Abstract

Anisotropic transverse light scattering by prismatic nanowires is a natural outcome of their geometry. In this work, we perform numerical calculations of the light scattering characteristics for nanowires in the optical and near-infrared range and explore the possibility of tuning the directivity by changing the angle of light incidence. The scattering cross section and the directivity of the scattered light when it is incident perpendicular to a facet or to an edge of the prism are investigated both with transverse electric and with transverse magnetic polarizations. The phenomenology includes Mie resonances and guided modes yielding together rich and complex spectra. We consider nanowires with hexagonal, square and triangular cross sections. The modes that are most sensitive to the incidence angle are the hexapole for the hexagonal case and the quadrupole for the square case. Higher order modes are also sensitive, but mostly for the square geometry. Our results indicate the possibility of a flexible in-situ tunability of the directivity simply by rotating the nanowire profile relatively to the direction of the incident light which could offer potential advantages in applications such as switching or sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The interaction of light with micrometric or nanometric sized particles or other nanostructures, made of dielectric materials with high refractive index, is a very rich and active field of research [1]. Part of the interest is driven by the phenomenology associated to the scattering of light in the optical range, i.e., of wavelength comparable to the size of the scatterers, without significant losses, unlike the scattering on metallic systems of similar size [24]. This interest includes the study of fundamental effects of the light-matter interaction at nanoscale, like the presence of nonconservative forces related to the momentum transfer [58] and the coupling of nanoparticles and light propagation due to the near-field effects of the scattered optical field [9,10]. The material and the geometry of the nanoparticles allow for the tunability of the electric or magnetic resonances, which often coexist, making them interesting components of optical devices to manipulate visible light at nanoscale [1116].

The classical textbook example of light scattering on spherical nanoparticles can be analyzed with the old Mie theory [17]. However, the experimental evidence of specific resonances is still an ongoing research subject [1820]. More recently a variety of objects of nanometric size have been considered for light scattering, like nanoblocks, nanopyramids [21,22], or nanowires [2325]. This wide range of nanostructures shows complex phenomenology related to geometry, internal composition and material properties, which includes directional scattering through the interference of different resonant modes [2629], second and third-harmonic generation [30], or Fano resonances [31].

Semiconductor based nanowires can be produced with various cross section geometries which have an influence on their interaction with light. Nanowires of III-V materials produced by bottom-up techniques grow typically as hexagonal columns [3235]. Other prismatic geometries, although less common, have also been obtained, like square [36] or triangular [3740]. A special interest lies in the fabrication of core-shell nanowires, i.e., radial heterojunctions of two different materials. Elaborated bottom-up growth methods can lead to combined structures such as a hexagonal core surrounded by a triangular shell [41,42]. Another interesting aspect is that the core may be etched out leaving behind a tubular nanowire with vacuum inside [33,43].

The fabrication of nanowires with a well defined geometry and/or internal structure has recently motivated experimental and theoretical research on their electronic transport properties [4447], on Majorana based devices [48,49] and on their potential for optoelectronics [5052]. However, to the best of our knowledge, the interaction of light with prismatic semiconductor nanowires has not received much attention.

In our present work we consider nanowires with polygonal cross sections and explore the effects of the prismatic geometry on the scattering when the direction of light incidence is varied, from being perpendicular to the sides to being perpendicular to the edges of the prism. The scattering cross section is weakly dependent on the illumination direction, only for certain modes a significant difference is observed. For these modes, the radiation patterns show both quantitative and qualitative variations. In this context, the control of the resonances and the tunable directional scattering have already been demonstrated to allow for interesting applications, e.g., in sensing and switching, both with single nanoparticles [5356] or with dimers [5760]. Tunable directivity in rectangular nanowires has also been demonstrated by changing the polarization of the incident light or by changing the illumination direction from transversal to longitudinal incidence [61]. Usually, either a change in the geometry of the structure or in the characteristics of the incident light is needed for the tuning of the directivity. The possibility of controlling light scattering by a rotation has only recently been considered in pyramidal silicon nanostructures [62]. In this work, we demonstrate that, due to the natural anisotropic scattering which results from their geometry, prismatic nanowires allow for in-situ tuning the directivity. This is possible by means of a simple rotation, either of the nanowire or the direction of the incident light, and thus with a flexibility that offers potential advantages functioning as switches or for sensing purposes.

2. Model

We consider prismatic nanowires of hexagonal, square, and triangular cross section, as shown in Fig. 1, with radii between 100-250 nm, in the optical/near-infrared range, where the wavelength is several times larger. The length of the nanowires varies from values comparable with the radius up to several times larger. We calculate numerically the scattering cross section using finite differences in COMSOL Multiphysics [63]. The simulation domain consists of a sphere with 800 nm radius which has an outer perfectly-matched layer of 400 nm thickness, with the nanowire located at the center of the sphere.

