Abstract

We present mid-infrared (MIR) supercontinuum generation in polarization-maintained ZBLAN fibers pumped by 2 µm femtosecond pulses from a Tm:YAP regenerative amplifier. A stable supercontinuum that spreads from 380 nm to 4 µm was generated by coupling only 0.5  µJ pulse energy into an elliptical core ZBLAN fiber. The supercontinuum was characterized using cross-correlation frequency-resolved optical gating (XFROG). The complex structure of the XFROG trace due to the pulse-to-pulse spectrum instability have been fixed by reducing the length of the applied fibers or improving the quality of the incident pulse spectrum.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Supercontinuum generation (SCG) has been studied since 1960s and has found its place in many applications nowadays [1]. One of the most commonly used methods for the SCG is to focus a laser pulse into an optical fiber [2]. The strong confinement of the pulse and the long interaction length for the nonlinear wavelength conversion processes in the fiber significantly reduces the threshold for the SCG. In particular, the SCG in a photonic crystal fiber can be driven by a pulse from a laser oscillator. This fact has cemented the footsteps of ultra-broadband white light sources in interdisciplinary applications [3,4].

In the recent years, the advent of the multi-composite optical fibers has further expanded the possible operable limits of optical fibers to the mid-infrared (MIR) region [5]. Such mid-infrared supercontinuum (MIR-SC) have exhibited to be of great use in applications such as optical coherence tomography (OCT) [6] and hyper-spectral imaging [7,8]. Recent advances in MIR-SCG has achieved high brightness and broad bandwidth that have even labeled such sources as potential table-top synchrotrons [9]. The low absorption of fluoride fibers, such as ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers, at the MIR region has introduced them as a great candidate for MIR pulse generation applications. These fibers have exhibited to be very promising in generating SC and 6.28 µm limits have been reported by Qin et al., when pumped by a femtosecond source centered at 1450 nm [10]. Kubat et al. have extended this cut-off to 9 µm by coupling the output of a ZBLAN fiber into a chalcogenide fiber [11].

Since the zero-dispersion wavelength of ZBLAN fibers generally falls within the 1.5–2.0  µm range, pumping these fibers in this anomalous region would enhance efficient continuum extension toward longer wavelengths. Previously Nagl et al. using an oscillator based on Cr:ZnS capable of providing 1 W average power with the repetition rate of 68.7 MHz and pulses with 46  fs duration have shown the effect of pumping near the zero-dispersion point of the fiber for the ZBLAN [12]. They have managed to achieve 350 mW ultra-broadband supercontinuum pulses covering 1.6 to 5.1 µm. Salem et al. have similarly shown the importance of dispersion control in achieving ultra-broadband supercontinuum in step-index indium fluoride fiber pumped at 2  µm [13]. In their work applying 570 mW, 100 fs pulses with 50 MHz repetition rate centered around 2 $\mu$ m they obtained SC covering 1.25 to 4.6 $\mu$ m. The viability of pumping fluoride fibers at zero dispersion and their great potential for the generation of high energy broadband SC hints to the application of solid state lasers operating in this range, such as thulium based lasers. Using pump sources in this range in a fluoride fiber, compact and relatively more stable SC in comparison to the optical parametric amplifier (OPA) pumped systems has been reported  [14]. Such a SC would be very suitable for a seed source of an MIR-OPA which is based on an ultrafast high energy laser in the vicinity of 2 µm [1521]. Such an MIR-OPA is one of the most promising driver lasers for generation of high harmonics and attosecond pulses in the keV range in terms of the scalability of the laser system [2225]. Although providing a seed pulse through the SCG driven by the pump pulse enables us to design simple OPA systems, SC from an optical fiber was never used for the OPAs. The reason is that in general the seed pulse is strongly chirped due to the dispersion of the fiber and the intrinsic instability of the spectrum can be a serious problem for single-shot based experiments. In addition, it is important to use polarization-maintained fibers to have a well-defined polarization and phase of the seed pulse. However, SCG in polarization-maintained (PM) ZBLAN fibers has never been demonstrated before because polarization-maintained fluoride fibers are not commercially available. Recently, elliptical-core PM-ZBLAN fibers had been fabricated in Fiberlabs Inc. and third-harmonic generation in such fibers was experimentally demonstrated by Gao et al. [26].

In this work, we present, for the first time to the best of our knowledge, SCG in PM-ZBLAN fibers pumped by a small portion of the output of a high energy Tm:YAP regenerative amplifier. Recently we have introduced a thulium-based regenerative amplifier system that provides mJ pulses with the duration of 360 fs around 2 µm center wavelength [21]. Although this system has already exhibited capability of generating white light in a bulk YAG window, it is still worth to search for a nonlinear medium which can efficiently generate a white light seed pulse. The full intensity and phase characterization of the SC generated in ZBLAN fibers has never been done to the best of our knowledge. To investigate how suitable the SC from the PM-ZBLAN fibers is for an OPA seed pulse, the MIR-SC has been characterized using a home-built sum-frequency generation cross-correlation frequency resolved optical gating (SFG-XFROG) system. We have found out that the pulse-to-pulse stability of the white-light spectrum can be improved by shortening the fibers or reducing the round trips of the regenerative amplifier. We have achieved a clean retrieved XFROG trace which indicates that the seed source is suitable for a high-energy MIR-OPA system.

