Abstract

Simple high-speed optical transmission technologies are desired for use in intra-and inter-datacenter networks. In this study, we demonstrate simple single-carrier intensity-modulated direct-detection (IMDD) transmissions at a net data rate of 400 Gbps (516.7 Gbps gross) over 20 km with a compact transmitter subassembly. The subassembly consists of a 2:1 analog multiplexer (AMUX) and an InP Mach-Zehnder modulator (MZM) placed close to each other and connected via wires. We employed 162-Gbaud single-carrier probabilistically shaped pulsed amplitude modulation (PS-PAM). The baseband signals with a bandwidth of around 81 GHz to drive the MZM were generated by a super-digital-to-analog converter (super-DAC) consisting of two sub-DACs and the AMUX. Digital nonlinear pre-distortion enabled us to transmit the signals with normalized generalized mutual information (NGMI) larger than the threshold of a soft-decision forward error correction (SD-FEC) code of 0.857. Truncation of the PS-PAM symbol distribution further enhanced performance. To the best of our knowledge, this is the first net-400-Gbps single-carrier IMDD transmission using a compact transmitter subassembly.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Driven by the growing demand for low-cost high-speed optical transmission systems for intra- and inter-datacenter networks, technologies to increase data rates of intensity-modulated direct-detection (IMDD) systems are being actively studied. The pursuit of higher data rates with simple IMDD systems, each of which utilizes only a single intensity modulator and single photodetector, has attracted much attention. Since the first net-200-Gbps simple IMDD transmission [1], several different approaches to reaching net data rates around 200∼250 Gbps have been demonstrated [28]. Higher data rates have been achieved only by using super-digital-to-analog converters (super-DACs), in which the outputs of multiple sub-DACs are multiplexed to generate ultra-wideband multilevel electronic signals to drive the optical intensity modulators. In particular, we have demonstrated a net-333-Gbps discrete multitone (DMT) transmission with a super-DAC consisting of two sub-DACs and an analog multiplexer (AMUX) [9]. Chen et al. reported a record net data rate of 460.9 Gbps by using entropy-loaded guard-banded four-band modulation with a super-DAC consisting of three sub-DACs, two analog mixers, and a triplexer [10]. Super-DACs are promising for scaling the data rate without increasing the complexity of the optics. Nevertheless, it is also essential to make the transmitter compact for use in datacenter networks. In the previous study, we developed an integrated transmitter subassembly consisting of an AMUX IC and indium phosphide (InP) Mach-Zehnder modulator (MZM) chip [9]. Unlike the mixer-based super-DAC, the AMUX-based super-DAC does not require a diplexer or any other bulky RF filters, enabling us to place the mm-scale AMUX and MZM chips close to each other and connect them with wires.

In this study, we demonstrated net-400-Gbps simple IMDD transmissions using the compact integrated AMUX-MZM subassembly. To achieve this rate, which is of special interest in regard to the Ethernet roadmap [11], we used probabilistically shaped pulsed amplitude modulation (PS-PAM). PS modulation, which is a realistic technique to approach Shannon’s limit at high data rates [12], has mainly been investigated in the field of coherent optical transmission systems, but recently has also been shown to be useful in IMDD systems [10,13,14]. To simplify the signal processing, we employed single-carrier 162-Gbaud PS-PAM without using multicarrier or multiband approaches. To the best of our knowledge, 400 Gbps is the highest net data rate yet achieved in single-carrier IMDD transmission with a compact transmitter subassembly.

