Abstract

We report new observations on picosecond deep ultraviolet coherent beams generated in a CLBO as the fourth and fifth harmonics of a diode pumped high average power Yb:YAG thin disk laser operating at 77 kHz repetition rate at 1030 nm. The effects of the two-photon absorption were observed, e.g. the modification of phase matching conditions, lowering of the conversion efficiency. The fifth harmonic generation (4ω+1ω) was studied for different time delays between both pump beams and for the case of excess input power of the fundamental. The latter effect suggests a possibility of increasing DUV output at short crystals. The highest output power obtained at 257 nm was 7.6 W and 1 W at 206 nm. To our knowledge these DUV output powers rank among the highest for picosecond pulses at the repetition rate of the order of magnitude of 100 kHz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The deep ultraviolet (DUV) radiation at 257 nm and 206 nm, generated as the 4th and 5th harmonics from the fundamental wavelength of 1030 nm, corresponds to the photon energies of 4.8 eV and 6 eV, which are sufficient quantum energies for electronic transitions in atoms. Therefore their application potential covers science (spectroscopy), medicine (ophthalmology, laser microdissection) and industry (efficient material processing). The applications are based on the high energy of the photons, high enough to break the chemical bonds, and their low diffraction enabling tight focusing. DUV photolithography profits from the very short wavelength which allows structures smaller than 0.1 µm to be created on semiconductor chips; in the laser capture microdissection even single cells can be isolated from the tissue sample. Some special applications of the DUV radiation are for the hohlraum plasma diagnostics at NIF [1] and for efficient photoelectron generation at accelerator facilities [2]. The generation of high quality DUV radiation presents a permanent challenge for laser laboratories and producers.

In Introduction we concentrate on recent publications (2016-2019) on DUV generation in nanosecond (ns), picosecond (ps) and femtosecond (fs) pulses. Those in ns duration prevail over those in ps and fs, we shall treat them first. Pulses at ns duration are suitable for photolithography and high resolution photoelectron spectroscopy, especially vacuum ultraviolet radiation (VUV) below 200 nm. For this region new crystals, such as KBBF, are attractive. Used in CaF2 prisms sandwich setting [3,4] the output on these wavelengths is up to several mW. Though the crystals mostly used for the DUV generation are BBO and CLBO, also LBO, typical for SHG, can be used for the generation of 266 nm radiation [5]. The conversion from the fundamental is not done by frequency quadrupling (the LBO would not support it) as is usually the case, but as a sum frequency 3H + 1H. The output of 3.3 W was achieved at 14% conversion efficiency from the fundamental. Quite short wavelengths can be attained by higher harmonics generation, see e.g. [6], where the VUV radiation on 191.7 nm is realized as the seventh harmonic of the fundamental of 1342 nm (Nd:YVO4). By cascaded SHG and SFG an average power of 0.23 W was achieved at 191.7 nm. The crystal sequence used was BiBO, LBO, BBO, and CLBO. The output at 224 nm was ∼0.6 W with M2 <1.5. Similar VUV radiation, 193 nm, was generated in [7]. The aim was high coherence of the VUV beam. The pump laser was a hybrid ArF excimer. At 258 nm the output was 2.7 W at a conversion efficiency of 41% from 515 nm. The overall crystal sequence was LBO and 3xCLBO. Similar DUV wavelengths were generated in [8] by SFG in CLBO, 1W at 193 nm and 2 W at 221 nm, conversion efficiency from 221 nm to 193 nm was 47%. Even shorter wavelength, 165 nm, was achieved in [4], at the output power of 2.14 mW. It was realized as the eighth harmonic (8H) of the fundamental of 1319 nm (23.2 W, 1 kHz) in KBBF coupled to two prisms. The crystal sequence was 2xLBO and KBBF. The output of the 4H harmonic (330 nm) was up to 7 W in an LBO from the 2H harmonic (660 nm) at a conversion efficiency of 61%. The purpose of the VUV generation was the application in photoemission spectroscopy and Raman spectroscopy.