2. Experimental setup

The pump source used in the SCG is an updated version of the previously introduced laser system by our group in [21], operating at 10 kHz repetition rate. The general schematic of the laser system is depicted in Fig. 1. The laser under 10 kHz operation and at $-20^{\circ }$C provides 360 fs pulses with 0.122 mJ pulse energy after 45 round trips in the regenerative amplifier. Amplified output pulses are recorded using an optical spectrum analyzer (Yokogawa AQ6375) with the resolution of 0.04 nm. The obtained spectrum is centered at 1937 nm with 10 kHz repetition rate, as depicted in Fig. 2(a). A small portion of the fundamental beam is picked by an IR beam splitter to be used as the pumping beam for the SCG. The pulse energy is reduced down to 0.5 µJ using a variable density filter.

 

Fig. 1. Schematic design of the system. LD, laser diode. BS, beam splitter. FM, folding mirror.

Download Full Size | PPT Slide | PDF

 

Fig. 2. (a) Spectrum of the amplified signal with 0.189 mJ energy with 23.5 W absorbed power at $-20^\circ$C and 10 kHz repetition rate after 45 round trips. (b) Retrieved spectrum of the second harmonic from the SHG-FROG.

Download Full Size | PPT Slide | PDF

The pulse is focused into a PM-ZBLAN fiber with an elliptical core of 6.7$\times$11.9 µm and 120  µm cladding diameter. All the ZBLAN fibers shown in this manuscript are fabricated in Fiberlabs Inc. Figure 3 depicts the refractive index of the fiber. The photograph of the cross section of the applied fiber by an optical microscope is presented in the inset of Fig. 3. The loss of the fiber over the wavelength range of 550 nm to 3 µm have been estimated by FiberLabs, to be lower than 50 dB/km. The throughput of the fiber is typically 32%, and 16% of the throughput   ($\sim$ 0.0256 µJ)  belongs to the components above 2.5 µm wavelength. The spectrum of the generated SC was recorded using a combination of two optical spectrum analyzers (Yokogawa-AQ6315 & Yokogowa-AQ6375) and a home built Fourier-transform spectrometer.

 

Fig. 3. Refractive index of the fiber. Inset: cross-section of the fiber by an optical microscope.

Download Full Size | PPT Slide | PDF

A pulse characterization system for the SC was also constructed. It is important to measure the phase of the SC for the further application of the SC, in particular, for MIR-OPA. In general, the pulse characterization of SC is a challenging and difficult task. The complication of the SC characterization rises from the required ultra-broadband phase matching conditions and the very low energy of the SC pulses. It is not practical to apply second harmonic generation FROG (SHG-FROG) for the characterization of such a broadband and low energy MIR pulse. Electro-optic sampling may be used to characterize the pulses [27] but the application of such systems for the purpose of our study would be unnecessarily complicated. Nevertheless, Trebino et al. have shown that XFROG can characterize very complex pulses [28], and having the intense pump sources available to us, we have adopted XFROG for the SC characterization as well.

Since our region of interest is longer than 2.5 µm wavelengths of the SC, this region has been extracted using a long-pass filter. As the reference pulse for the XFROG measurements, we used the second harmonic of the fundamental pulse because its pulse profile is cleaner than that of the fundamental pulse (see Fig. 2(b)). The second harmonic pulse is generated by extracting a portion of the beam after the regenerative amplifier and by focusing it into a 2 mm barium borate (BBO) crystal (cut at ${\theta }=20^{\circ }$). The conversion efficiency was $\sim$10%. The second harmonic pulse was characterized with a home-built SHG-FROG and pulse duration of 260 fs for the SH pulses was observed. The obtained characteristics of the SH pulses are used in the XFROG algorithm for the SC pulse characterization. The SC after the long-pass filter and the second harmonic pulse are both focused using a parabolic mirror into a 0.1 mm thick lithium niobate (LiNBO3) crystal (cut at ${\theta }=45^{\circ }$), where the sum-frequency generation (SFG) is achieved.

3. Results and discussion

3.1 Polarization maintained ZBLAN fiber with the length of 50 cm

The calculated dispersion and the birefringence [29] of the applied fiber is depicted in Fig. 4. As it can be seen from the figure, the dispersion for the pump pulses falls very close to zero and at the same time fiber exhibits small anomalous dispersion at the MIR region. Such characteristics are important requirements for achieving ultra-broadband supercontinuum [4,13]. The spectrum generated from a PM-ZBLAN fiber with the length of 50 cm is depicted in Fig. 5. The generated SC expands from 380 nm to 4 µm while the cut-off limits of the spectrum are fixed based on the range of the equipment that we used. Such an ultra-broadband bandwidth toward the MIR region is mainly the consequence of the fiber dispersion and the chosen pump properties. It has been shown that the soliton order that directly correlates to the extents of the achievable bandwidth broadening, is inversely proportional to the square root of the dispersion [4,12]. The pump pulse energy was $\sim$0.5 µJ. To have a SC from a bulk YAG crystal, we need to focus a pulse with the energy of 15 µJ [21]. The polarization extinction ratio of the MIR portion of the generated SC (components above 2.5 $\mu$ m ) has been checked using a pair of broadband waveplate and polarizer [30]. The polarization extinction ratio of more than 16 dB has been observed.

 

Fig. 4. Calculated dispersion of the fiber (solid line), birefringence of the fiber (dashed line).

