximately 80-100 nm. The period of the grating defines the laser emission wavelength $\lambda _{las}$, which we choose according the second order (m=2) Bragg condition

$$m\lambda_{las}= 2n_{eff}\Lambda$$
where $\Lambda$ is the grating period and $n_{eff} = 1.45$ is the calculated effective refractive index of the conceptualized waveguide.

 

Fig. 1. Schematic of the sample preparation: Two-beam holographic lithography is used to inscribe master SRGs in a thin film containing azobenzene molecules. A replication cell is constructed by gluing the holographically written master SRG to a glass slide with 200 $\mu$m spacers. The cell is then filled with PDMS to replicate the grating structure to the PDMS surface. After thermal curing, the cell is opened to release the patterned PDMS substrate. Subsequently, a layer of the active laser medium is spincoated on the PDMS substrate, forming the DFB laser cavity. Direct-contact transfer method is then used to transport the ultra-thin membrane laser on the desired (stretchable) support material.

Download Full Size | PPT Slide | PDF

 

Fig. 2. (a) Photograph of master SRG, PDMS replica and transferred DFB membrane laser (b) 2D AFM map of the corresponding samples c) surface profile of the corresponding sinusoidal SRG.

Download Full Size | PPT Slide | PDF

The master-SRGs were replicated in Polydimethylsiloxane (PDMS) with nanometer scale accuracy using a replication cell (Fig. 1). Subsequently, the active gain medium was spin coated from a solution on top of the PDMS-replicas. As polymer matrix for the active layer, Polyvinyl acetate (PVAc, n = 1.4665) was selected. As for the gain material, the laser dyes DCM2 (4 wt-%) and PM567 (4 wt-%) were used. In order to lower the Young’s modulus of the active layer, the polymer matrix was plasticized with the molecule 2-(2-methoxyethoxy) ethanol (DEGME), thus increasing the elasticity of PVAc. For a high mode confinement inside the active medium, and in order to compensate the reduction in thickness of the polymer matrix while stretching, we chose a thickness just below the cut-off thickness of 1000 nm, which allows only the propagation of the fundamental mode in the material system used [42]. The PDMS substrate is used merely as a temporary carrier that allows transferring the corrugated active medium to the desired support without damaging the grating. Once the membrane is adhered to the support through direct contact, the PDMS carrier can be peeled off, leaving behind the membrane laser with the corrugated surface pointing outwards. This method of transferring a membrane has the advantage not requiring a solvent compared to the water-immersion transfer in Ref. [18]. For the following measurements, a plain PDMS film was used as the support. This support was cleaned and surface activated using UV-ozone to increase the adhesive strength between the membrane laser and the support, in order to facilitate the transfer from the PDMS carrier. AFM images (Fig. 2) of the DFB membrane laser showed a uniform transfer, maintaining the shape and the amplitude of the grating. Further, absorbance measurements before and after membrane transfer showed that the membrane thickness is maintained.

The direct-contact transfer technique allows attaching the laser membrane to any arbitrary support, e.g. on a dielectric elastomer actuator [11]. The new support needs to have a lower refractive index than that of the active layer in order to establish the waveguide functionality, which is a requirement for the operation of the laser. If this condition is not fulfilled, a thin layer of PDMS (n = 1.412) can be spincoated on top of the active layer. Such thin film could also function as an adhesive, which is beneficial for transferring the laser on a poorly adherent substrate (Fig. 3). After thermal curing, the thicker PDMS carrier can be removed, leaving behind the laser membrane on the new support.

 

Fig. 3. DFB membrane laser transferred to (a) PDMS substrate clamped into a mechanical stretching device, (b) 20 euro bill, (c) microscope slide.

Download Full Size | PPT Slide | PDF

3.2. Mechanical characterization

The impact of the plasticizer on the elastic properties of the polymer matrix was studied using tensile testing. The plasticizer molecules embed themselves between the polymer chains, thus softening the matrix by increasing the free volume. We identified DEGME as the most suitable plasticizer, as it has a good miscibility with the polymer used, maintaining the transparency of the PVAc matrix without increasing optical scattering losses.

The PVAc films were doped with 10 wt-% and 20 wt-% of the plasticizer. The tensile test results in Fig. 4(a) show an expected decrease of the Young’s modulus of the matrix with increasing amount of plasticizer, ranging from 20 MPa (no DEGME) to 6 MPa (20 wt-% DEGME). The lower modulus prevents cracking of the membrane when it is deformed, which preserves the structure on the membrane’s surface. A soft matrix also requires less force from an actuator to elongate the film. We note that although the addition of the plasticizer showed the desired effect, we observed slow evaporation of the plasticizer over time, thus gradually decreasing the elasticity of the film. This problem can be circumvented by coating the film with an impermeable material, by grafting the plasticizer to the polymer chains or by using plasticizer with a higher molecular mass [43]. For further characterization, freshly prepared films with 10 wt-% DEGME content were used, since this concentration was sufficient to provide desired stretching range, as explicated below.