Efficiency of the IR→DUV conversion is an indicator of the quality of the conversion set-up and of the fundamental beam. Quite high conversion efficiencies in SHG and FHG have been achieved for lower inputs if the beams were focused into crystals and image relaying was applied. In [9] at 257 nm the output of 1.1 W was obtained at a remarkable conversion efficiency of 31% from the fundamental. LBO was used for the SHG (70%) and BBO for the FHG (45%), the repetition rate being 14.5 kHz. A very high conversion efficiency of 2H→4H in BBO is demonstrated in [10], 47% was achieved, the maximal DUV output at 266 nm was 0.4 W. The conversion was obtained when focusing the 2H pump beam into a BBO crystal (10 mm long). An obstacle in a further DUV increase was a strong linear and nonlinear (TPA) absorption. When using a collimated pump beam, only 25% in 2H→4H conversion was achieved, the DUV output being 1.85 W. A record conversion efficiency in the production of the fifth harmonic is reported for ns pulses in [11]. In a cascade of nonlinear crystals (LBO, CLBO) DUV pulses at 211 nm were generated at 30% efficiency from the fundamental. Flat-top beam profiles and pulse shapes optimized the efficiency.

Femtosecond pulses of 100÷150 fs were used in [12,13] to generate the wavelengths of 258 nm (4.6 W, 796 kHz) [13], produced as the fourth-harmonic (4H), and 270 nm (80 mW, 160 kHz) [12], produced as the sum frequency 810 nm + 405 nm. The crystals used were plain BBO [12,13] and BBO sandwich (sapphire/BBO/sapphire) [13]. Higher DUV outputs brought about severe worsening of M2. The explanation was that the sapphire plates improved the heat dissipation of the BBO, however, this effect did not overcome the additional thermal lens formed in the sapphire. The heating came from the linear absorption, which was high in the DUV region, and nonlinear absorption (TPA) in both materials.

Our paper concerns picosecond DUV generation when pumping is realized by a thin disk diode pumped laser. In the last two years, besides our publication [14], a few papers [1518] on the picosecond DUV appeared. In [15] the radiation on 177 nm was generated via SHG from 355 nm (3rd harmonic of a commercial Nd:YAG laser), in KBBF sandwiched between two CaF2 prisms. The aim was a DUV source for mass-spectroscopic purposes, so only 15 µJ DUV pulses were generated, though 15 mJ were available on 355 nm. In [16] a new nonlinear crystal NSBBF was tested where a high conversion efficiency of 35.9% from the second harmonic to 266 nm (0.28 mJ) was achieved. In [17] several crystals were examined by DUV light of 213 nm from the point of two-photon absorption (TPA), the lowest TPA was found for MgF2. In [18] the 5H generation in CLBO is studied as a discrepancy appeared in the balance of the input and output energies. An outstanding result of almost 50% conversion efficiency of 4H→5H photons was presented in [19], which led to 2 W at 206 nm. In the period previous to that mentioned above some excellent results on picosecond DUV were achieved. In 1996 [20], two CLBO crystals were used for the second and fourth harmonics generation from a picosecond 1053 nm fundamental. A high conversion efficiency of 24% was achieved in FHG from the fundamental. A 1.2 W average output power tunable between 185-200 nm was generated in KBBF [21]. 1.5W at 266 nm in BBO was achieved in [22] for a diode pumped 10 W laser system. A source of 2.7 W in DUV is reported in [23] with a NIR→DUV conversion efficiency of 10%. In a ∼80 MHz system a DUV (266 nm) output of 1.8 W in BBO was generated at ∼11% conversion from the fundamental [24].

Table 1 summarizes record output powers and references given above.