Download Full Size | PPT Slide | PDF

 

Fig. 5. Recorded spectrum of the generated SC in a 50 cm of PM-ZBLAN fiber. Inset: intensity distribution in linear scale.

Download Full Size | PPT Slide | PDF

The obtained SFG-XFROG trace and the obtained pulse parameters of the SC are depicted in Fig. 6. As it can be seen from Fig. 6(b), the retrieved trace shows fine structures over the phase-matching region which can also be seen similarly in the retrieved spectrum. These structures, which are due to the nature of nonlinear reaction that triggers the SCG, are indeed present in the retrieved trace and are not artifacts of the measurement or the retrieval process. Using XFROG, Gu et al. have reported similar features in the XFROG traces obtained from the SC generated in a 16 cm long microstructured fiber [31]. Such features cannot be seen in the measured trace since the accumulation during the measurement smears out the pulse-to-pulse fluctuation of the structures in the spectrum. However, intrinsic information redundancy of FROG traces makes the recovery of these fine structures possible for XFROG system. Single-shot measurement of the SC by Gu et al. showed lowering the number of recorded shots makes such structures more prominent and single-shot measurement of the spectrum actually contains similar structures in the measured spectrum and trace too.

 

Fig. 6. (a) Measured trace from the SFG-XFROG system, (b) retrieved trace with 0.02 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.

Download Full Size | PPT Slide | PDF

Our numerical simulations have estimated that the most significant spectrum broadening during the SCG in fibers occurs in the first few millimeters of the propagation through the fiber. The residual length of the applied medium only contributes to increasing instability in the generated spectrum while much slower nonlinear broadening occurs due to Raman self-frequency shift  [32].

Even at the presence of such pulse-to-pulse instabilities of the spectrum, it is known that the relative spectral phase is rather stable and the octave-spanning spectrum can be even used for the carrier-envelope phase detection and stabilization [3336]. Moreover, the pulse-to-pulse instability is not very important for very high repetition rate lasers and linear absorption measurements  [37,38]. However, the presence of such shot-to-shot instabilities in the spectrum may have significant impact on biological studies or high-field physics applications. Indeed recently the effect of such instabilities have been investigated in OCT application, both experimentally [39] and theoretically [40]. It would also hinder the prospective optimum performance [41,42]. The pulse-to-pulse instability is apparently unsuitable for a seed source of an MIR OPA for generation of high harmonics or attosecond pulses.

3.2 Shorter length fibers

As we have mentioned in the previous subsection, the main spectrum broadening leading to the SCG in a fiber occurs in the first few millimeters of the fiber and the length of the fiber is a major contributor to the SC pulse instability. Cao et al. have experimentally shown that achieving smooth traces void of fine features is indeed possible via using short fibers [32]. Even though reduction in the length of the applied fiber may cause concern over the bandwidth of the SC, indeed Qin et al. showed that in the case of ZBLAN fibers, reducing the length of the fiber (to 2  cm), accompanied by increase in the peak power of the pump laser, results in broader spectrum covering 900 nm to 6.28 µm [10].

Following the same idea we have tried SCG in shorter PM-ZBLAN fibers. For all experiments, similar pulse energies have been used to trigger the SCG process in the fibers. In our first attempt we have reduced the length of the fiber more than 5 times and focused the 0.5 µJ into a 9 cm long PM-ZBLAN fiber. Since the main focus of this work is the infrared applications of the SC in the PM-ZBLAN fiber, the spectrum of the SC has been re-measured using the FTIR system. The obtained spectrum is depicted in Fig. 7. The spectrum is very similar to that of the SC generated in the 50 cm fiber, while having slightly higher intensities over the 3 µm region. This was well expected because the wavelength components above 3.2 µm in long fibers, are attenuated due to the absorption of ZBLAN.

 

Fig. 7. Recorded spectrum of the generated SC in 9 cm PM-ZBLAN fiber using FTIR. Inset: intensity distribution in linear scale.

Download Full Size | PPT Slide | PDF

Figure 8 shows the SFG-XFROG result for the 9 cm PM-ZBLAN fiber. It can clearly be seen from the retrieved trace that the instability contained in the SCG using the 9 cm fiber has been decreased significantly compared to the case of the 50 cm fiber, namely, the number of fringes is less for 9 cm PM-ZBLAN fiber. This indicates the possibility for generation of a highly stable SC in PM-ZBLAN fibers.

 

Fig. 8. (a) Measured trace from the SFG-XFROG system for a 9 cm PM-ZBLAN fiber, (b) retrieved trace with 0.012 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.

Download Full Size | PPT Slide | PDF

In order to further investigate this hypothesis we have reduced the length of the fiber once more to half (4.5 cm) and recorded the SFG-XFROG traces. As is shown in Fig. 9, the obtained spectrum from the 4.5 cm fiber shows slight improvement on the obtainable bandwidth while the general distribution form does not change significantly. The SFG-XFROG result for this spectrum is presented in Fig. 10. In comparison to the 9 cm long fiber, the number of fringes is slightly smaller. However, the pulse-to-pulse instability is still not negligible.

 

Fig. 9. Recorded spectrum of the generated SC in 4.5 cm PM-ZBLAN fiber using FTIR. Inset: intensity distribution in linear scale.