2. Configuration and principle of transmitter

Figure 1 shows the configuration of the transmitter, which consists of a digital signal processor (DSP), two sub-DACs, an AMUX, and an InP MZM [9]. From the functional point of view, the transmitter is divided into a super-DAC and the MZM. The super-DAC, which we call a digital-preprocessed analog-multiplexed DAC (DP-AM-DAC), consists of a spectral weaver in the DSP, two sub-DACs, and the AMUX. When the analog bandwidth of the sub-DACs is B, the super-DAC functions as a DAC with a nearly doubled bandwidth of ∼2B, based on the principle described later in this section. In regard to the physical layout, the sub-DACs and the AMUX are separated, while the AMUX and the MZM are integrated in a subassembly. This is reasonable because, to mitigate the electronic transmission loss, the wider bandwidth signal (output from the AMUX) should be transmitted over a shorter length than the narrower bandwidth ones (those from the sub-DACs). We use CMOS DACs as the sub-DACs, considering monolithic integration with the DSP for practical implementation. The typical analog bandwidth of the CMOS DACs is around 30-40 GHz. Therefore, we can make the super-DAC with a bandwidth of 60-80 GHz if we use the AMUX and MZM with enough bandwidth. In the experiment, we employed an AMUX fabricated using a 0.25-µm-emiter-width InP double-heterojunction bipolar transistor (DHBT), which provides a 3-dB bandwidth exceeding 100 GHz [9,15]. Moreover, the MZM had a 3-dB bandwidth around 80 GHz, which was achieved by employing an InP n-i-p-n heterostructure optical waveguide and a capacitance-loaded traveling-wave modulation electrode [9,16]. The AMUX and MZM chips are 2.0 × 2.0 and 1.2 × 6.9 mm2, respectively. They are placed close to each other and connected by gold wires to form a compact subassembly.

 

Fig. 1. Configuration of the transmitter.

Download Full Size | PPT Slide | PDF

The principle of operation of the super-DAC (DP-AM-DAC) is shown in Fig. 2 [3,8,9]. In the spectral weaver, the input digital signal with a corresponding analog bandwidth of 2B is converted into two sub-signals with a bandwidth of B and sent to the sub-DACs. As shown in the figure, each sub-signal is a superposition of the lower and higher frequency components, which are represented in red and blue, respectively, of the input signal. The relative phases between those components differ between the two sub-signals. The weaver also compensates for the imbalance and skew between the two sub-DAC paths. Then, the sub-DACs with a bandwidth of B convert the digital sub-signals into their analog counterparts. The AMUX makes the two analog sub-signals pass through alternately at a clock frequency of B. In the frequency domain, this operation is equivalent to superposition of the two input signals themselves (fundamental components) and their images around the clock frequency of B with specific phase and amplitude relationships. After this analog superposition, only the targeted signal with a bandwidth of 2B remains, while the other components cancel each other.

 

Fig. 2. Operation principle of AMUX-based super-DAC (DP-AM-DAC).

Download Full Size | PPT Slide | PDF

3. Experimental setup

Figure 3 shows the experimental setup for the 162-Gbaud PS-PAM transmission. Transmitter- and receiver-side DSPs were emulated by an offline PC. We used two channels of a 92-GS/s benchtop arbitrary waveform generator (AWG) as the two sub-DACs, whose outputs were fed to the AMUX in the subassembly via coplanar probes. A 41-GHz clock to drive the AMUX was generated with another channel of the AWG and a frequency doubler. A tunable laser source (TLS) supplied 1540-nm CW light to the MZM. The transmission line consisted of two erbium-doped fiber amplifiers (EDFAs), dispersion compensating fiber (DCF), 20-km standard single-mode fiber (SSMF), and a tunable optical dispersion compensator (TODC). Since the symbol rate is as high as 162 GBaud, we used the TODC to suppress residual dispersion within ± 5 ps/nm. A 100-GHz single-ended photodiode (PD) and a 256-GS/s 113-GHz digital storage oscilloscope (DSO) were used to receive the signal. The optical powers launched into the AMUX-MZM, DCF and PD were + 17.1, +6.0 and + 11.5 dBm, respectively. The insertion loss (including modulation loss) of the AMUX-MZM was typically around 19.5 dB, which could be improved by optimizing the device structure. The high launched power into the PD was due to unavailability of a trans-impedance amplifier with sufficient bandwidth, and this is why we needed the second EDFA after the SMF. The optical signal-to-noise ratio (OSNR) measured at the input to the PD was 47.3 dB.

 

Fig. 3. Experimental setup for 162-Gbaud PS-PAM transmission.