Tables Icon

Table 1. Survey of references and record DUV output powers in 2016–2019

In our previous paper [14] the maximum output on 258 nm (4H) was 6 W in CLBO, 3.5 W in BBO, at a pulse duration of 4 ps and repetition rate of 100 kHz. The conversion efficiency of FHG from fundamental (1H→4H) in CLBO was ∼10%. We proceeded further and generated a fifth harmonic (5H, 206 nm) as a sum frequency of 4H + 1H. In the paper we present the basic output power dependences in the DUV generation. Further, when generating the fourth harmonic, we observed the effect of the two-photon absorption on the phase matching angle and efficiency of the 2H→4H conversion. In the case of the fifth harmonic generation, we studied its properties on the delay between 1H and 4H pulses and the consequences of the 1H input power being in excess.

2. Experimental setup

The block diagram of the CPA-based pump system running at 77 kHz repetition rate with 1 mJ of pulse energy at 1030 nm wavelength and an autocorrelation trace of the fundamental beam are depicted in Fig. 1, for details see [25]. In the front-end, the pulse stretcher realized as a reflective chirped fiber Bragg grating (CFBG, chirp rate 62 ps/nm, full bandwidth 3.3 nm) increases the pulse width to 450 ps. Temperature gradient in the CFBG enables dispersion tuning. Three fiber preamplifiers follow, the output of which seeds the regenerative amplifier with one Yb:YAG thin disk (0.2 mm thickness) pumped by laser diodes at 969 nm [26]. After 72 passes the amplified beam is released by a Pockels cell (PC). The subsequent compressor which is a chirped volume Bragg grating (CVBG) with similar parameters as for the stretcher, shortens the pulse duration from 450 ps to 1.5 ps (FWHM). The beam pointing stability is ΔΘx=3.8 µrad and ΔΘy=4.9 µrad [27]. In our experiment we used 80 W of the output power, i.e. the pulse energy of about 1 mJ.

 figure: Fig. 1.

Fig. 1. (a) Block diagram of the sub-1 mJ PERLA C1-beam system, for details see [25]; (b) Autocorrelation of the fundamental beam (Lorentzian fit), pulse duration of 1.5 ps.

Download Full Size | PPT Slide | PDF

A schematic representation of the DUV layout is in Fig. 2. The fundamental beam of 80 W power is reflected by motorized mirrors (MM) controlled by a beam pointing&position stabilizing system, the signal for which is transmitted through the leaking mirror (LM). The following half-wave plate (HWP 1) and polarizer serve for the energy tuning of the fundamental beam entering the frequency doubler, an LBO crystal (θ = 90°, φ = 12.8°, 8 × 8 mm2, length of 10 mm, Type I phase-matching, antireflection coatings for 1030 + 515 nm on both sides). The crystal is kept at a temperature of 47°C to ensure its temperature stability and to lower the impact of air humidity. The generated 515 nm light is reflected by two dichroic mirrors to separate it from the fundamental, which either enters a beam dump or, if the fifth harmonic is generated, passes through a half-wave plate, polarizer and a delay line into a box with nonlinear crystals. The green light passes a similar energy tuning system and enters CLBO I (θ = 66.2°, φ = 45°, 6 × 6 × 6 mm3, uncoated, Type I phase matching) for frequency quadrupling [26]. The fifth harmonic, see Fig. 2, is produced in a sum frequency process 4H + 1H in CLBO II crystal (θ = 75.4°, φ = 45°, 12 × 12 mm2, 4 mm length, uncoated, Type I PM). The CLBO crystals generating DUV are placed in a protective metal box purged with argon to protect the surfaces from ozone produced from air under the hard UV quanta impact, and are kept at 150°C [28].

 figure: Fig. 2.

Fig. 2. Schematic layout of the 2H, 4H and 5H harmonics generation system pumped by 80 W of the fundamental beam. MM – motorized mirrors of the beam stabilization, HWP 1, 3 – half-wave plates for 1H beam, HWP 2 – half-wave plate for 2H beam, BD – beam dump, DM – dichroic mirrors, DL – delay line, LM – leaking mirror.