 

Fig. 4. (a) Tensile tests show a decrease of Young’s modulus from 20 MPa to 6 MPa with increasing amount of DEGME from 0 wt-% to 20 wt-%. (b) Stress-strain diagram acquired by a cyclic tensile test shows a repeatable mechanical behavior of the material after an initial higher stress slope.

Download Full Size | PPT Slide | PDF

Next, a cyclic tensile test was performed, illustrating reversible stretching of the material up to at least 8% (Fig. 4(b)). The strain of 8% was chosen according to an assumed operation range of 50 nm for the emission wavelength tuning. The graph shows 30 cycles of stretching and relaxation with a cycle duration of 80 s. It shows that the initial stretching requires a higher force, which is likely connected to a built-up inner stress due to the evaporation of the solvent during the fabrication process. After the initial stress is released, the cyclic tensile test shows a high repeatability of the stress-strain behavior in the range between 2% and 8%. The hysteresis comes as a consequence of a moderate relaxation speed of polymer chains. Nevertheless, this indicates that reversible operation is possible.

3.3. Optical characterization

Figure 5(a) shows the amplified spontaneous emission (ASE) of the thin films containing the laser dyes PM567 and DCM2, appearing as a spectral narrowing on the red edge of the fluorescence spectrum. For a membrane laser an increase in the pump intensity leads to a threshold behavior and the appearance of a narrow lasing peak at the Bragg condition wavelength. The gain measurements reveal the range in which the laser system can be tuned in its wavelength. It was determined using the variable stripe length (VSL) method [44], illuminating a sample with a stripe-shaped beam at constant fluence of 3200 $\mu$J cm$^{-2}$, which corresponds to the maximum fluence used in the following experiments. Increasing the stripe length to a maximum of 4 mm in steps of 50 $\mu$m and measuring the intensity $I(\lambda ,L)$ of the ASE from the edge allows calculating the gain and loss of the active layer from the following relationship

$$I(\lambda,L)=\frac{\Omega(\lambda)}{g(\lambda)} [\exp (g(\lambda)L)-1]$$
where $\Omega$ is a proportionality parameter, $g$ is the wavelength-dependent gain parameter and $L$ is the stripe length. Fitting the data for every wavelength reveals the gain range, thus the potential tuning range. Saturation effects were excluded during the fitting process by selecting only the stripe length range where exponential behavior was observed. For this measurement, a layer of the active medium was spincoated on a featureless PDMS substrate. The thickness was chosen to allow only the fundamental mode to propagate. While gradually increasing the length of the optically pumped area, the VSL measurements show a super-linear rise of ASE in the range of 565 - 620 nm for PM567 and 615 - 750 nm for DCM2. Figure 5(b) shows the obtained gain coefficients for the two dyes utilized in this study. It should be noted that the gain coefficients measured with the VSL method may not be accurate [45], however, the gain width and its maximum give an orientation for the laser performance. The maximal gain measured for PM567 is located in the region around 575 nm and for DCM2 around 640 nm.

 

Fig. 5. (a) Spectra of fluorescence, ASE and lasing, and the chemical structures of the laser dyes used. Inset: laser emission at higher pump fluence with a narrow FWHM down to 0.2 nm, attesting single-mode operation. (b) Gain measurements for DCM2 and PM567 doped PVAc matrix show potential tuning range from 565 to 750 nm. (c) Characteristic double-fan-shaped emission of a DFB laser (PM567) with 1D grating. (d) Angle-resolved measurement shows a single mode emission. (e) Input-output characteristics yield slope efficiencies of 0.3% and 0.86%, and a lasing threshold of 250 nJ (32 $\mu$J/cm$^{2}$). (f) Lifetime measurement show a half-life from 35 min for DCM2 and 67 min for PM567 based lasers at a pumping energy of 25 $\mu$J and a repetition rate of 100 Hz.

Download Full Size | PPT Slide | PDF

For the following characterization measurements lasers with the grating period of 440 nm for DCM2, which led to an emission at 634 nm and the grating period of 400 nm for PM567, which showed emission at 585 nm, have been fabricated. The far-field emission shows a double-fan-shaped pattern (Fig. 5(c)) that is highly divergent parallel to the grating. This is characteristic for surface-emitting DFB lasers with 1D gratings [46], as the lasing mode is not confined along the grating lines. By placing a polarizer behind the emission beam, we identified a polarization parallel to the grating lines. In addition to the lasing mode, Fig. 5(c) shows scattered ASE surrounding the laser output. This ASE originates from propagating modes inside the membrane laser that are amplified by the gain media but without optical feedback. Light in these modes is then scattered out by the grating at a slight angle to the surface normal.