Download Full Size | PPT Slide | PDF

In the transmitter-side DSP, we first generated a PS-PAM symbol sequence under the assumption of a constant composition distribution matcher (CCDM) [17]. The data to be transmitted was a random bit sequence generated by using the Mersenne twister. As shown in Fig. 4, the probability distributions of the 16 equally spaced symbol levels in each frame consisting of 3×105 symbols was shaped according to a Maxwell-Boltzmann distribution, which is symmetric with respect to the center of the 16 symbol levels. When the signal-to-noise ratio (SNR) is constrained by the received optical power including the optical carrier, the PS-PAM should employ asymmetric distributions where lower-level symbols have higher probabilities [13,14]. However, we employed the symmetric distributions because the SNR of our system is considered to be constrained by the baseband AC signal power in the transmitter electronics. The symmetric distribution is also advantageous in that we can use the established technique of adding the parity bits for forward error correction (FEC) [13]. To relax the requirement for the dynamic range of the transmitter, we also tested a truncated PS-PAM (TPS-PAM) distribution, in which the edge levels are left unused [13,18]. Hereinafter, M/16-TPS-PAM represents a TPS-PAM with M active signal levels (16−M unused levels). We tested 10/16-, 12/16- and 14/16-TPS-PAMs as well as non-truncated 16/16-PS-PAM. We assumed the use of a concatenated FEC with a total code rate of 0.826 consisting of an inner low-density parity-check (LDPC) code with a code rate of 5/6 (64800, 54000) [19] and an outer BCH (30832, 30592) code [20]. Normalized generalized mutual information (NGMI) is widely used as a performance metric of transmissions with soft-decision FECs (SD-FECs) [21]. The threshold NGMI for this concatenated FEC is 0.857 [22]. We used 1.0% of the symbols as pilots and set the symbol rate to 162 Gbaud. Therefore, when the entropy of the distribution is 3.19 bits/symbol, which gives a gross line rate of 3.19×162 = 516.7 Gbps, the net data rate corresponds to {3.19−(1−0.826)×log2(16)}/1.01×162 = 400.0 Gbps. We tested signals at net data rates of 360, 380, 400, 420 and 440 Gbps, while 440 Gbps was not achievable with 10/16-TPS-PAM because {log2(10)−(1−0.826)×log2(16)}/1.01×162 = 421.2 < 440.

 

Fig. 4. Probability distribution of 10/16-TPS-PAM and 16/16-PS-PAM corresponding to net data rates of 360, 380, 400, 420 and 440 Gbps.

Download Full Size | PPT Slide | PDF

We digitally generated the (T)PS-PAM waveforms by up-sampling the symbol sequences and applying a root-raised-cosine filter with a roll-off factor of 0.01. Then, we applied nonlinear pre-distortion (NLPD) using first, second and third-order Volterra series with a memory length for every kernel of 11. The coefficients of the NLPD were optimized by using a test signal transmitted before the data transmission. The main purpose of the NLPD is to compensate for the nonlinearities of the output amplifier integrated in the AMUX and of the MZM having an intrinsically sinusoidal response. The output of the NLPD was sent to the spectral weaver, which is the first stage of the super-DAC (DP-AM-DAC), as described in the previous section, and it was finally converted into the analog 162-Gbaud (T)PS-PAM signal to drive the MZM in the subassembly.

In the receiver-side DSP, we first applied a linear half-symbol-spaced finite-impulse-response filter to compensate for the linear channel response by minimizing the mean square error and cut off out-of-band noise. Then, we synchronized the sampling phase to the symbol timing by using the pilot symbols. After that, we calculated the bit-wise log likelihood ratios from the received and transmitted symbols to derive the NGMI.

4. Results

Figure 5 shows spectra of 10/16-TPS-PAM signals at a net data rate of 400 Gbps measured at four different points. As shown in Figs. 5(a) and 5(b), the bandwidths of the electronic sub-signals input to the AMUX were around 40 GHz. Nevertheless, as shown in Fig. 5(c), where the horizontal axis is the relative optical frequency with respect to the carrier frequency of 194.67 THz, the optical signal input to the DCF has a bandwidth at each sideband of 80 GHz, implying that the super-DAC successfully generated the single-carrier 162-GBaud TPS-PAM signal. The residual third-order image, which is intrinsic to the DP-AM-DAC, can also be observed on either side of the TPS-PAM signal [3]. Since the color dispersion of the SMF was precisely compensated for by the DCF and TODC, fading was not observed in the electronic signal spectra captured after the PD, as shown in Fig. 5(d).