Download Full Size | PPT Slide | PDF

 

Fig. 10. (a) Measured trace from the SFG-XFROG system for a 4.5 cm PM-ZBLAN fiber, (b) retrieved trace with 0.015 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.

Download Full Size | PPT Slide | PDF

Indeed, the SC generated in both the shorter fibers exhibit much lower dispersion and their retrieved phases have a much flatter profile than those of the 50 cm fiber. We can basically say that the use of shorter fibers improve the spectral stability of a SC generated in soft-glass fibers. However, so far we cannot eliminate the instability down to the acceptable level for a single-shot application, namely, some fringe structure appears in the retrieved trace. We need to find a different approach to improve the stability.

3.3 Fewer round trips of the regenerative amplifier

The SCG process has been previously shown to be extremely sensitive to the fluctuations of the input pump pulses (including the quantum noise) [4347]. This causes the properties of the spectrally broadened pulses vary substantially from pulse to pulse. In order to further optimize the achievable SC from a PM-ZBLAN fiber we have studied the effect of the pump quality on the output.

Since the applied pump is operating with a center wavelength in the water absorption region as shown in [21], the pulses are affected by water absorption which shows itself in the form of modulated spectrum for the output. The regenerative amplifier allows us to have full control on the number of the round trips of the amplification. The round trip and correspondingly the propagation distance in air will directly change the bandwidth and structure of the spectrum of the amplified pulses [21].

In order to study the effect of the pump pulse quality on the output of the SCG from a PM-ZBLAN fiber, we changed the number of round trips while using the same pulse energy for SCG. Figure 11 depicts the spectra of the amplified signal obtained for 4 different numbers of round trips. Similar to the results reported in [21], the evolution of the amplified signal exhibits increase in the bandwidth and a smoother spectrum for fewer round trips [48].

 

Fig. 11. (a)-(d) Measured spectrum using Yokogawa spectrum analyzer (AQ6375) with 0.04 nm resolution for pump pulses after 45, 40, 35 and 30 round trips accordingly.

Download Full Size | PPT Slide | PDF

The SC pulse properties have been investigated for each round trip in the 4.5 cm fiber and the results are presented in the following. The effect of the pump pulse profile on the properties of the SC generated in the PM-ZBLAN fiber can clearly be seen in Figs. 12 and 13. As the spectral modulations in the pump beams decrease, the generated supercontinua show significant improvements. Having reduced the round trips just to the two thirds of the original value (30 round trips), both the retrieved trace and spectrum show very well-defined profile without the presence of the fine features that were observed previously. All retrieved traces in Fig. 12 are obtained in 1024$\times$1024 grid size and with best error values lower than 0.009. The gradual change in the retrieved spectral profile of the pulses indicates a direct and prominent effect of the pump on the SCG in the fiber. Previous studies have emphasized on the effect of slight variations in absolute dispersion of pump pulses, on the output spectrum of the SC and its coherence, specifically for systems where the magnitude of the dispersion is small [4,12]. The changes in the spectrum of the pump due to the round trips, in combination with the effect of the length of the waveguide [4] would be the main contributing factors limiting stability and coherence of the SC. It is noteworthy to mention that the difference between the shape of the measured XFROG traced for different fiber lengths is the result of different dispersion values experienced by the propagating pulses both in fibers and the regenerative amplifier. At the same time slight differences in phase-matching conditions imposed by re-calibrations applied to the system create such small differences that are expected for the traces. Naturally, the maximum possible output power from the amplifier with the 30 round trips (0.07 mJ) becomes much smaller than that with the 45 round trips. It is essential to have another high gain fiber amplifier before the regenerative amplifier, and keep the output average power with fewer round trips.

 

Fig. 12. (a)-(c) Measured trace, (d)-(f) retrieved trace from the SFG-XFROG for pulses generated in 4.5 cm of PM-ZBLAN fiber for pump pulses after 40, 35 and 30 round trips accordingly.

Download Full Size | PPT Slide | PDF

 

Fig. 13. (a)-(c) Retrieved temporal profile, (d)-(f) retrieved spectrum from the SFG-XFROG for pulses generated in 4.5 cm of PM-ZBLAN fiber for pump pulses after 40, 35 and 30 round trips accordingly.

Download Full Size | PPT Slide | PDF

4. Conclusion

In this work, for the first time to our knowledge, we have managed to generate polarization-maintained SC in a ZBLAN fiber using 2 µm pulses generated in a Tm:YAP regenerative amplifier. The characteristics of the MIR-SC has been obtained using the SFG-XFROG. The pulse-to-pulse spectral instability of the SC that roots back to the intrinsic properties of the self-phase modulation process can be seen through the retrieved XFROG traces. We were able to control the instability by keeping the length of the fiber short. It has also been shown that the number of round trips of the regenerative amplifier plays a pivotal role on such instabilities. Our results indicate that the control over the applied pump pulse quality holds the key to obtaining pulse-to-pulse stable SC in fibers with non-extreme short lengths (more than 1 cm). The system could be improved by adding another high-gain fiber amplifier before the regenerative amplifier to reduce the number of round trips necessary to achieve the same average output power.

We have achieved a stable SC with well-distributed spectral profile in 4.5 cm of the PM-ZBLAN using 0.5 µJ pulse energy, which is 30 times lower than the energy required for the SCG in the bulk YAG plate. At the same time, the spectral quality of the SC in the PM-ZBLAN fiber in combination with the polarization-maintaining capability would create the possibility of taking the limits of SCG to a new order of magnitude. The smooth spectral phase of the generated SC pumped by 2 µm pulses holds the promise of direct application of our system in MIR-OPA systems.