In Fig. 5(d), the angle-resolved measurements indicate the propagation of the fundamental mode and that the lasing occurs at a single frequency. Exemplary, the full width at half maximum (FWHM) for the DCM2-doped sample was measured of about 0.21 nm (Fig. 5(a) inset), which is at the resolution limit of the used spectrometer. The presence of only one peak and its narrow spectral linewidth is evident that the resonator geometry supports only the fundamental laser mode, thus we avoid a mode-hopping by eliminating possible competing higher modes [29].

The input-output characteristics in Fig. 5(e) shows typical threshold behavior for optically pumped lasers. Below the threshold, spontaneous emission from the sample causes a slow increase of the output power. Beyond the threshold, the gain inside the active medium becomes higher than the losses. The fast growth of the emission power is observed, which is an indicator for lasing. The threshold energy for both laser systems was measured as 250 nJ, which corresponds to a fluence of 32 $\mu$J cm$^{-2}$ per pulse. The same thresholds of the both laser systems are mere coincidence. This value is close to typical threshold energies for solid-state DFB lasers with conventional laser dyes [2]. The slope indicates a lasing efficiency of 0.3% for the laser based on DCM2 and 0.86% on PM567, respectively. The laser emission escapes the laser cavity in two directions perpendicular to the surface. If the second beam is assumed to have the same conversion, the overall efficiency can be presumed to 0.6% and 1.7%, respectively. The apparent low efficiencies arise from partial absorption of the pump light and due to light leaking at the edges of the laser. Close to the lasing threshold, approximately 80% of the pump energy is absorbed by the membrane. An approach to increase the efficiency further is a better confinement of the mode, which is possible by using 2D gratings for the laser resonator [46].

A common drawback of organic lasers is their degradation during optical pumping. To test the stability of our devices, the laser’s half-life was measured under optical excitation. To simulate harsh conditions, we conducted the measurements in air, using an increased pump pulse energy of 25 $\mu$J (100$\times$ threshold energy) and set the repetition rate to 100 Hz. Figure 5(f) shows the behavior of the emission energy over the time. The half-life was measured to be 35 minutes for the system with DCM2 and 67 minutes with PM567. These correspond to approximately 210 000 pulses and 400 000 pulses, respectively. These values prove relatively stable laser systems with long usability under heavy enough conditions.

3.4. Wavelength tuning

For the tuning measurements, the polymer matrix of the active layer contained 10 wt-% DEGME. The laser samples with a period of 390 nm for PM567 and with a period of 425 nm for DCM2 have been prepared. These grating periods lead to lasing within the region of lower wavelengths of the gain spectrum for unstretched films, giving the possibility to tune the sample towards higher wavelengths by elongation. For the tuning we used a PDMS film with a thickness of 200 $\mu$m as a support. It was clamped to a mechanical stretching setup (Fig. 6(a)), which can be precisely controlled by a micrometer screw. The laser membrane was attached by direct-contact transfer to the PDMS substrate. Using the micrometer screw, the membrane was stretched in steps of 100 $\mu$m, which corresponds a relative stretching of 0.7% per step. Stretching and releasing showed an instant reversible change of the emitted wavelength (Fig. 6(b)).

 

Fig. 6. (a) Experimental arrangement for mechanical stretching with a micrometer screw for precise stretching control. (b) Image of the emission wavelength change from orange to red spectral range through stretching. (c) & (d) Continuous wavelength tuning in the range 569 - 618 nm (49 nm) for PVAc/PM567 and 615 - 692 nm (77 nm) for PVAc/DCM2 systems, correspondingly.

Download Full Size | PPT Slide | PDF

In Fig. 6(c), the laser containing PM567 shows a normalized tuning spectrum starting from 569 to 618 nm. Figure 6(d) shows the corresponding tuning spectrum for a laser containing DCM2, reaching a range from 615 to 692 nm. These correspond to a tuning range of 49 nm (8.6%) for the former and 77 nm (12.5%) for the latter. Linear dependence between stretching and emitted wavelength was observed. In the relaxed state, we observed the rise of a second emission peak. That indicates the propagation of an additional mode, which emerges due to exceeding the cut-off thickness of the active layer. For the laser system containing PM567, the dominant mode is the TE1 mode and the second mode is the TE0 mode. For the laser system containing DCM2, we identify the dominant lasing mode as the TE0 mode and the second mode as TE1. This contradicting behavior can be explained by a difference in the active layer thickness. With the PM567 dye, the active layer is thick enough to provide a similar level of gain for both TE0 and TE1 modes. The TE1 mode has a higher overlap with the grating that leads to stronger optical feedback, therefore reducing the threshold for this mode [47]. For the DCM2 sample, the layer thickness is just above the cutoff thickness, leading to more gain in the TE0 mode and preferential lasing in that mode.