 

Fig. 1. Sketch of the two polarizations (TE and TM) of the incident light, for example on a nanowire with square cross section, and the different angles of incidence studied in each polygonal geometry: hexagonal, square, and triangular.

Download Full Size | PPT Slide | PDF

In all the studied cases, the nanowires have the same refractive index $n = 3.5$, which could correspond to GaP at $\lambda = 530$ nm [64] and is similar to other semiconductor materials like Si, Ge or III-V compounds in the optical and infrared range. Since we are only interested in the effects of the geometry, the absorption is neglected in all cases. We note, however, that our results would still hold if absorption was taken into account, as the scattering spectra can be red-shifted to a wavelength range where it becomes negligible, by means of changing the wavelength and the dimensions accordingly to Maxwell’s equation scaling. The surrounding medium is air, i.e., refractive index $n = 1$. The meshing maximum size is chosen to be a sixth of the wavelength in each material, $\lambda /6n$, and the Maxwell equations are solved for the scattered field in the far-field approximation.

Using the computational method described above we have recently reproduced the scattering spectra of cylindrical nanowires, including Fano resonances [65]. For prismatic nanowires the spectra are expected to differ, due to the change of geometry and the decrease of the effective scattering volume. Another variable in the present case is the incidence angle of the light, as indicated by the colored arrows in Fig. 1.

3. Results

We first study the influence of the incidence angle, both in the scattering spectra and in the radiation patterns, for short ($L =$ 200 nm) nanowires (or nanoparticles) and long nanowires ($L =$ 600 nm). The scattering cross section is normalized by dividing, in each case, by the geometrical cross section of a cylindrical nanowire of the same dimensions (radius and length).

The geometrical cross section, i.e., the effective surface of the prismatic nanowire perpendicular to the direction of the incoming light, and the scattering conditions depend on the angle of incidence. Thus, a variation of the scattering spectra is expected to appear as the angle of incidence changes. Because of the geometric symmetries this angle has limited ranges, between $0-{30}^\circ$ for the hexagonal, $0-{45}^\circ$ for the square, and $0-{60}^\circ$ for the triangular case (Fig. 1). The geometrical cross section seen by the light varies over these incidence intervals by a factor of $2/\sqrt {3}\approx 1.15$ for the hexagonal and triangular cases, and by $\sqrt {2}\approx 1.41$ for the square, indicating that the square geometry is expected to be more effective. The anisotropy is also expected to increase with the radius of the nanostructures, as the absolute differences in the geometrical cross sections under a change in the incidence angle would also increase, getting closer to the incident light wavelength.

In particular, for triangular nanowires, a rotation of ${60}^\circ$ leaves the geometrical cross section unchanged, but due to the lack of an inversion center, it leads to different scattering conditions when the light impinges along a symmetry axis from opposite directions. This effect has already been reported in a recent paper for Si nanopyramids [66]. For the same reason, even if within a specific range, the scattering spectra show almost no difference for different angles of incidence, there may still be a difference in the contribution from each individual mode [67]. We also note that, under TM polarization the radiation pattern is no longer symmetric when the light incides along one of the sides of the triangle.

3.1 Short nanowires

We consider light in the near infrared range ($\lambda = 600-1200$ nm). The radii of the nanowires are $R = 175, 200, 250$ nm for the hexagonal, square, and triangular profile, respectively and the length is $L = 200$ nm. Here by radius we mean the distance between the center of the polygon and the corners. The reduction of the number of sides leads to a decrease of the volume (keeping the same radius), thus both a blue-shift and a decrease of amplitude of the scattering cross section follows. To compensate this effect and to be able to compare the results for the three different geometries, the radii are chosen in such a way that the low order modes, i.e., electric (ED) and magnetic (MD) dipoles and magnetic quadrupole (MQ), are the main contributors to the total scattering within the same range. In Fig. 2 we show the scattering cross section for the three prismatic geometries, with different angles of incidence and in Fig. 3 we show radiation patterns for the selected wavelengths.

 

Fig. 2. The scattering cross section vs. wavelength, for different incidence angles of light, for short nanoprisms with length $L = 200$ nm, of hexagonal (a,b), square (c,d), and triangular (e,f) cross section, with radii $R = 175, 200, 250$ nm, respectively. Figures a, c, e correspond to TE polarization and b, d, f to TM polarization. The colors of the curves match the colors of the incidence angle in Fig. 1: the red and blue curves correspond to the scattering cross section obtained with the light incident along the corner-center direction and incident perpendicular to one of the facets of the prism, respectively. In the triangular case the total scattering cross section with the light inciding at ${60}^\circ$ is indistinguishable from the case corresponding to ${0}^\circ$ and the dashed curves correspond to the individual contributions of the dipole moments (ED and MD). The vertical lines correspond to the wavelength values for which the directivity patterns are shown in Fig. 3.