Download Full Size | PPT Slide | PDF

3. Fourth harmonic generation

The second harmonic, used for pumping the CLBO I crystal for 4HG, was produced in an LBO from the fundamental beam with a conversion efficiency of 52%. The CLBO crystal as a Vis→DUV convertor offers broad transparency (down to 180 nm), relatively high nonlinear coefficient (0.83 pm/V) [28,30], favorable angular and spectral acceptances (0.49 mrad×cm, 0.17 nm×cm) [31]. Important is its high damage threshold of 25 GW/cm2 (1 µm, 1 ns, Altechna). A certain disadvantage of CLBO is its high hygroscopicity, due to which it is recommended to operate the crystal at a temperature of 150°C [29]. On the other hand, the elevated temperature is beneficial for lowering the nonlinear absorption (two-photon absorption) which seriously affects the DUV generation. This is valid for CLBO as well for BBO [32], which we used in our previous work [14]. Comparing our results [14] of the fourth harmonic generation in BBO and CLBO crystals, the CLBO appeared as a better convertor. At present we report on the fourth harmonic generation in a CLBO crystal, i.e. CLBO I in Fig. 2.

Figure 3(a) shows the second harmonic dependence of the fourth harmonic output power and conversion efficiency. The highest output on 257.5 nm was 7.5 W at the efficiency of 23%. The Fresnel reflections on the uncoated CLBO were not included, otherwise the conversion efficiency would be 25%. Fluctuations of the fourth harmonic output were up to 5%. The output power and conversion efficiency belong, to our knowledge, to maximum values attained for picosecond pulses at the repetition rate in the order of magnitude of 100 kHz. Figure 3(b) shows the spectrum of the fourth harmonic, the width (FWHM) of which is 0.24 nm (spectral resolution 0.18). The corresponding transform limited pulse duration is 0.4 ps. The pulse duration of the fourth harmonic will be discussed later.

 figure: Fig. 3.

Fig. 3. Parameters of the fourth harmonic generated in CLBO. (a) Dependence of the 4H output power and conversion efficiency on the 2H input power; the upper inset is a beam profile of 4H = 3.5 W, the lower that of 2H = 30 W. (b) 4H spectrum, the FWHM 0.24 nm.

Download Full Size | PPT Slide | PDF

4. Two photon absorption (TPA)

4.1 TPA versus conversion efficiency

The conversion efficiency for the highest output (23%), see Fig. 3(a), tends toward saturation. The approximated peak (on-axis, Gaussian beam assumption) intensity of the fourth harmonic on the exit face of the crystal at this point was 3.3 GW/cm2. The value is high enough for a significant nonlinear absorption of the fourth harmonic beam when passing the end part of the crystal, the linear absorption can be considered as negligible [32,33]. The nonlinear absorption (characterized by β-coefficient) under our input intensities is mainly due to the two-photon absorption [34,35], where either one 2H-photon and one 4H-photon are absorbed, or both are 4H-photons.

Figure 4 presents a 4HG simulation in CLBO I crystal (parameters see above) demonstrating the influence of TPA on the conversion efficiency from 2H to 4H. The β-coefficient for CLBO for (4H + 4H) absorption was taken from [32], 5.3×10−10 cm/W, and we assume the same value for (2H + 4H) absorption, since the actual value was not found. According to theory [40] the β-coefficient for (4H + 2H) absorption is 1.4x lower than that of (4H + 4H) absorption, so for the simulation we use the value which is somewhat higher than the real value. It was found that the TPA as a result of the absorption of (2H + 4H) photons is slightly lower than that of (4H + 4H) photons. It has to be stressed that in our calculations the crystal heating due to the linear and nonlinear absorptions was not included. Also the issues connected with the beam pointing instability, which affect the DUV output [36], were not numerically studied. Our simulation reveals that for high intensity inputs (> 10 GW/cm2) the effect of the (2H + 4H) absorption is far less significant than that of the (4H + 4H) absorption, as the relevant curves (the curves of the same color) differ by ≤10%.

 figure: Fig. 4.