Due to the Poisson effect, stretching of the film reduces its thickness, thus the second peak disappears at higher strain values. Although the thinning of the film lowers the effective refractive index, thus antagonizing the wavelength tuning, the effect was estimated to be less than 1% of the entire wavelength change. The estimate is based on relative effective index change upon a reduction of the thickness by 10%.

To achieve lasing at the edges of the tuning range, the pumping energy had to be increased up to 25 $\mu$J due to a higher lasing threshold. The increased threshold comes as a consequence of the lower optical gain in this area. An additional increase in the laser threshold at the long-wavelength range is due to the stretching, which causes the thinning of the membrane, therefore reducing the corrugation depth, and thus, the mode confinement [48].

4. Conclusion and outlook

In summary, we demonstrated that the modification of the polymer matrix with a plasticizer, and the utilized replication technique allows manufacturing a highly stretchable and ultra-thin membrane DFB laser. Through the integration with a mechanical stretching device, we achieved continuous wavelength tuning up to a range of about 77 nm (12.5%) for the laser system with DCM2 and a tuning range of about 49 nm (8.6%) for systems with PM567 as laser dyes using lateral elongation of the sample. It means that the combination of the two selected laser dyes allowed to cover a total emission tuning range of 123 nm in the orange-red spectral range. Prospectively, the combination of additional suitable laser dyes and resonator cavities with proper grating periods has the potential to cover wavelength tuning from UV to IR spectral range. By co-doping of laser dyes in corresponding resonator cavities can increase the tuning range on a single film [49].

The lasing threshold of both laser systems was measured to be 32 $\mu$J cm$^{-2}$ with an efficiency of about 1.7%. Potential reduction of the threshold and an increase in the efficiency can be achieved by substituting laser dyes with emissive conjugated polymers or using guest-host systems as gain medium. Likewise, usage of two-dimensional gratings for the laser cavity can improve the feedback mechanism for higher laser performance. Eventually, low lasing thresholds allow compact LEDs to be used for pumping the laser, leading to a quasi-electric operation.

The optical characterizations have shown single-mode emission with a half-life up to 400 000 pulses. Encapsulation can significantly increase the lifetime of the lasers by protecting the gain material from photo-oxidation induced degradation [50] and prevent the evaporation of the plasticizer.

We have shown that simple and low-cost fabrication methods can be used to fabricate thin tunable membrane laser. Prospectively, the elasticity and thus the tuning repeatability can be increased by applying other elastomeric polymers as a host matrix for the active medium with Young’s modulus of about 1 MPa. At the same time, such a material should provide high optical properties and excellent compatibility with typical laser dyes. Assembled as a compact cartridge it can be attractive to use the lasers as disposable single-use devices for in-situ studies. The direct-contact transfer method allows attaching the membrane to any support, i.e. integrating it with low-force actuators or Lab-on-a-chip devices. It is conceivable to produce a badge roll with laser tags for security labeling. Recent advances on electrically pumped organic lasers [51] has future prospect of integrating such a tunable laser in opto-electronic systems.

Funding

H2020 European Research Council (679646); German Federal Ministry of Education and Research (BMBF) (03V0881).

Acknowledgment

This work is part of the Academy of Finland Flagship Programme Photonics Research and Innovation (PREIN; Decision number 320165), which we gratefully acknowledge.

References

1. C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016). [CrossRef]  

2. A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016). [CrossRef]  

3. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007). [CrossRef]  

4. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972). [CrossRef]  

5. R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013). [CrossRef]  

6. X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012). [CrossRef]  

7. D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

8. K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003). [CrossRef]  

9. B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010). [CrossRef]  

10. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011). [CrossRef]  

11. S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011). [CrossRef]  

12. H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015). [CrossRef]  

13. S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

14. E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014). [CrossRef]  

15. M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

16. A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014). [CrossRef]  

17. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010). [CrossRef]  

18. M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018). [CrossRef]  

19. Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015). [CrossRef]  

20. R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013). [CrossRef]  

21. X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014). [CrossRef]  

22. T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009). [CrossRef]  

23. M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010). [CrossRef]  

24. S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009). [CrossRef]  

25. H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017). [CrossRef]  

26. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004). [CrossRef]  

27. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004). [CrossRef]  

28. S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012). [CrossRef]  

29. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995). [CrossRef]  

30. I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010). [CrossRef]  

31. S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014). [CrossRef]  

32. T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002). [CrossRef]  

33. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995). [CrossRef]  

34. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995). [CrossRef]  

35. Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).

36. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014). [CrossRef]  

37. S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012). [CrossRef]  

38. S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010). [CrossRef]  

39. L. M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, and S. Schrader, “Second order DFB lasing using reusable grating inscribed in azobenzene-containing material,” Opt. Mater. Express 2(1), 11 (2012). [CrossRef]  

40. L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001). [CrossRef]  

41. T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005). [CrossRef]  

42. E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012). [CrossRef]  

43. X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019). [CrossRef]  

44. K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971). [CrossRef]  

45. L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004). [CrossRef]  

46. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004). [CrossRef]  

47. W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015). [CrossRef]  

48. V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012). [CrossRef]  

49. Y. Higase, S. Morita, T. Fujii, S. Takahashi, K. Yamashita, and F. Sasaki, “High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide,” Opt. Lett. 43(8), 1714 (2018). [CrossRef]  

50. L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012). [CrossRef]  

51. A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
    [Crossref]
  2. A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
    [Crossref]
  3. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [Crossref]
  4. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
    [Crossref]
  5. R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
    [Crossref]
  6. X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
    [Crossref]
  7. D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26
  8. K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
    [Crossref]
  9. B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
    [Crossref]
  10. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
    [Crossref]
  11. S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
    [Crossref]
  12. H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015).
    [Crossref]
  13. S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.
  14. E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
    [Crossref]
  15. M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40
  16. A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
    [Crossref]
  17. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  18. M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
    [Crossref]
  19. Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
    [Crossref]
  20. R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
    [Crossref]
  21. X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
    [Crossref]
  22. T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
    [Crossref]
  23. M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
    [Crossref]
  24. S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
    [Crossref]
  25. H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
    [Crossref]
  26. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
    [Crossref]
  27. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
    [Crossref]
  28. S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
    [Crossref]
  29. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
    [Crossref]
  30. I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
    [Crossref]
  31. S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
    [Crossref]
  32. T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
    [Crossref]
  33. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
    [Crossref]
  34. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  35. Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).
  36. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
    [Crossref]
  37. S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
    [Crossref]
  38. S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
    [Crossref]
  39. L. M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, and S. Schrader, “Second order DFB lasing using reusable grating inscribed in azobenzene-containing material,” Opt. Mater. Express 2(1), 11 (2012).
    [Crossref]
  40. L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
    [Crossref]
  41. T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
    [Crossref]
  42. E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012).
    [Crossref]
  43. X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
    [Crossref]
  44. K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
    [Crossref]
  45. L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
    [Crossref]
  46. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
    [Crossref]
  47. W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
    [Crossref]
  48. V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
    [Crossref]
  49. Y. Higase, S. Morita, T. Fujii, S. Takahashi, K. Yamashita, and F. Sasaki, “High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide,” Opt. Lett. 43(8), 1714 (2018).
    [Crossref]
  50. L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
    [Crossref]
  51. A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
    [Crossref]

2019 (2)

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

2018 (2)

Y. Higase, S. Morita, T. Fujii, S. Takahashi, K. Yamashita, and F. Sasaki, “High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide,” Opt. Lett. 43(8), 1714 (2018).
[Crossref]

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

2017 (1)

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

2016 (2)

C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

2015 (3)

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015).
[Crossref]

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

2014 (5)

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

2013 (2)

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

2012 (7)

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

L. M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, and S. Schrader, “Second order DFB lasing using reusable grating inscribed in azobenzene-containing material,” Opt. Mater. Express 2(1), 11 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012).
[Crossref]

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

2011 (2)

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

2010 (5)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
[Crossref]

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
[Crossref]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

2009 (2)

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

2007 (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

2005 (1)

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

2004 (4)

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

2003 (1)

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

2002 (1)

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

2001 (1)

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

1995 (3)

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

1971 (1)

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

A Burley, G.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Adachi, C.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Andrew, P.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Barbosa-Silva, R.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Barnes, W. L.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Becker, E.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Bencheikh, F.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Besser, H.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Bettotti, P.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Boj, P. G.

E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012).
[Crossref]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Bradley, D. D. C.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Bräse, S.

Breitung, S.

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

Buller, J.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Byun, I.

I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
[Crossref]

Calle, M.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Calzado, E. M.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

E. M. Calzado, M. G. Ramírez, P. G. Boj, and M. A. D. García, “Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides,” Appl. Opt. 51(16), 3287 (2012).
[Crossref]

Cavicchioli, M.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Cazzanelli, M.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Cerdán, L.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Chen, L.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Chen, Y.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Choi, S. S.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Choi, Y.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Christovan, L. M.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Clemens, W.