Download Full Size | PPT Slide | PDF

 

Fig. 3. 2D radiation patterns for the hexagon (a,b), square (c,d) and triangular (e,f) nanoprisms. ${0}^\circ$ corresponds to forward scattering. The colors of the figures again match the colors of the incidence angle shown in Fig. 1. For the hexagonal nanoparticle the wavelength is $\lambda = 540$ nm and TE polarization in (a) and $\lambda = 636$ nm and TM polarization in (b). For the square $\lambda = 636$ nm and TE in (c) and $\lambda = 816$ nm and TM in (d). For the triangular case $\lambda = 640$ nm and TE (e) and $\lambda = 1148$ nm and TM where the Kerker condition is satisfied (f). The units for the far-field norm are $10^{-7}$ V/m.

Download Full Size | PPT Slide | PDF

The scattering in the hexagonal prism shows practically no sign of anisotropy on a large interval of wavelengths. Only for the magnetic hexapole (MH) a remarkable difference appears when rotating the angle of incidence, as can be seen in Fig. 2(a) and 2(b). In Fig. 3(a) and 3(b) we show the radiation patterns corresponding to the wavelengths marked by the blue lines in Fig. 2. The radiation patterns for the hexagonal nanoparticle under the MH modes reveal a clear difference resulting from this anisotropy, as the MH is either diminished under TE or red-shifted under TM conditions. This suggests that the number of sides/corners strongly affects the modes whose symmetry matches the geometry of the sample.

Indeed, for the square geometry, a significant difference now in the MQ is observed in Fig. 2(c) and 2(d). For $\lambda = 636$ nm, under TE polarization, we observe an interesting situation (Fig. 3(c)) in which the forward scattering is almost completely cancelled when the light impinges perpendicular to one of the corners, as the scattering cross section is almost zero for that wavelength. For TM polarization a considerable red-shift of the MQ mode is observed, and the directivity pattern shown in Fig. 3(d) clearly reflects this remarkable change. Due to their matching modes, both the square and the hexagonal geometry allow for a high degree of tunability through the rotation of the incidence angle.

As we pointed out previously, for the wavelength intervals for which the scattering spectra are not sensitive to the angle of incidence, one may still expect a difference in the contribution from each individual mode, and thus different radiation patterns. However, in all the cases tested for the square and the hexagon, the directivities are almost completely insensitive. In Fig. 4 we show the asymmetry parameter corresponding to the nanoprisms in the studied wavelengths range. As can also be observed, only a slight degree of anisotropy occurs aside the aforementioned modes. Only for the triangular case this effect has a significant magnitude, in Figs. 2(e) and 2(f) we show the individual contributions of the dipole moments, where the underlying anisotropy, despite the invariance in the total scattering cross section is revealed. This is also distinctly reflected in the differences of its asymmetry parameter, specially under TE polarization (Fig. 4(e)) over the whole range of wavelengths. Remarkably, as observed at $\lambda \approx 750$ nm, the scattering direction can be switched from being predominantly forward to backward by a rotation of ${60}^\circ$, as the asymmetry parameter changes its sign. We also note that the MQ mode is clearly diminished under TE polarization as the mode no longer matches the geometry of the sample. Instead, for TM, as the mode is longitudinal, the MQ remains unaffected. The radiation patterns for the MQ are shown in Fig. 3(e), revealing a highly anisotropic scattering as expected by its asymmetry parameter.

 

Fig. 4. Asymmetry parameter as a function of the wavelength for the hexagonal (a,b), square (c,d), and triangular (e,f) nanoprisms as in Fig 2. The blue lines also correspond to the same wavelength for which the directivity patterns where obtained in Fig. 3

Download Full Size | PPT Slide | PDF

When the magnitude of the ED and the MD are equal (situation known as the first Kerker condition) the backward scattering is cancelled via destructive interference. In Fig. 3(f), the directivity pattern when this condition is satisfied, for the triangular nanowire (under TM polarization), shows a slight difference, also observable in Fig. 4(f), due the dependence of the individual dipole modes to the illumination direction.