Funding

Core Research for Evolutional Science and Technology (CREST) (JPMJCR17N5).

References

1. R. R. Alfano, ed. The Supercontinuum Laser Source: The Ultimate White Light, 3rd ed (Springer-Verlag New York, 2016).

2. J. M. Dudley and J. R. Taylor, eds., Supercontinuum generation in optical fibers (Cambridge University, 2010).

3. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef]  

4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]  

5. B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014). [CrossRef]  

6. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019). [CrossRef]  

7. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012). [CrossRef]  

8. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018). [CrossRef]  

9. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018). [CrossRef]  

10. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009). [CrossRef]  

11. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$m supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014). [CrossRef]  

12. N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019). [CrossRef]  

13. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 $\mu$ m,” Opt. Express 23(24), 30592–30602 (2015). [CrossRef]  

14. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016). [CrossRef]  

15. A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “700 MW peak power of a 380 fs regenerative amplifier with Tm:YAP,” Opt. Express 23(13), 16884–16889 (2015). [CrossRef]  

16. A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016). [CrossRef]  

17. P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013). [CrossRef]  

18. K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016). [CrossRef]  

19. L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Ho:YLF chirped pulse amplification at kilohertz repetition rates - 4.3 ps pulses at 2 $\mu$m with GW peak power,” Opt. Lett. 41(20), 4668–4671 (2016). [CrossRef]  

20. X. Ren, L. H. Mach, Y. Yin, Y. Wang, and Z. Chang, “Generation of 1 kHz, 2.3 mJ, 88 fs, 2.5 $\mu$m pulses from a Cr$^{2+}$:ZnSe chirped pulse amplifier,” Opt. Lett. 43(14), 3381–3384 (2018). [CrossRef]  

21. S. A. Rezvani, M. Suzuki, P. Malevich, C. Livache, J. V. de Montgolfier, Y. Nomura, N. Tsurumachi, A. Baltuška, and T. Fuji, “Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier,” Opt. Express 26(22), 29460–29470 (2018). [CrossRef]  

22. P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016). [CrossRef]  

23. T. Kanai, P. Malevich, S. S. Kangaparambil, K. Ishida, M. Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, and A. Baltuška, “Parametric amplification of 100 fs mid-infrared pulses in ZnGeP$_2$ driven by a Ho:YAG chirped-pulse amplifier,” Opt. Lett. 42(4), 683–686 (2017). [CrossRef]  

24. D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 $\mu$m, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 $\mu$m,” Optica 3(2), 147–150 (2016). [CrossRef]  

25. U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. S. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017). [CrossRef]  

26. W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013). [CrossRef]  

27. S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016). [CrossRef]  

28. R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003). [CrossRef]  

29. A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).

30. D. Penninckx and N. Beck, “Definition, meaning, and measurement of the polarization extinction ratio of fiber-based devices,” Appl. Opt. 44(36), 7773–7779 (2005). [CrossRef]  

31. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002). [CrossRef]  

32. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003). [CrossRef]  

33. J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004). [CrossRef]  

34. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003). [CrossRef]  

35. X. Fang and T. Kobayashi, “Self-stabilization of the carrier-envelope phase of an optical parametric amplifier verified with a photonic crystal fiber,” Opt. Lett. 29(11), 1282–1284 (2004). [CrossRef]  

36. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001). [CrossRef]  

37. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009). [CrossRef]  

38. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011). [CrossRef]  

39. M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017). [CrossRef]  

40. M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019). [CrossRef]  

41. G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12(13), 2844–2850 (2004). [CrossRef]  

42. A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010). [CrossRef]  

43. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27(11), 924–926 (2002). [CrossRef]  

44. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982). [CrossRef]  

45. S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989). [CrossRef]  

46. C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996). [CrossRef]  

47. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005). [CrossRef]  