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

Costela, A.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Cunningham, B. T.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

D Dawson, M.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

da Silva, R. R.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

de Abajo, J.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

de Araújo, C. B.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

de Melo, L. S. A.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Dehm, S.

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

Denis, C.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Díaz-García, M. A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Dobbertin, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Dominguez, C. T.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Döring, S.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

dos Santos, M. V.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Dumarcher, V.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Durán-Sampedro, G.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Eden, J. G.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Feng, H.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Fiorini, C.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Forberich, K.

Friend, R. H.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Fujihara, T.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Fujii, T.

García, M. A. D.

García-Moreno, I.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Gather, M. C.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

Ge, C.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Gerken, M.

Geyer, U.

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Glackin, J. M. E.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Goldenberg, L. M.

Gombert, A.

Gomes, A. S. L.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Görrn, P.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Goushi, K.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Gritsai, Y.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

Guilhabert, B.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Guttmann, M.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Haase, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Hara, M.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

Haughey, A.-M.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Hecker, K.

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

Hedenqvist, M. S.

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

Heliotis, G.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Heydari, E.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Higase, Y.

Hildebrandt, N.

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Hinze, P.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Hölscher, H.

Hösel, M.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

Huang, B.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Huang, W.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Huska, K.

Ikeda, T.

Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).

Iskra, K. F.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Isoshima, T.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

J Skabara, P.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Jeon, H.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Jin, W.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Johannes, H. H.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Juan-y Seva, M.

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

Juarros, A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Kang, H. S.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

Karl, M.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Kaschke, J.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Kavc, T.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Kern, W.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Kim, J.

I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
[Crossref]

Kim, S.

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Klinkhammer, S.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Koeber, S.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Kofod, G.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Kollosche, M.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

Koos, C.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Kowalsky, W.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Kranzelbinder, G.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Krebs, F. C.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

Kröger, M.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Kronenberg, N. M.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Kuehne, A. J. C.

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

Kulikovska, O.

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Kumagai, M.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

L Kanibolotsky, A.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Langer, G.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Laschewsky, A.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Laurand, N.

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Lee, S.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

Leheny, R. F.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

Lehnhardt, M.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Lemmer, U.

H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015).
[Crossref]

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
[Crossref]

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Linde, E.

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

Lisinetskii, V.

Liu, X.

H. Hölscher, M. Worgull, S. Schauer, U. Lemmer, and X. Liu, “Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers,” Opt. Mater. Express 5(3), 576–584 (2015).
[Crossref]

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

Lu, M.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Lupo, D.

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

Mappes, T.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Matsushima, T.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Mechau, N.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Merino, S.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Mohr, J.

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

Morita, S.

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Navarro-Fuster, V.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Neger, T.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Negro, L.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Nunzi, J.-M.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Otaduy, D.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Pacifici, D.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Park, J.-K.

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

Pavesi, L.

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Peng, C.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

Pfleging, W.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Pogantsch, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Potscavage, W. J.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Priimagi, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Prinz, S.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Pu, D.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Qin, C.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Quintana, J. A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Rabe, T.

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Raimond, P.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Ramírez, M. G.

Retolaza, A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Ribeiro, S. J. L.

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

Ribierre, J.-C.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Riedl, T.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Rocha, L.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

Rochon, P.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Rosenhauer, R.

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Samuel, I. D. W.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Sandanayaka, A. S. D.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Sasaki, F.

Schauer, S.

Schelb, M.

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

Schneider, D.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Schrader, S.

Schubert, M.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Seida, Y.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Shaklee, K. L.

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

Shen, S.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Shen, Y.

Shevchenko, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Shimizu, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Shu, W.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Søndergaard, R. R.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

Stroisch, M.

Stumpe, J.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

L. M. Goldenberg, V. Lisinetskii, Y. Gritsai, J. Stumpe, and S. Schrader, “Second order DFB lasing using reusable grating inscribed in azobenzene-containing material,” Opt. Mater. Express 2(1), 11 (2012).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Sudau, K.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Suzuki, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Takahashi, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Takahashi, S.

Taniguchi, Y.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Teiwes-Morin, C.

Terakawa, S.

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Tetreault, N.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Toussaere, E.

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Turnbull, G. A.

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Ubukata, T.

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

Valouch, S.

Vanderheiden, S.

Vannahme, C.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357 (2012).
[Crossref]

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Villalvilla, J. M.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Vragovic, I.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

Wagner, C. J.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Wagner, S.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Wang, J.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Wegener, M.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Wei, G.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Wei, X.-F.

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

Weimann, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Weinberger, M. R.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Welland, M. E.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Wenger, B.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Wischerhoff, E.

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Wissmann, M.

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

Woggon, T.