 

Fig. 5. Spectra of net-400-Gbps 10/16 TPS-PAM signal measured at the inputs to (a) AMUX Ch1, (b) AMUX Ch2, (c) DCF, and (d) DSO. (c) is an optical spectrum, while the others are electronic spectra.

Download Full Size | PPT Slide | PDF

Figure 6(a) shows the NGMIs at a net data rate of 400 Gbps versus the number of active signal levels with and without the NLPD. Digitally interpolated eye diagrams for the active levels of 10 and 16 are also shown at the top. With the NLPD, signals with all tested active levels were successfully transmitted at net 400 Gbps with NGMIs larger than the threshold. At this rate, the NGMIs with 10/16-TPS- and 16/16-PS-PAM were 0.881 and 0.869, respectively. The NGMIs monotonically increased as the number of active levels decreased, showing that the truncation to ten active levels improves performance at this rate. Without the NLPD, a net data rate of 400 Gbps was not achievable. Figure 6(b) shows the NGMIs versus the net data rate with 10/16-TPS- and 16/16-PS-PAM, each with and without the NLPD. 10/16-TPS-PAM outperformed 16/16-PS-PAM up to net 400 Gbps but underperformed at 420 Gbps. We consider this is because the distribution of 10/16-TPS-PAM at net 420 Gbps is almost flat as shown in Fig. 4 and so the shaping gain of this format is very low. Net data rates of 420 and 440 Gbps were not achievable in any of the cases.

 

Fig. 6. (a) Digitally interpolated eye diagrams and NGMIs at net 400 Gbps vs. number of active signal levels. (b) NGMIs vs. net data rate with 10/16-TPS- and 16/16-PS-PAM.

Download Full Size | PPT Slide | PDF

5. Conclusion

We demonstrated 162-Gbaud PS-PAM transmissions over 20 km by using an integrated transmitter subassembly consisting of an AMUX IC and InP MZM. We obtained NGMIs larger than the FEC threshold of 0.857 at data rates up to 400 Gbps (net; 516.7 Gbps gross) and found that truncation of edge signal levels improves the performance. To the best of our knowledge, these are the first net-400-Gbps transmissions achieved with single-carrier IMDD using a compact transmitter subassembly. We consider these technologies to be promising for simple and compact 400-Gbps interconnections for intra- and inter-data-center applications.

References

1. S. Kanazawa, H. Yamazaki, Y. Nakanishi, Y. Ueda, W. Kobayashi, Y. Muramoto, H. Ishii, and H. Sanjoh, “214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module,” J. Lightwave Technol. 35(3), 418–422 (2017). [CrossRef]  

2. H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

3. H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017). [CrossRef]  

4. S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightwave Technol. 36(1), 97–102 (2018). [CrossRef]  

5. H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

6. L. Zhang, J. Wei, N. Stojanovic, C. Prodaniuc, and C. Xie, “Beyond 200-Gb/s DMT Transmission over 2-km SMF Based on A Low-cost Architecture with Single-wavelength, Single-DAC/ADC and Single-PD,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.1.

7. N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 transmission with BER bellow KP4-FEC/EFEC and at least 14 dB link budget,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.5.

8. H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018). [CrossRef]  

9. H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019). [CrossRef]  

10. X. Chen, S. Chandrasekhar, J. Cho, and P. Winzer, “Single-Wavelength and Single-Photodiode Entropy-Loaded 554-Gb/s Transmission over 22-km SMF,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.5.