Finally, the electric field configurations inside the nanoparticles for all the cases considered here are shown in Fig. 5. As expected, taking into account the previous results, the electric field inside the particles is rather sensitive to the angle of incidence for the cases where we observe anisotropic scattering. In particular, we note that when the light impinges the nanoparticles with TM polarization, the shift of the MH ($\lambda = 636$ nm) and the MQ ($\lambda = 816$ nm) for the hexagon and the square, respectively, is clearly reflected in the electric field configurations. We observe how both completely disappear, and how the magnitude of the electric field is remarkably diminished, when the incidence is rotated from being perpendicular to one edge to being perpendicular to one side, in accordance to the results shown in Fig. 2. The anisotropic scattering of the triangular nanoparticle, despite having the same value of the scattering cross section, is also reflected under TE polarization for the MQ ($\lambda = 652$ nm). We observe how the lack of an inversion center results in completely different field configurations inside the nanoparticle when the light impinges perpendicular to one facet or perpendicular to one edge. For TM, in the Kerker condition ($\lambda = 1156$ nm), the field configuration shows little difference, leading to isotropic scattering in accordance to the directivity patterns shown in Fig. 3

 

Fig. 5. Electric field configurations inside the nanoparticles. The direction of incidence of the light is parallel to the $x$ axis with TE or TM polarization depending on the orientation of the nanoparticles. The units of the electric field in the color scale are V/m.

Download Full Size | PPT Slide | PDF

3.2 Long nanowires

Longer nanowires have richer and more complex scattering spectra. Mie resonances now coexist with longitudinal guided modes that develop as the length increases. The guided modes are the result of Fabry-Perot interferences resulting from the longitudinal bouncing of the modes along the nanowire. This overlapping of transverse and longitudinal modes leads to sharp Fano resonances which we can observe in our spectra.

We consider now light in the range of $\lambda = 400-1100$ nm to also include higher-order modes. For these modes the wavelength is closer to the geometrical cross section difference of the structure under rotation and thus, they are much more sensitive to the incidence angle.

In Fig. 6 we show the scattering cross section dependence on the angle of incidence for the nanowires with radii of $R = 100, 135, 175$ nm for the hexagonal, square, and triangular profiles, respectively, and in Figs. 7 and 8 we show the corresponding directivity patterns and asymmetry parameters. The length is now $L = 600$ nm in all cases. The guided sharp TE$_{01}$ modes are associated to the reflections of the purely transversal MD and overlap with the broad MD background leading to the sharp Fano resonances. The guided modes for TM polarization are also associated with the MD mode, which has now longitudinal symmetry, and the reflections along the length of the nanowire lead to hybrid Fabry-Perot modes (HE$_{11}$).

 

Fig. 6. As in Fig. 2 for nanowires with radii of $R = 100, 135, 175$ nm for the hexagonal, square, and triangular geometry, respectively, and $L = 600$ nm.

Download Full Size | PPT Slide | PDF

 

Fig. 7. 2D radiation patterns for the hexagonal nanowires for TE at $\lambda = 692$ nm (a) and TM at at $\lambda = 784$ nm (b). Square nanowire for TE at $\lambda = 470$ nm (c) and for TM at $\lambda = 562$ nm (d). (e) and (f) for the triangular nanowires at $\lambda = 504$ nm and $\lambda = 444$ nm for TE and TM polarizations, respectively. The color code is the same as in Fig. 3.

Download Full Size | PPT Slide | PDF

 

Fig. 8. Asymmetry parameter as a function of the wavelength as in Fig. 4 for long nanowires.

Download Full Size | PPT Slide | PDF

The dimensions (radii and length) of the nanowires are chosen in such a way that we obtain the resonances studied in [31] and [65], which we treat as a reference point. The main Fano resonances are seen in Fig. 6(a) and 6(b), coming from the overlapping of the $TE^3_{01}$ and $HE^5_{11}$ modes, respectively, with the MD. A more detailed analysis of these modes can be found in [31] for cylindrical nanowires.

In our case, we notice a nearly isotropic scattering cross section for the hexagonal nanowire in Figs. 6(a) and 6(b), both under TE and TM, also reflected in the corresponding asymmetry parameter in Fig. 8. The radiation patterns for the $TE^3_{01}$ and $HE^5_{11}$ modes are shown in Figs. 7(a) and 7(b), respectively, and reveal a field distribution insensitive to the incidence angle. As the radius is smaller in this case, the geometrical cross section difference under a rotation of the angle of incidence is also smaller. Thus, the anisotropy is still expected to appear but for shorter wavelengths and, again, especially in those modes whose geometry matches the sample, i.e., magnetic hexapole and its associated longitudinal modes.

On the contrary, the square nanowire, Figs. 6(c) and 6(d), shows remarkable anisotropic scattering cross sections and asymmetry parameters within a wide range of wavelengths. Consequently, a rich set of directivity patterns with flexible tunability is allowed. These high-order modes are rather complex, and their interference and overlapping makes their classification almost unviable. The directivity patterns shown in Fig. 7 correspond to wavelengths where interesting features appear. A nearly complete suppression of the forward scattering (Fig. 7(c)) is still possible through the interference of high-order modes, but now a much sharper directivity is achieved. In Fig. 7(d) we observe a situation similar to the one discussed in the previous section. The radiation pattern reveals a MQ-like behavior, highly anisotropic as it matches the geometry of the square nanowire.