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890 (2010).
[Crossref]

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

Worgull, M.

Xia, R.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Xu, H.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Yamashita, K.

Ye, Y.

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

Zhang, B.

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Zhao, Y.

Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).

Zojer, E.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Adv. Funct. Mater. (1)

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004).
[Crossref]

Adv. Mater. (5)

S. Lee, H. S. Kang, and J.-K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. 24(16), 2069–2103 (2012).
[Crossref]

T. Ubukata, T. Isoshima, and M. Hara, “Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system,” Adv. Mater. 17(13), 1630–1633 (2005).
[Crossref]

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Adv. Opt. Mater. (1)

E. Heydari, J. Buller, E. Wischerhoff, A. Laschewsky, S. Döring, and J. Stumpe, “Label-free biosensor based on an all-polymer DFB laser,” Adv. Opt. Mater. 2(2), 137–141 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B: Lasers Opt. 97(4), 787–791 (2009).
[Crossref]

Appl. Phys. Express (2)

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

A. S. D. Sandanayaka, T. Matsushima, F. Bencheikh, S. Terakawa, W. J. Potscavage, C. Qin, T. Fujihara, K. Goushi, J.-C. Ribierre, and C. Adachi, “Indication of current-injection lasing from an organic semiconductor,” Appl. Phys. Express 12(6), 061010 (2019).
[Crossref]

Appl. Phys. Lett. (6)

K. L. Shaklee and R. F. Leheny, “Direct determination of optical gain in semiconductor crystals,” Appl. Phys. Lett. 18(11), 475–477 (1971).
[Crossref]

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H. H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

S. Döring, T. Rabe, and J. Stumpe, “Output characteristics of organic distributed feedback lasers with varying grating heights,” Appl. Phys. Lett. 104(26), 263302 (2014).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Biosens. Bioelectron. (1)

A.-M. Haughey, B. Guilhabert, A. L Kanibolotsky, P. J Skabara, M. D Dawson, G. A Burley, and N. Laurand, “An oligofluorene truxene based distributed feedback laser for biosensing applications,” Biosens. Bioelectron. 54, 679–686 (2014).
[Crossref]

Chem. Mater. (1)

T. Kavc, G. Langer, W. Kern, G. Kranzelbinder, E. Toussaere, G. A. Turnbull, I. D. W. Samuel, K. F. Iskra, T. Neger, and A. Pogantsch, “Index and relief gratings in polymer films for organic distributed feedback lasers,” Chem. Mater. 14(10), 4178–4185 (2002).
[Crossref]

Chem. Rev. (2)

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref]

Faraday Discuss. (1)

X. Liu, S. Prinz, H. Besser, W. Pfleging, M. Wissmann, C. Vannahme, M. Guttmann, T. Mappes, S. Koeber, C. Koos, and U. Lemmer, “Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication,” Faraday Discuss. 174, 153–164 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

J. Appl. Phys. (3)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972).
[Crossref]

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, “Laser emission in periodically modulated polymer films,” J. Appl. Phys. 89(5), 3067–3069 (2001).
[Crossref]

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,” J. Appl. Phys. 112(4), 043104 (2012).
[Crossref]

J. Mater. Chem. (1)

L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22(18), 8938 (2012).
[Crossref]

J. Mater. Chem. C (1)

R. R. da Silva, C. T. Dominguez, M. V. dos Santos, R. Barbosa-Silva, M. Cavicchioli, L. M. Christovan, L. S. A. de Melo, A. S. L. Gomes, C. B. de Araújo, and S. J. L. Ribeiro, “Silk fibroin biopolymer films as efficient hosts for DFB laser operation,” J. Mater. Chem. C 1(43), 7181 (2013).
[Crossref]

J. Micromech. Microeng. (1)

I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20(5), 055024 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

W. Huang, S. Shen, D. Pu, G. Wei, Y. Ye, C. Peng, and L. Chen, “Working characteristics of external distributed feedback polymer lasers with varying waveguiding structures,” J. Phys. D: Appl. Phys. 48(49), 495105 (2015).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (2)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci., Part B: Polym. Phys. 51(1), 16–34 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(Part 2), L249–L251 (2003).
[Crossref]

Lab Chip (1)

Y. Choi, H. Jeon, and S. Kim, “A fully biocompatible single-mode distributed feedback laser,” Lab Chip 15(3), 642–645 (2015).
[Crossref]

Microelectron. Eng. (1)

T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, and J. Mohr, “Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng. 86(4-6), 1499–1501 (2009).
[Crossref]

Micromachines (1)

H. Feng, W. Shu, H. Xu, B. Zhang, B. Huang, J. Wang, W. Jin, and Y. Chen, “Two-directional tuning of distributed feedback film dye laser devices,” Micromachines 8(12), 362 (2017).
[Crossref]