11. Ethernet Alliance, “The 2019 Roadmap,” https://ethernetalliance.org/the-2019-ethernet-roadmap/

12. F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016). [CrossRef]  

13. T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.

14. Z. He, T. Bo, and H. Kim, “Probabilistically shaped coded modulation for IM/DD system,” Opt. Express 27(9), 12126–12136 (2019). [CrossRef]  

15. M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

16. Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019). [CrossRef]  

17. G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015). [CrossRef]  

18. I. Ruiz, A. Ghazisaeidi, O. Sab, P. Plantady, A. Calsat, S. Dubost, L. Schmalen, V. Letellier, and J. Renaudier, “25.4-Tb/s Transmission Over Transpacific Distances Using Truncated Probabilistically Shaped PDM-64QAM,” J. Lightwave Technol. 36(6), 1354–1361 (2018). [CrossRef]  

19. ETSI, Technical Report 102 376, V1.1.1 (2005).

20. D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

21. J. Cho, L. Schmalen, and P. J. Winzer, “Normalized Generalized Mutual Information as a Forward Error Correction Threshold for Probabilistically Shaped QAM,” in European Conference and Exhibition on Optical Communications (2017), paper M.2.D.2.

22. T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

References

  • View by:
  • |
  • |
  • |

  1. S. Kanazawa, H. Yamazaki, Y. Nakanishi, Y. Ueda, W. Kobayashi, Y. Muramoto, H. Ishii, and H. Sanjoh, “214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module,” J. Lightwave Technol. 35(3), 418–422 (2017).
    [Crossref]
  2. H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.
  3. H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
    [Crossref]
  4. S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightwave Technol. 36(1), 97–102 (2018).
    [Crossref]
  5. H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.
  6. L. Zhang, J. Wei, N. Stojanovic, C. Prodaniuc, and C. Xie, “Beyond 200-Gb/s DMT Transmission over 2-km SMF Based on A Low-cost Architecture with Single-wavelength, Single-DAC/ADC and Single-PD,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.1.
  7. N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 transmission with BER bellow KP4-FEC/EFEC and at least 14 dB link budget,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.5.
  8. H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
    [Crossref]
  9. H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
    [Crossref]
  10. X. Chen, S. Chandrasekhar, J. Cho, and P. Winzer, “Single-Wavelength and Single-Photodiode Entropy-Loaded 554-Gb/s Transmission over 22-km SMF,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.5.
  11. Ethernet Alliance, “The 2019 Roadmap,” https://ethernetalliance.org/the-2019-ethernet-roadmap/
  12. F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
    [Crossref]
  13. T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.
  14. Z. He, T. Bo, and H. Kim, “Probabilistically shaped coded modulation for IM/DD system,” Opt. Express 27(9), 12126–12136 (2019).
    [Crossref]
  15. M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.
  16. Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
    [Crossref]
  17. G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
    [Crossref]
  18. I. Ruiz, A. Ghazisaeidi, O. Sab, P. Plantady, A. Calsat, S. Dubost, L. Schmalen, V. Letellier, and J. Renaudier, “25.4-Tb/s Transmission Over Transpacific Distances Using Truncated Probabilistically Shaped PDM-64QAM,” J. Lightwave Technol. 36(6), 1354–1361 (2018).
    [Crossref]
  19. ETSI, Technical Report 102 376, V1.1.1 (2005).
  20. D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.
  21. J. Cho, L. Schmalen, and P. J. Winzer, “Normalized Generalized Mutual Information as a Forward Error Correction Threshold for Probabilistically Shaped QAM,” in European Conference and Exhibition on Optical Communications (2017), paper M.2.D.2.
  22. T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

2019 (2)

2018 (3)

2017 (2)

2016 (1)

2015 (1)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Altenhain, L.

Alvarado, A.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Bayvel, P.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Bigo, S.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Bo, T.

Bocherer, G.

Böcherer, G.

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Brink, S.

T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.

Buchali, F.

F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
[Crossref]

T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.

Calsat, A.

Chagnon, M.

T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.

Chandrasekhar, S.

X. Chen, S. Chandrasekhar, J. Cho, and P. Winzer, “Single-Wavelength and Single-Photodiode Entropy-Loaded 554-Gb/s Transmission over 22-km SMF,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.5.

Chen, J.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Chen, X.

X. Chen, S. Chandrasekhar, J. Cho, and P. Winzer, “Single-Wavelength and Single-Photodiode Entropy-Loaded 554-Gb/s Transmission over 22-km SMF,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.5.

Cho, J.