Interestingly, the triangular nanowire also shows a highly anisotropic directional scattering despite the negligible differences in the scattering cross section spectra, both under TE and TM polarization, as seen in the asymmetry parameter in Figs. 8(e) and 8(f). The high anisotropy also occurs within a wide range of wavelengths, and, to some degree, it also extends to longer ones. In this case, a diminishment of the forward scattering is also achievable (Fig. 7(e)) at $\lambda = 504$ nm under TE polarization when the light impinges perpendicular to one corner. Because of its asymmetric scattering under TM polarization, the angle of maximum scattering could be rotated up to $1{5}^\circ$ (Fig. 7(f)).

As for the previously discussed short nanowires, we show in Fig. 9 the electric field configurations for all the cases considered in this subsection. Here, the field configurations are much more complex as more modes, both transversal and longitudinal, contribute and overlap. It is still possible to identify the key features. We can clearly observe that the longitudinal modes are the result of the bouncing along the length of the nanowires of the transversal ones. For the hexagonal nanowire, the $TE^3_{01}$ ($\lambda = 692$ nm) and $HE^5_{01}$ ($\lambda = 784$ nm) modes change only very slightly when rotating the angle of incidence, as expected from the isotropic scattering shown in Fig. 7. For the cases of the square and, especially, triangular nanowires, the anisotropy is clearly reflected through the changes in the electric field inside the nanowires. In particular, we remark how anisotropic the electric field is in the triangular case, even when the scattering cross section shows almost negligible variations, contrarily to the hexagonal case, which is in accordance with the directivity patterns of Fig. 7.

 

Fig. 9. Electric field configurations inside the nanowires, as in Fig. 5.

Download Full Size | PPT Slide | PDF

4. Conclusions

The scattering of light by prismatic nanowires depends on the illumination direction. When the difference of the geometrical cross section of the structures under a rotation is comparable to the incident light wavelength a strongly anisotropic scattering occurs. The effect is less pronounced in hexagonal nanowires, as they are more symmetric, i.e., closer to a cylinder, but it is especially remarkable for the square and triangular geometries. In general, the modes that are more sensitive to the direction of incidence are the ones whose symmetry matches the geometry of the structure, i.e., the magnetic hexapole and quadrupole and its associated longitudinal modes for the hexagon and square, respectively. Because of the lack of an inversion center, triangular nanowires show unique features, such as anisotropic scattering despite negligible differences in the scattering cross section spectra. This anisotropy allows for the possibility of a flexible in-situ tuning of the directivity by a simple change of the incidence angle or by changing the light polarization. Forward scattering may be considerably diminished this way, allowing for interesting applications in switching or sensing.

The scattering spectra can be shifted in multiple ways by scaling either the radius, the length, or the aspect ratio of the nanowires. In particular, we note that the high-order resonant modes that we included in Fig. 7 would easily vanish from the visible domain because of absorption, which we have neglected. Still, as we mentioned, they would be achievable in larger samples, due to Maxwell’s equations scaling, by red-shifting them to the spectral region where the absorption is negligible for most of semiconductor materials. Apart from the geometric variables, the refractive index of the material is another parameter that can shift the resonances of the scattering spectra. In this sense, core-shell structures offer an additional degree of freedom for the tunability of the scattering characteristics and proposed core-shell structures and aggregates have also been demonstrated to allow for highly directional light scattering [6875]. Therefore, we emphasize the advantage of a core-shell nanowire where, to a first approximation, a blue or a red shift can be achieved, also shown by a recent study of the high-order modes in core-shell spherical particles [76].

Funding

Icelandic Centre for Research (163438-051).

Acknowledgments

Instructive discussions with Aristide Dogariu, Sergey Sukhov and Anttu Nicklas are gratefully acknowledged.

References

1. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016). [CrossRef]  

2. P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014). [CrossRef]  

3. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016). [CrossRef]  

4. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015). [CrossRef]  

5. S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011). [CrossRef]  

6. V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013). [CrossRef]  

7. S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014). [CrossRef]  

8. S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015). [CrossRef]  

9. S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013). [CrossRef]  

10. R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015). [CrossRef]  

11. Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017). [CrossRef]  

12. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010). [CrossRef]  

13. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012). [CrossRef]  

14. G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014). [CrossRef]  

15. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012). [CrossRef]  

16. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013). [CrossRef]  

17. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

18. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011). [CrossRef]  

19. V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017). [CrossRef]  

20. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012). [CrossRef]  

21. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011). [CrossRef]  

22. H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015). [CrossRef]  

23. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010). [CrossRef]  

24. P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017). [CrossRef]  

25. M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24(3), 2047–2064 (2016). [CrossRef]  

26. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013). [CrossRef]  

27. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013). [CrossRef]  

28. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013). [CrossRef]  

29. J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017). [CrossRef]  

30. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014). [CrossRef]  

31. D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017). [CrossRef]  

32. C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011). [CrossRef]  

33. T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012). [CrossRef]  

34. P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013). [CrossRef]  

35. K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015). [CrossRef]  

36. H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006). [CrossRef]  

37. F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004). [CrossRef]  

38. L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009). [CrossRef]  

39. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009). [CrossRef]  

40. C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012). [CrossRef]  

41. X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$ Sb$_{x}$/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015). [CrossRef]  

42. D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019). [CrossRef]  

43. F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013). [CrossRef]  

44. O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014). [CrossRef]  

45. S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016). [CrossRef]  

46. S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017). [CrossRef]  

47. M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018). [CrossRef]  

48. A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017). [CrossRef]  

49. S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

50. A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012). [CrossRef]  

51. A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018). [CrossRef]  

52. M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019). [CrossRef]  

53. T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016). [CrossRef]  

54. B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013). [CrossRef]  

55. A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015). [CrossRef]  

56. M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015). [CrossRef]  

57. A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017). [CrossRef]  

58. D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017). [CrossRef]  

59. T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017). [CrossRef]  

60. P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016). [CrossRef]  

61. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017). [CrossRef]  

62. P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019). [CrossRef]  

63. COMSOL Multiphysics v. 5.4. www.comsol.com, COMSOL AB, Stock. Swed.

64. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983). [CrossRef]  

65. M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

66. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018). [CrossRef]  

67. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017). [CrossRef]  

68. Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017). [CrossRef]  

69. Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018). [CrossRef]  

70. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014). [CrossRef]  

71. W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013). [CrossRef]  

72. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012). [CrossRef]  

73. A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016). [CrossRef]  

74. W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016). [CrossRef]  

75. Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015). [CrossRef]  

76. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
    [Crossref]
  2. P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
    [Crossref]
  3. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  4. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
    [Crossref]
  5. S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
    [Crossref]
  6. V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
    [Crossref]
  7. S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
    [Crossref]
  8. S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
    [Crossref]
  9. S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013).
    [Crossref]
  10. R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
    [Crossref]
  11. Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
    [Crossref]
  12. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [Crossref]
  13. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
    [Crossref]
  14. G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
    [Crossref]
  15. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
    [Crossref]
  16. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
    [Crossref]
  17. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  18. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref]
  19. V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
    [Crossref]
  20. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref]
  21. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
    [Crossref]
  22. H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
    [Crossref]
  23. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
    [Crossref]
  24. P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
    [Crossref]
  25. M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24(3), 2047–2064 (2016).
    [Crossref]
  26. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
    [Crossref]
  27. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref]
  28. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
    [Crossref]
  29. J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
    [Crossref]
  30. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
    [Crossref]
  31. D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
    [Crossref]
  32. C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
    [Crossref]
  33. T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
    [Crossref]
  34. P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
    [Crossref]
  35. K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
    [Crossref]
  36. H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
    [Crossref]
  37. F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
    [Crossref]
  38. L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
    [Crossref]
  39. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
    [Crossref]
  40. C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
    [Crossref]
  41. X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
    [Crossref]
  42. D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
    [Crossref]
  43. F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
    [Crossref]
  44. O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
    [Crossref]
  45. S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
    [Crossref]
  46. S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
    [Crossref]
  47. M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
    [Crossref]
  48. A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
    [Crossref]
  49. S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).
  50. A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
    [Crossref]
  51. A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
    [Crossref]
  52. M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
    [Crossref]
  53. T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
    [Crossref]
  54. B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
    [Crossref]
  55. A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
    [Crossref]
  56. M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
    [Crossref]
  57. A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
    [Crossref]
  58. D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
    [Crossref]
  59. T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
    [Crossref]
  60. P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
    [Crossref]
  61. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
    [Crossref]
  62. P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
    [Crossref]
  63. COMSOL Multiphysics v. 5.4. www.comsol.com , COMSOL AB, Stock. Swed.
  64. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
    [Crossref]
  65. M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).
  66. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
    [Crossref]
  67. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
    [Crossref]
  68. Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
    [Crossref]
  69. Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
    [Crossref]
  70. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
    [Crossref]
  71. W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
    [Crossref]
  72. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
    [Crossref]
  73. A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
    [Crossref]
  74. W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
    [Crossref]
  75. Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
    [Crossref]
  76. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
    [Crossref]

2019 (3)

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

2018 (4)

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

2017 (13)

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
[Crossref]

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

2016 (8)

M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24(3), 2047–2064 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

2015 (10)

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
[Crossref]

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

2014 (6)

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

2013 (10)

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013).
[Crossref]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref]

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

2012 (7)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

2011 (4)

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

2010 (2)

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

2009 (2)

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

2006 (1)

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

2004 (1)

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

A. Rikken, G. L. J.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Abay, S.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Abstreiter, G.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Abujetas, D. R.