Nat. Commun. (1)

M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, and M. C. Gather, “Flexible and ultra-lightweight polymer membrane lasers,” Nat. Commun. 9(1), 1525 (2018).
[Crossref]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

npj Mater. Degrad. (1)

X.-F. Wei, E. Linde, and M. S. Hedenqvist, “Plasticiser loss from plastic or rubber products through diffusion and evaporation,” npj Mater. Degrad. 3(1), 18 (2019).
[Crossref]

Opt. Commun. (1)

L. Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (2)

Organic Photonics IV (1)

S. Döring, T. Rabe, R. Rosenhauer, O. Kulikovska, N. Hildebrandt, and J. Stumpe, “Azobenzene-based surface relief gratings for thin film distributed feedback lasers,” Organic Photonics IV 7722, 77221H (2010).
[Crossref]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers: part II: gain media, laser systems, and applications,” Prog. Quantum Electron. 45-46, 3–160 (2016).
[Crossref]

Other (4)

D. Lupo, W. Clemens, S. Breitung, and K. Hecker, OE-A Roadmap for Organic and Printed Electronics (SpringerUS, 2013), pp. 1–26

S. Klinkhammer, T. Woggon, C. Vannahme, U. Geyer, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” in Organic Photonics IV, vol. 7722, P. L. Heremans, , R. Coehoorn, and C. Adachi, eds. (International Society for Optics and Photonics, 2010). p. 77221I.

M. Lu, S. S. Choi, C. Ge, C. J. Wagner, J. G. Eden, and B. T. Cunningham, “Design and implementation of vertically emitting distributed feedback lasers for biological sensing,” in Label-Free Technologies for Drug Discovery, (John Wiley & Sons, Ltd, 2011), pp. 27–40

Y. Zhao and T. Ikeda, Smart Light-Responsive Materials (John Wiley & Sons, Inc., 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the sample preparation: Two-beam holographic lithography is used to inscribe master SRGs in a thin film containing azobenzene molecules. A replication cell is constructed by gluing the holographically written master SRG to a glass slide with 200 $\mu$m spacers. The cell is then filled with PDMS to replicate the grating structure to the PDMS surface. After thermal curing, the cell is opened to release the patterned PDMS substrate. Subsequently, a layer of the active laser medium is spincoated on the PDMS substrate, forming the DFB laser cavity. Direct-contact transfer method is then used to transport the ultra-thin membrane laser on the desired (stretchable) support material.
Fig. 2.
Fig. 2. (a) Photograph of master SRG, PDMS replica and transferred DFB membrane laser (b) 2D AFM map of the corresponding samples c) surface profile of the corresponding sinusoidal SRG.
Fig. 3.
Fig. 3. DFB membrane laser transferred to (a) PDMS substrate clamped into a mechanical stretching device, (b) 20 euro bill, (c) microscope slide.
Fig. 4.
Fig. 4. (a) Tensile tests show a decrease of Young’s modulus from 20 MPa to 6 MPa with increasing amount of DEGME from 0 wt-% to 20 wt-%. (b) Stress-strain diagram acquired by a cyclic tensile test shows a repeatable mechanical behavior of the material after an initial higher stress slope.
Fig. 5.
Fig. 5. (a) Spectra of fluorescence, ASE and lasing, and the chemical structures of the laser dyes used. Inset: laser emission at higher pump fluence with a narrow FWHM down to 0.2 nm, attesting single-mode operation. (b) Gain measurements for DCM2 and PM567 doped PVAc matrix show potential tuning range from 565 to 750 nm. (c) Characteristic double-fan-shaped emission of a DFB laser (PM567) with 1D grating. (d) Angle-resolved measurement shows a single mode emission. (e) Input-output characteristics yield slope efficiencies of 0.3% and 0.86%, and a lasing threshold of 250 nJ (32 $\mu$J/cm$^{2}$). (f) Lifetime measurement show a half-life from 35 min for DCM2 and 67 min for PM567 based lasers at a pumping energy of 25 $\mu$J and a repetition rate of 100 Hz.
Fig. 6.
Fig. 6. (a) Experimental arrangement for mechanical stretching with a micrometer screw for precise stretching control. (b) Image of the emission wavelength change from orange to red spectral range through stretching. (c) & (d) Continuous wavelength tuning in the range 569 - 618 nm (49 nm) for PVAc/PM567 and 615 - 692 nm (77 nm) for PVAc/DCM2 systems, correspondingly.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ l a s = 2 n e f f Λ
I ( λ , L ) = Ω ( λ ) g ( λ ) [ exp ( g ( λ ) L ) 1 ]

Metrics