X. Chen, S. Chandrasekhar, J. Cho, and P. Winzer, “Single-Wavelength and Single-Photodiode Entropy-Loaded 554-Gb/s Transmission over 22-km SMF,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.5.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized Generalized Mutual Information as a Forward Error Correction Threshold for Probabilistically Shaped QAM,” in European Conference and Exhibition on Optical Communications (2017), paper M.2.D.2.

Dubost, S.

Dupuy, J.-Y.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Duval, B.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Eriksson, T. A.

T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.

Estaran, J. M.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Ghazisaeidi, A.

Hamaoka, F.

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Hashimoto, T.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

Hashizume, Y.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

He, Z.

Ida, M.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

Idler, W.

Ishii, H.

Ishikawa, M.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

Jorge, F.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Kaiser, R.

Kanazawa, S.

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

S. Kanazawa, H. Yamazaki, Y. Nakanishi, Y. Ueda, W. Kobayashi, Y. Muramoto, H. Ishii, and H. Sanjoh, “214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module,” J. Lightwave Technol. 35(3), 418–422 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

Kim, H.

Kobayashi, T.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Kobayashi, W.

Koike-Akino, T.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Kojima, K.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Konczykowska, A.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Koos, C.

Lange, S.

Lavery, D.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Letellier, V.

Lutz, J.

Maher, R.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Mardoyan, H.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Millar, D. S.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Miyamoto, Y.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Motoh, M.

M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

Muramoto, Y.

Nagatani, M.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Nakamura, M.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Nakanishi, Y.

Nodjiadjim, V.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Nosaka, H.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Nunoya, N.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

Ogiso, Y.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

Ozaki, J.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

Ozolins, O.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Pajovic, M.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Pang, X.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Parsons, K.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Paskov, M.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Plantady, P.

Popov, S.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Prodaniuc, C.

L. Zhang, J. Wei, N. Stojanovic, C. Prodaniuc, and C. Xie, “Beyond 200-Gb/s DMT Transmission over 2-km SMF Based on A Low-cost Architecture with Single-wavelength, Single-DAC/ADC and Single-PD,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.1.

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 transmission with BER bellow KP4-FEC/EFEC and at least 14 dB link budget,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.5.

Randel, S.

Renaudier, J.

Riet, M.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Ruiz, I.

Sab, O.

Sanjoh, H.

Savory, S. J.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Schell, M.

Schmalen, L.

I. Ruiz, A. Ghazisaeidi, O. Sab, P. Plantady, A. Calsat, S. Dubost, L. Schmalen, V. Letellier, and J. Renaudier, “25.4-Tb/s Transmission Over Transpacific Distances Using Truncated Probabilistically Shaped PDM-64QAM,” J. Lightwave Technol. 36(6), 1354–1361 (2018).
[Crossref]

F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
[Crossref]

T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized Generalized Mutual Information as a Forward Error Correction Threshold for Probabilistically Shaped QAM,” in European Conference and Exhibition on Optical Communications (2017), paper M.2.D.2.

Schmid, R.

Schuh, K.

T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.

Schulte, P.

F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Steiner, F.

F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Stojanovic, N.

L. Zhang, J. Wei, N. Stojanovic, C. Prodaniuc, and C. Xie, “Beyond 200-Gb/s DMT Transmission over 2-km SMF Based on A Low-cost Architecture with Single-wavelength, Single-DAC/ADC and Single-PD,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.1.

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 transmission with BER bellow KP4-FEC/EFEC and at least 14 dB link budget,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.5.

Tanobe, H.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

Thomsen, B. C.

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

Udalcovs, A.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Ueda, Y.

S. Kanazawa, H. Yamazaki, Y. Nakanishi, Y. Ueda, W. Kobayashi, Y. Muramoto, H. Ishii, and H. Sanjoh, “214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module,” J. Lightwave Technol. 35(3), 418–422 (2017).
[Crossref]

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

Umeki, T.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Wakita, H.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Wei, J.

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 transmission with BER bellow KP4-FEC/EFEC and at least 14 dB link budget,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.5.

L. Zhang, J. Wei, N. Stojanovic, C. Prodaniuc, and C. Xie, “Beyond 200-Gb/s DMT Transmission over 2-km SMF Based on A Low-cost Architecture with Single-wavelength, Single-DAC/ADC and Single-PD,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.1.