48. M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23(11), 13776–13787 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, ed. The Supercontinuum Laser Source: The Ultimate White Light, 3rd ed (Springer-Verlag New York, 2016).
  2. J. M. Dudley and J. R. Taylor, eds., Supercontinuum generation in optical fibers (Cambridge University, 2010).
  3. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  5. B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
    [Crossref]
  6. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
    [Crossref]
  7. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [Crossref]
  8. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  9. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  10. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
    [Crossref]
  11. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
    [Crossref]
  12. N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
    [Crossref]
  13. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 $\mu$μ m,” Opt. Express 23(24), 30592–30602 (2015).
    [Crossref]
  14. M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
    [Crossref]
  15. A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “700 MW peak power of a 380 fs regenerative amplifier with Tm:YAP,” Opt. Express 23(13), 16884–16889 (2015).
    [Crossref]
  16. A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
    [Crossref]
  17. P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
    [Crossref]
  18. K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
    [Crossref]
  19. L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Ho:YLF chirped pulse amplification at kilohertz repetition rates - 4.3 ps pulses at 2 $\mu$μm with GW peak power,” Opt. Lett. 41(20), 4668–4671 (2016).
    [Crossref]
  20. X. Ren, L. H. Mach, Y. Yin, Y. Wang, and Z. Chang, “Generation of 1 kHz, 2.3 mJ, 88 fs, 2.5 $\mu$μm pulses from a Cr$^{2+}$2+:ZnSe chirped pulse amplifier,” Opt. Lett. 43(14), 3381–3384 (2018).
    [Crossref]
  21. S. A. Rezvani, M. Suzuki, P. Malevich, C. Livache, J. V. de Montgolfier, Y. Nomura, N. Tsurumachi, A. Baltuška, and T. Fuji, “Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier,” Opt. Express 26(22), 29460–29470 (2018).
    [Crossref]
  22. P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
    [Crossref]
  23. T. Kanai, P. Malevich, S. S. Kangaparambil, K. Ishida, M. Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, and A. Baltuška, “Parametric amplification of 100 fs mid-infrared pulses in ZnGeP$_2$2 driven by a Ho:YAG chirped-pulse amplifier,” Opt. Lett. 42(4), 683–686 (2017).
    [Crossref]
  24. D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 $\mu$μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 $\mu$μm,” Optica 3(2), 147–150 (2016).
    [Crossref]
  25. U. Elu, M. Baudisch, H. Pires, F. Tani, M. H. Frosz, F. Köttig, A. Ermolov, P. S. Russell, and J. Biegert, “High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier,” Optica 4(9), 1024–1029 (2017).
    [Crossref]
  26. W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
    [Crossref]
  27. S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
    [Crossref]
  28. R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
    [Crossref]
  29. A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).
  30. D. Penninckx and N. Beck, “Definition, meaning, and measurement of the polarization extinction ratio of fiber-based devices,” Appl. Opt. 44(36), 7773–7779 (2005).
    [Crossref]
  31. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
    [Crossref]
  32. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
    [Crossref]
  33. J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
    [Crossref]
  34. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
    [Crossref]
  35. X. Fang and T. Kobayashi, “Self-stabilization of the carrier-envelope phase of an optical parametric amplifier verified with a photonic crystal fiber,” Opt. Lett. 29(11), 1282–1284 (2004).
    [Crossref]
  36. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
    [Crossref]
  37. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
    [Crossref]
  38. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  39. M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
    [Crossref]
  40. M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
    [Crossref]
  41. G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12(13), 2844–2850 (2004).
    [Crossref]
  42. A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
    [Crossref]
  43. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27(11), 924–926 (2002).
    [Crossref]
  44. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
    [Crossref]
  45. S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
    [Crossref]
  46. C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
    [Crossref]
  47. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005).
    [Crossref]
  48. M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23(11), 13776–13787 (2015).
    [Crossref]

2019 (3)

2018 (4)

2017 (3)

2016 (7)

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 $\mu$μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 $\mu$μm,” Optica 3(2), 147–150 (2016).
[Crossref]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
[Crossref]

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
[Crossref]

K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
[Crossref]

L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Ho:YLF chirped pulse amplification at kilohertz repetition rates - 4.3 ps pulses at 2 $\mu$μm with GW peak power,” Opt. Lett. 41(20), 4668–4671 (2016).
[Crossref]

2015 (3)

2014 (2)

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

2010 (1)

2009 (2)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (2)

2004 (3)

2003 (4)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

2002 (2)

2001 (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

1996 (1)

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
[Crossref]

1989 (1)

S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
[Crossref]

1982 (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Adam, J.-L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Agger, C.

Ališauskas, S.

Andriukaitis, G.

Anne, M.-L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Baltuška, A.

Bang, O.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

Barh, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Bartels, A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Barviau, B.

Baudisch, M.

Beck, N.

Benson, T.

Bergquist, J. C.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Biegert, J.

Bize, S.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Bock, M.

Boussard, C.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Brilland, L.

Bureau, B.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Cable, A.

Camy, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Cankaya, H.

Cao, Q.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

Caves, C. M.

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Chahal, R.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Chalus, O.

Chang, Z.

Charpentier, F.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Cheng, T.

Chua, C. F.

Cirmi, G.

Coen, S.

Cousin, S. L.

Cui, S.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Curtis, E. A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

de Montgolfier, J. V.

Deng, D.

Denninger, M.

Diddams, S. A.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Doualan, J.-L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Dudley, J.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

Ell, R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Elsaesser, T.

Elu, U.

Engelsholm, R. D.

Ermolov, A.

Fang, X.

Farries, M.

Fendel, P.

Fernández, A.

Feuchter, T.

Flöry, T.

Foy, P.

Freeman, M. J.

Frosz, M. H.

Fuji, T.

Fujimoto, J. G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Gaeta, A. L.

Gaida, C.

Gao, W.

Gardner, D.

Gebhardt, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghatak, A.

A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).

González-Herráez, M.

Gonzalo, I. B.

Griebner, U.

Gu, X.

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

Hädrich, S.

Hannesschläger, G.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Hartl, I.

Haus, H. A.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Heidmann, A.

S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
[Crossref]

Héliot, L.

Hemmer, M.

Henry, C. H.

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
[Crossref]

Hollberg, L.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Holzwarth, R.

Hoogland, H.

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Ippen, E. P.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Ishida, K.

Islam, M. N.

Israelsen, N. M.

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jain, D.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jauregui, C.

Jenkins, D.

Jensen, M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

Jiang, Z.

Kanai, T.

Kangaparambil, S. S.

Karpowicz, N.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Kärtner, F. X.