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

Aizpurua, J.

Albella, P.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Ang, G.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Arbouet, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Artemyev, Y. A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Baird, L.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Ballester, A.

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

Bardarson, J. H.

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

Barnard, E. S.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

Baron, T.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Barreda, A. I.

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
[Crossref]

Barreda, Á. I.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

Barrelet, C. J.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Baryshnikova, K. V.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Belov, P.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Bertoni, A.

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

Blömers, C.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Bohren, C.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

Borgström, M. T.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Brener, I.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Brenny, B. J.

Broky, J.

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Brown, A. M.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Cambiasso, J.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

Cao, L.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Caroff, P.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Chantada, L.

Chen, Z.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Christianen, P. C. M.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Cortés, E.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Cuche, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Dalelkhan, B.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

de la Osa, R. A.

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

del Águila, A. G.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Demarina, N.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

Deng, M. T.

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

des Francs, G. C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Ding, W.

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Döblinger, M.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Dogariu, A.

R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Dong, Y.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

Douglass, K. M.

Ee, H.-S.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

Erlingsson, S. I.

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

Evlyukhin, A. B.

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Eyraud, C.

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Ezhov, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Fan, H.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Fan, P.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Fedyanin, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Finley, J. J.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Fontana, Y.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Fournel, F.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Froufe-Pérez, L. S.

Fu, D.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Fu, Y. H.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Gao, Q.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

García-Cámara, B.

García-Etxarri, A.

Geffrin, J.

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Geffrin, J.-M.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

Girard, C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Gómez-Medina, R.

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

González, F.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
[Crossref]

Göransson, D. J. O.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Gosele, U.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Gradecak, S.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Grinblat, G.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Grützmacher, D.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Grzela, G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Gudmundsson, V.

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

Gül, O.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

Guo, Y.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Gutiérrez, Y.

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

Haas, F.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Haegel, N.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Hardtdegen, H.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Heedt, S.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

Hess, O.

Hesse, D.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Heurlin, M.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Hopkins, B.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Hu, H.

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

Huang, L.

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

Huffman, D. R.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

Jackson, H. E.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Jagadish, C.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Janker, L.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Kacman, P.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Kajorndejnukul, V.

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Kang, J.-H.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

Kapitanova, P.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Karabchevsky, A.

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Kempa, T. J.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

Kivshar, Y.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

Knez, M.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Koblmüller, G.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Krenner, H. J.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Krogstrup, P.

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

Kuznetsov, A. I.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Larrey, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Larrieu, G.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Lecestre, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Lei, B.

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

Lepsa, M. I.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Li, J.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Li, Q.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Li, Y.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Lieber, C. M.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Litman, A.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Liu, W.

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

López, C.

Low, C.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Lu, J. G.

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Lukyanchuk, B.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Lüth, H.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Luysberg, M.

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Ma, H.

Maier, S. A.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Maisi, V. F.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Mandujano, M. A. G.

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

Manolescu, A.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

Marcus, C. M.

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

Mascher, P.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Matsui, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Maude, D. K.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Melik-Gaykazyan, E. V.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Méndez, E. R.

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

Messing, M. E.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Miroshnichenko, A.

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
[Crossref]

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Mitioglu, A. A.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Moreno, F.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Naraghi, R.

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
[Crossref]

Nemnes, G. A.

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

Neshev, D. N.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

Nielsch, K.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Nieto-Vesperinas, M.

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Osca, J.

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

Paillard, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Paiman, S.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Paniagua-Domínguez, R.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Pavlov, N.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Pemasiri, K.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Pippel, E.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Planelles, J.

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

Plochocka, P.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Polman, A.

Prost, W.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

Qian, F.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Qiu, C.-W.

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Rakovich, A.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Rieger, T.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

Rivas, J. G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Roschuk, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Rudolph, D.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Ruhstorfer, D.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Sáenz, J. J.

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

Saleh, H.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

Sanchez, D.

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

Sánchez-Gil, J. A.

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Sanz, J. M.

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
[Crossref]

Schäpers, T.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Scheffold, F.

Scholz, R.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Schubert, J.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Seo, M.-K.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

Sepúlveda, B.

Serra, L.

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

Shalin, A. S.

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Shi, J.

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

Shibanuma, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

Shorokhov, A. S.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Shtrikman, H.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Sitek, A.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

Sladek, K.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Smith, L. M.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Sonner, M. M.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Stanescu, T. D.

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

Staude, I.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Sukhov, S.

R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref]

Talin, A.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Tan, H. H.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Terekhov, P. D.

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Ternovski, V.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Thorgilsson, G.