Westergren, U.

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

Winzer, P.

X. Chen, S. Chandrasekhar, J. Cho, and P. Winzer, “Single-Wavelength and Single-Photodiode Entropy-Loaded 554-Gb/s Transmission over 22-km SMF,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.5.

Winzer, P. J.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized Generalized Mutual Information as a Forward Error Correction Threshold for Probabilistically Shaped QAM,” in European Conference and Exhibition on Optical Communications (2017), paper M.2.D.2.

Wolf, S.

Xie, C.

L. Zhang, J. Wei, N. Stojanovic, C. Prodaniuc, and C. Xie, “Beyond 200-Gb/s DMT Transmission over 2-km SMF Based on A Low-cost Architecture with Single-wavelength, Single-DAC/ADC and Single-PD,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.1.

Yamazaki, H.

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

S. Kanazawa, H. Yamazaki, Y. Nakanishi, Y. Ueda, W. Kobayashi, Y. Muramoto, H. Ishii, and H. Sanjoh, “214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module,” J. Lightwave Technol. 35(3), 418–422 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
[Crossref]

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Zhang, L.

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 transmission with BER bellow KP4-FEC/EFEC and at least 14 dB link budget,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.5.

L. Zhang, J. Wei, N. Stojanovic, C. Prodaniuc, and C. Xie, “Beyond 200-Gb/s DMT Transmission over 2-km SMF Based on A Low-cost Architecture with Single-wavelength, Single-DAC/ADC and Single-PD,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.1.

IEEE Photonics Technol. Lett. (1)

H. Yamazaki, M. Nagatani, H. Wakita, M. Nakamura, S. Kanazawa, M. Ida, T. Hashimoto, H. Nosaka, and Y. Miyamoto, “160-GBd (320-Gb/s) PAM4 Transmission Using 97-GHz Bandwidth Analog Multiplexer,” IEEE Photonics Technol. Lett. 30(20), 1749–1751 (2018).
[Crossref]

IEEE Trans. Commun. (1)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

J. Lightwave Technol. (6)

I. Ruiz, A. Ghazisaeidi, O. Sab, P. Plantady, A. Calsat, S. Dubost, L. Schmalen, V. Letellier, and J. Renaudier, “25.4-Tb/s Transmission Over Transpacific Distances Using Truncated Probabilistically Shaped PDM-64QAM,” J. Lightwave Technol. 36(6), 1354–1361 (2018).
[Crossref]

S. Kanazawa, H. Yamazaki, Y. Nakanishi, Y. Ueda, W. Kobayashi, Y. Muramoto, H. Ishii, and H. Sanjoh, “214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module,” J. Lightwave Technol. 35(3), 418–422 (2017).
[Crossref]

F. Buchali, F. Steiner, G. Bocherer, L. Schmalen, P. Schulte, and W. Idler, “Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration,” J. Lightwave Technol. 34(7), 1599–1609 (2016).
[Crossref]

H. Yamazaki, M. Nagatani, H. Wakita, Y. Ogiso, M. Nakamura, M. Ida, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “IMDD Transmission at Net Data Rate of 333 Gbps Using Over-100-GHz-Bandwidth Analog Multiplexer and Mach-Zehnder Modulator,” J. Lightwave Technol. 37(8), 1772–1778 (2019).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “Discrete Multi-tone Transmission at Net Data Rate of 250 Gbps Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” J. Lightwave Technol. 35(7), 1300–1306 (2017).
[Crossref]

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, M. Schell, C. Koos, and S. Randel, “100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator,” J. Lightwave Technol. 36(1), 97–102 (2018).
[Crossref]

Opt. Express (1)

Other (13)

M. Nagatani, H. Wakita, H. Yamazaki, M. Motoh, M. Ida, Y. Miyamoto, and H. Nosaka, “An Over-110-GHz-Bandwidth 2:1 Analog Multiplexer in 0.25-µm InP DHBT Technology,” in International Microwave Symposium (2018), Paper We2A-1.