K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
[Crossref]

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Kazarinov, R. F.

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
[Crossref]

Ke, K.

Keiber, S.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Keiding, S. R.

Kimmel, M.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Kobayashi, T.

Köttig, F.

Kracht, D.

Krausz, F.

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Kroetz, P.

Kubat, I.

Kudlinski, A.

Kumar, A.

A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).

Leick, L.

Leray, A.

Li, P.

Liao, M.

W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Limpert, J.

Liu, D.

Livache, C.

Lloyd, G. R.

Loréal, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Lucas, J.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Lucas, P.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Luiten, A.

J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
[Crossref]

Mach, L. H.

Mak, K. F.

Malevich, P.

Maria, M.

Maric, M.

J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
[Crossref]

Martin-Lopez, S.

McConnell, G.

McFerran, J.

J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
[Crossref]

Méchin, D.

Metzler, G.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Michalska, M.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Mikolajczyk, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Mizui, M.

Møller, U. V.

Monbet, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Morgner, U.

Moselund, P. M.

Murari, K.

Mussot, A.

Nagl, N.

Nallala, J.

Napier, B.

Nazabal, V.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Neumann, J.

Nomura, Y.

O’Shea, P.

Oates, C. W.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Ogawa, K.

Ohishi, Y.

W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Pafchek, R.

Pedersen, C.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Penninckx, D.

Pervak, V.

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref]

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Petersen, C.

Petersen, C. R.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref]

Phua, P. B.

Pires, H.

Podoleanu, A.

Pronin, O.

Prtljaga, N.

Pugzlys, A.

Pugžlys, A.

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Quetel, L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Ramond, T. M.

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Ren, X.

Reynaud, S.

S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
[Crossref]

Rezvani, S. A.

Ruehl, A.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Russell, P. S.

Saad, M.

Salem, R.

Sanchez, D.

Schibli, T. R.

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Schunemann, P.

Schwarz, A.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Seddon, A.

Seddon, A. B.

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

Sederberg, S.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Shreenath, A. P.

Simon-Boisson, C.

Sire, O.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Spriet, C.

Stone, N.

Stutzki, F.

Suzuki, M.

Suzuki, T.

W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Swiderski, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Tan, L. H.

Tani, F.

Tariel, H.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Thøgersen, J.

Tidemand-Lichtenberg, P.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Trebino, R.

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

Trubetskov, M.

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Tsurumachi, N.

Tünnermann, A.

Ueberschaer, D.

Vanholsbeeck, F.

Verhoef, A. J.

von Grafenstein, L.

Wandt, D.

Wang, Q.

Wang, Y.

Ward, J.

Welsh, M. J.

Wienke, A.

Windeler, R.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

Windeler, R. S.

Wojtas, J.

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Xia, C.

Xu, L.

Xue, X.

Yamanouchi, K.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

Yin, Y.

Zawilski, K.

Zeek, E.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77(2-3), 239–244 (2003).
[Crossref]

J. McFerran, M. Marić, and A. Luiten, “Efficient detection and control of the carrier-envelope offset frequency in a self-referencing optical frequency synthesizer,” Appl. Phys. B 79(1), 39–44 (2004).
[Crossref]

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, “Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1072–1080 (2003).
[Crossref]

Infrared Phys. Technol. (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Nat. Photonics (1)

S. Keiber, S. Sederberg, A. Schwarz, M. Trubetskov, V. Pervak, F. Krausz, and N. Karpowicz, “Electro-optic sampling of near-infrared waveforms,” Nat. Photonics 10(3), 159–162 (2016).
[Crossref]

Opt. Commun. (1)

S. Reynaud and A. Heidmann, “A semiclassical linear input output transformation for quantum fluctuations,” Opt. Commun. 71(3-4), 209–214 (1989).
[Crossref]

Opt. Eng. (1)

B. Bureau, C. Boussard, S. Cui, R. Chahal, M.-L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, and J. Lucas, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53(2), 027101 (2014).
[Crossref]

Opt. Express (11)

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9$\mu$μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22(4), 3959–3967 (2014).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 $\mu$μ m,” Opt. Express 23(24), 30592–30602 (2015).
[Crossref]

A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “700 MW peak power of a 380 fs regenerative amplifier with Tm:YAP,” Opt. Express 23(13), 16884–16889 (2015).
[Crossref]

A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Comparison between Tm:YAP and Ho:YAG ultrashort pulse regenerative amplification,” Opt. Express 24(8), 8632–8640 (2016).
[Crossref]

S. A. Rezvani, M. Suzuki, P. Malevich, C. Livache, J. V. de Montgolfier, Y. Nomura, N. Tsurumachi, A. Baltuška, and T. Fuji, “Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier,” Opt. Express 26(22), 29460–29470 (2018).
[Crossref]

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
[Crossref]

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005).
[Crossref]

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23(11), 13776–13787 (2015).
[Crossref]

G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12(13), 2844–2850 (2004).
[Crossref]

A. Kudlinski, B. Barviau, A. Leray, C. Spriet, L. Héliot, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18(26), 27445–27454 (2010).
[Crossref]

Opt. Lett. (13)

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27(11), 924–926 (2002).
[Crossref]

W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett. 38(14), 2566–2568 (2013).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42(22), 4744–4747 (2017).
[Crossref]