Fig. 4. Simulation of the conversion efficiency 2H→4H in CLBO for two β-coefficients of TPA: 5.3×10−10 cm/W (red) and 53×10−10 cm/W (green). Full squares refer to the case when only (4H + 4H) process was taken into account, empty triangles to the case when both (4H + 4H) and (2H + 4H) were accounted with the same β-coefficient, and black squares to the case without TPA.

Download Full Size | PPT Slide | PDF

It further follows that the effect of TPA on the DUV production is detrimental: without taking TPA into calculation, e.g. at the peak intensity of 15 GW/cm2, the theoretical conversion efficiency is almost 90% (the black curve). If β = 5.3×10−10 cm/W, the conversion efficiency drops to one half (red curves). Taking β e.g. by one order higher, 5.3×10−9 cm/W, it drops to one fifth (green curves). The correct value of the β coefficient is therefore crucial for a reliable simulation of DUV generation. There is a spread of β values in literature, as the TPA depends on crystal temperature, laser repetition rate, beam polarization and pulse duration. It can be roughly concluded from the literature on CLBO that the longer is the pulse, the higher is the TPA [32,35,38]. A similar trend was also found for BBO.

4.2 TPA versus phase-matching condition

The energy absorbed in the crystal due to TPA of two 4H-photons is 9.6 eV, for (2H + 4H) absorption it is 7.2 eV, which corresponds to 129 nm and 172 nm, resp. Both these wavelengths are well below the cut-off wavelength of 180 nm and therefore it can be assumed that the absorbed energy will turn into heat and will not be irradiated [38]. As shown in measurements and simulations [37], the temperature profile is asymmetric along the crystal. It will be inhomogeneous in lateral direction too, as TPA is higher the higher is the intensity of the radiation. The temperature change leads to phase mismatching and consequently to a drop in the DUV generation. One more note: when taking the beam profile at a given 2H input, right in the moment when the phase-matching was achieved by the crystal tuning, the 4H beam profile was smooth and similar to that of the 2H profile. However, in a few seconds the profile deteriorated and became highly structured. For picosecond pulses such inhomogeneous DUV beam profiles are not exceptional [39]. It follows for CLBO from [35] that the higher is the quality of the crystal, the lower is the two-photon absorption.

We observed the consequences of the two-photon absorption of the fourth harmonic generated in CLBO I via the crystal temperature increase. Tuning the 2H input into the crystal, the 4H-photon production changes which entails also a change in TPA and consequently the temperature in the laser beam channel and phase matching (PM) conditions. Since the temperature of the oven walls is kept constant, there is a lateral temperature gradient across the crystal. Figure 5 shows the dependence of the PM angle θ shift on the 2H input, i.e. how much the PM angle had to be changed to get again the highest 4H output at the given 2H input. The shift in the PM angle was due to the shift in the temperature along the 2H-beam in the crystal. The right y-axis scale in the graph corresponds to this temperature shift as calculated by SNLO (2D-mix-SP, i.e. program for short pulses of Gaussian shape in time and space) [30]. The procedure was as follows: at the maximal 2H input of 30 W the PM angle was adjusted to get the highest 4H output. Then, while decreasing the 2H input, the oven with the crystal was angle tuned to get the highest possible 4H output and the angle value change was recorded (the left y-axis corresponds to the recalculated internal angle change). The negative values on both y-axis mean that both the θ angle and temperature were lowering during decreasing the 2H-input. Over the whole measurement the oven temperature was kept at 150°C. When recalculating the x-axis scale in Fig. 5 for the beam intensity, 30 W power in 2H corresponds to the peak intensity of around 15 GW/cm2 (the 2H beam diameter and pulse duration taken as that of the 1H beam, i.e. 2 mm and 1.5 ps, resp.). Owing to the linear character of the curve, it can be concluded that changing the input 2H-beam intensity by 1 GW/cm2 entails the temperature change by about 1 K.

 figure: Fig. 5.