Y. Ogiso, J. Ozaki, Y. Ueda, H. Wakita, M. Nagatani, H. Yamazaki, M. Nakamura, T. Kobayashi, S. Kanazawa, Y. Hashizume, H. Tanobe, N. Nunoya, M. Ida, Y. Miyamoto, and M. Ishikawa, “80-GHz Bandwidth and 1.5-V Vπ InP-based IQ Modulator,” J. Lightw. Technol. (Early Access), (2019).
[Crossref]

H. Mardoyan, F. Jorge, O. Ozolins, J. M. Estaran, A. Udalcovs, A. Konczykowska, M. Riet, B. Duval, V. Nodjiadjim, J.-Y. Dupuy, X. Pang, U. Westergren, J. Chen, S. Popov, and S. Bigo, “204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications,” in Optical Fiber Communications Conference (Optical Society of America, 2018), paper Th4A.4.

L. Zhang, J. Wei, N. Stojanovic, C. Prodaniuc, and C. Xie, “Beyond 200-Gb/s DMT Transmission over 2-km SMF Based on A Low-cost Architecture with Single-wavelength, Single-DAC/ADC and Single-PD,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.1.

N. Stojanovic, C. Prodaniuc, L. Zhang, and J. Wei, “210/225 Gbit/s PAM-6 transmission with BER bellow KP4-FEC/EFEC and at least 14 dB link budget,” in European Conference and Exhibition on Optical Communications (2018), paper We1H.5.

X. Chen, S. Chandrasekhar, J. Cho, and P. Winzer, “Single-Wavelength and Single-Photodiode Entropy-Loaded 554-Gb/s Transmission over 22-km SMF,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.5.

Ethernet Alliance, “The 2019 Roadmap,” https://ethernetalliance.org/the-2019-ethernet-roadmap/

T. A. Eriksson, M. Chagnon, F. Buchali, K. Schuh, S. Brink, and L. Schmalen, “56 Gbaud Probabilistically Shaped PAM8 for Data Center Interconnects,” in European Conference and Exhibition on Optical Communications (2017), paper Tu2D.4.

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, F. Hamaoka, and Y. Miyamoto, “Discrete Multi-tone Transmitter at Net Data Rate of 200 Gbps Using a Digital-Preprocessed Analog-Multiplexed DAC,” in European Conference and Exhibition on Optical Communications (Optical Society of America, 2016), paper Tu.3.C.2.

ETSI, Technical Report 102 376, V1.1.1 (2005).

D. S. Millar, R. Maher, D. Lavery, T. Koike-Akino, M. Pajovic, A. Alvarado, M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, S. J. Savory, and P. Bayvel, “Detection of a 1 Tb/s Superchannel with a Single Coherent Receiver,” in European Conference and Exhibition on Optical Communications (2015), paper Mo3.3.1.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized Generalized Mutual Information as a Forward Error Correction Threshold for Probabilistically Shaped QAM,” in European Conference and Exhibition on Optical Communications (2017), paper M.2.D.2.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band Transmission over 800 km Employing 1-Tb/s PS-64QAM signals enhanced by Complex 8 × 2 MIMO Equalizer,” in Optical Fiber Communications Conference (Optical Society of America, 2019), paper Th4B.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Configuration of the transmitter.
Fig. 2.
Fig. 2. Operation principle of AMUX-based super-DAC (DP-AM-DAC).
Fig. 3.
Fig. 3. Experimental setup for 162-Gbaud PS-PAM transmission.
Fig. 4.
Fig. 4. Probability distribution of 10/16-TPS-PAM and 16/16-PS-PAM corresponding to net data rates of 360, 380, 400, 420 and 440 Gbps.
Fig. 5.
Fig. 5. Spectra of net-400-Gbps 10/16 TPS-PAM signal measured at the inputs to (a) AMUX Ch1, (b) AMUX Ch2, (c) DCF, and (d) DSO. (c) is an optical spectrum, while the others are electronic spectra.
Fig. 6.
Fig. 6. (a) Digitally interpolated eye diagrams and NGMIs at net 400 Gbps vs. number of active signal levels. (b) NGMIs vs. net data rate with 10/16-TPS- and 16/16-PS-PAM.

Metrics