X. Fang and T. Kobayashi, “Self-stabilization of the carrier-envelope phase of an optical parametric amplifier verified with a photonic crystal fiber,” Opt. Lett. 29(11), 1282–1284 (2004).
[Crossref]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
[Crossref]

T. Kanai, P. Malevich, S. S. Kangaparambil, K. Ishida, M. Mizui, K. Yamanouchi, H. Hoogland, R. Holzwarth, A. Pugzlys, and A. Baltuška, “Parametric amplification of 100 fs mid-infrared pulses in ZnGeP$_2$2 driven by a Ho:YAG chirped-pulse amplifier,” Opt. Lett. 42(4), 683–686 (2017).
[Crossref]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref]

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38(15), 2746–2749 (2013).
[Crossref]

K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, and F. X. Kärtner, “Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers,” Opt. Lett. 41(6), 1114–1117 (2016).
[Crossref]

L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Ho:YLF chirped pulse amplification at kilohertz repetition rates - 4.3 ps pulses at 2 $\mu$μm with GW peak power,” Opt. Lett. 41(20), 4668–4671 (2016).
[Crossref]

X. Ren, L. H. Mach, Y. Yin, Y. Wang, and Z. Chang, “Generation of 1 kHz, 2.3 mJ, 88 fs, 2.5 $\mu$μm pulses from a Cr$^{2+}$2+:ZnSe chirped pulse amplifier,” Opt. Lett. 43(14), 3381–3384 (2018).
[Crossref]

N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a cr:zns oscillator and step-index fluoride fibers,” Opt. Lett. 44(10), 2390–2393 (2019).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

Opt. Photonics News (1)

R. Trebino, J. Dudley, and X. Gu, “Ultrafast technology: Measuring and understanding the most complex ultrashort pulse ever generated,” Opt. Photonics News 14(12), 44 (2003).
[Crossref]

Optica (2)

Phys. Rev. D (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Phys. Rev. Lett. (1)

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, “Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,” Phys. Rev. Lett. 86(24), 5462–5465 (2001).
[Crossref]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68(3), 801–853 (1996).
[Crossref]

Sci. Rep. (1)

M. Michalska, J. Mikolajczyk, J. Wojtas, and J. Swiderski, “Mid-infrared, super-flat, supercontinuum generation covering the 2–5 µm spectral band using a fluoroindate fibre pumped with picosecond pulses,” Sci. Rep. 6(1), 39138 (2016).
[Crossref]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref]

Other (3)

R. R. Alfano, ed. The Supercontinuum Laser Source: The Ultimate White Light, 3rd ed (Springer-Verlag New York, 2016).

J. M. Dudley and J. R. Taylor, eds., Supercontinuum generation in optical fibers (Cambridge University, 2010).

A. Kumar and A. Ghatak, Polarization of Light with Applications in Optical Fibers, SPIE Digital Library (SPIE Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic design of the system. LD, laser diode. BS, beam splitter. FM, folding mirror.
Fig. 2.
Fig. 2. (a) Spectrum of the amplified signal with 0.189 mJ energy with 23.5 W absorbed power at $-20^\circ$C and 10 kHz repetition rate after 45 round trips. (b) Retrieved spectrum of the second harmonic from the SHG-FROG.
Fig. 3.
Fig. 3. Refractive index of the fiber. Inset: cross-section of the fiber by an optical microscope.
Fig. 4.
Fig. 4. Calculated dispersion of the fiber (solid line), birefringence of the fiber (dashed line).
Fig. 5.
Fig. 5. Recorded spectrum of the generated SC in a 50 cm of PM-ZBLAN fiber. Inset: intensity distribution in linear scale.
Fig. 6.
Fig. 6. (a) Measured trace from the SFG-XFROG system, (b) retrieved trace with 0.02 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.
Fig. 7.
Fig. 7. Recorded spectrum of the generated SC in 9 cm PM-ZBLAN fiber using FTIR. Inset: intensity distribution in linear scale.
Fig. 8.
Fig. 8. (a) Measured trace from the SFG-XFROG system for a 9 cm PM-ZBLAN fiber, (b) retrieved trace with 0.012 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.
Fig. 9.
Fig. 9. Recorded spectrum of the generated SC in 4.5 cm PM-ZBLAN fiber using FTIR. Inset: intensity distribution in linear scale.
Fig. 10.
Fig. 10. (a) Measured trace from the SFG-XFROG system for a 4.5 cm PM-ZBLAN fiber, (b) retrieved trace with 0.015 best error value in a 1024$\times$1024 grid, (c) retrieved temporal profile and (d) retrieved spectrum.
Fig. 11.
Fig. 11. (a)-(d) Measured spectrum using Yokogawa spectrum analyzer (AQ6375) with 0.04 nm resolution for pump pulses after 45, 40, 35 and 30 round trips accordingly.
Fig. 12.
Fig. 12. (a)-(c) Measured trace, (d)-(f) retrieved trace from the SFG-XFROG for pulses generated in 4.5 cm of PM-ZBLAN fiber for pump pulses after 40, 35 and 30 round trips accordingly.
Fig. 13.
Fig. 13. (a)-(c) Retrieved temporal profile, (d)-(f) retrieved spectrum from the SFG-XFROG for pulses generated in 4.5 cm of PM-ZBLAN fiber for pump pulses after 40, 35 and 30 round trips accordingly.

Metrics