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

Tian, B.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

Torfason, K.

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

Torres, M. U.

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

Tribelsky, M.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Vaitiekenas, S.

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

Valuckas, V.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

van Dam, D.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

van de Groep, J.

van de Haar, M. A.

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

von der Ahe, M.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Wan, M.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Wang, D.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Wang, F.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Wang, G.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Wang, W.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Wang, Y.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Wang, Z.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Wei, X.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Weirich, T. E.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Wiecha, P. R.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Winden, A.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Witte, C.

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

Wixforth, A.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Wojcik, J.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Wong, B. M.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Wu, H.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Wu, W.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Xie, W.

Xu, H. Q.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Yuan, X.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Zacharias, M.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Zhan, P.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Zhang, J.

Zhang, Z.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Zhanj, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

ACS Nano (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

ACS Photonics (4)

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Adv. Funct. Mater. (1)

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Appl. Phys. Lett. (2)

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

J. Appl. Phys. (3)

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Nano Lett. (18)

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

Nanoscale (1)

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

Nanotechnology (3)

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Nat. Commun. (3)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

Nat. Photonics (2)

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

Opt. Commun. (1)

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Photonics News (1)

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
[Crossref]

Optica (1)

Phys. B (1)

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Phys. Rev. B (6)

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Phys. Rev. Lett. (3)

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref]

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

Proc. SPIE (1)

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

Sci. Rep. (8)

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Other (4)

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

COMSOL Multiphysics v. 5.4. www.comsol.com , COMSOL AB, Stock. Swed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Sketch of the two polarizations (TE and TM) of the incident light, for example on a nanowire with square cross section, and the different angles of incidence studied in each polygonal geometry: hexagonal, square, and triangular.
Fig. 2.
Fig. 2. The scattering cross section vs. wavelength, for different incidence angles of light, for short nanoprisms with length $L = 200$ nm, of hexagonal (a,b), square (c,d), and triangular (e,f) cross section, with radii $R = 175, 200, 250$ nm, respectively. Figures a, c, e correspond to TE polarization and b, d, f to TM polarization. The colors of the curves match the colors of the incidence angle in Fig. 1: the red and blue curves correspond to the scattering cross section obtained with the light incident along the corner-center direction and incident perpendicular to one of the facets of the prism, respectively. In the triangular case the total scattering cross section with the light inciding at ${60}^\circ$ is indistinguishable from the case corresponding to ${0}^\circ$ and the dashed curves correspond to the individual contributions of the dipole moments (ED and MD). The vertical lines correspond to the wavelength values for which the directivity patterns are shown in Fig. 3.
Fig. 3.
Fig. 3. 2D radiation patterns for the hexagon (a,b), square (c,d) and triangular (e,f) nanoprisms. ${0}^\circ$ corresponds to forward scattering. The colors of the figures again match the colors of the incidence angle shown in Fig. 1. For the hexagonal nanoparticle the wavelength is $\lambda = 540$ nm and TE polarization in (a) and $\lambda = 636$ nm and TM polarization in (b). For the square $\lambda = 636$ nm and TE in (c) and $\lambda = 816$ nm and TM in (d). For the triangular case $\lambda = 640$ nm and TE (e) and $\lambda = 1148$ nm and TM where the Kerker condition is satisfied (f). The units for the far-field norm are $10^{-7}$ V/m.
Fig. 4.
Fig. 4. Asymmetry parameter as a function of the wavelength for the hexagonal (a,b), square (c,d), and triangular (e,f) nanoprisms as in Fig 2. The blue lines also correspond to the same wavelength for which the directivity patterns where obtained in Fig. 3
Fig. 5.
Fig. 5. Electric field configurations inside the nanoparticles. The direction of incidence of the light is parallel to the $x$ axis with TE or TM polarization depending on the orientation of the nanoparticles. The units of the electric field in the color scale are V/m.
Fig. 6.
Fig. 6. As in Fig. 2 for nanowires with radii of $R = 100, 135, 175$ nm for the hexagonal, square, and triangular geometry, respectively, and $L = 600$ nm.
Fig. 7.
Fig. 7. 2D radiation patterns for the hexagonal nanowires for TE at $\lambda = 692$ nm (a) and TM at at $\lambda = 784$ nm (b). Square nanowire for TE at $\lambda = 470$ nm (c) and for TM at $\lambda = 562$ nm (d). (e) and (f) for the triangular nanowires at $\lambda = 504$ nm and $\lambda = 444$ nm for TE and TM polarizations, respectively. The color code is the same as in Fig. 3.
Fig. 8.
Fig. 8. Asymmetry parameter as a function of the wavelength as in Fig. 4 for long nanowires.
Fig. 9.
Fig. 9. Electric field configurations inside the nanowires, as in Fig. 5.

Metrics