Fig. 5. The PM angle tuning in the dependence on the second harmonic input. Left y-axis: PM angle (internal) change; right y-axis: relevant crystal temperature change. The crystal temperature recalculation of the angle was done by the SNLO program.

Download Full Size | PPT Slide | PDF

4.3 β-coefficient

Our harmonics generation set-up, see Fig. 2, enables to roughly estimate the two-photon absorption β-coefficient in the CLBO crystal. In CLBO I the fourth harmonic was generated and its transmission through CLBO II was measured (without the input of the 1H-beam). Figure 6 shows the measured data. The black line presents the linear fit of the data. The red circles present the simulation of the crystal transmission using the formula from [40], related to the two-photon absorption of a pulsed Gaussian beam. For the simulation we used the β-coefficient of 5.3 × 10−10 cm/W from [32] again, the value derived from the transmission measurement of sub-picosecond pulses at 248 nm through CLBO. It is evident that the value of the β-coefficient is conformed also to our measurement. To determine our β-coefficient precisely a broader interval of the input intensities would be necessary. A note should be made that there are very few measurements of TPA in CLBO.

 figure: Fig. 6.

Fig. 6. The transmission of 257 nm radiation through CLBO II in dependence on the peak (on-axis) beam intensity. The black squares are experimental data, the red circles are simulation according [40]. The error bars correspond to ± 5% of the transmission value.

Download Full Size | PPT Slide | PDF

A further comment needs to be made. In Fig. 6 we use the peak intensity of the fourth harmonic generated in CLBO I as the variable in the measurement of the transmission through CLBO II. For this, the 4H-beam diameter had to be determined. We determined the 4H-beam diameter (D4σ) from the beam profile measurement at the CLBO II entrance. Figure 7 presents the dependence of the 4H-beam diameter on the fourth harmonic output from the CLBO I crystal. At low input intensities the 4H-beam diameter is by one half larger than for the highest inputs. The 4H-beam diameter at the low input intensity corresponds to the natural divergence of the second harmonic beam at CLBO I in our set-up. At higher input intensities we noticed beam narrowing. The narrowing in nonlinear crystals is often due to the self-focusing based on the Kerr effect [41], which may appear as a consequence of TPA [42]. However, the nonlinear refractive index n2 of CLBO crystals is negative [43,44], entailing beam defocusing. Thermal lensing was taken into account, however, the temperature gradient of the refractive index is negative. At present, the physical mechanism behind the beam narrowing in our experiment is not understood. The experimental data in Fig. 7 were fitted by a 2nd order polynomial with a good accuracy. This curve was used for the calculation of the beam intensity values on x-axis in Fig. 6.

 figure: Fig. 7.

Fig. 7. 4H output power dependence of the 4H-beam diameter (D4σ) measured in front of CLBO II.

Download Full Size | PPT Slide | PDF

5. Fifth harmonic generation

We realized the fifth harmonic as a sum frequency (SF) of the 4H- and 1H-beams, see Fig. 2. The 4H-beam for the fifth harmonic generation comes from CLBO I, but the 1H-beam was either used as the remaining beam after the 2H generation, as given in Fig. 2, or was derived from the full 1H-beam from a splitter prior entering the LBO crystal. We examined both possibilities. We checked the beam profile and spectrum of the 1H-beam after passing through the first dichroic mirror behind the LBO and no qualitative change was found compared to the original beam. Our measurements presented here therefore have been realized with the remaining 1H-beam after the 2H generation. The other setting did not provide better results, moreover, it substantially weakened the beam generating the second harmonic.

Figure 8(a) presents the 5H generation in CLBO II in the dependence on 1H-input at 4H-input being constant of 4.2 W. The 5H-output increases with the 1H-input up to a value of 1.1 W which was our maximum in the fifth harmonic generation. Within our knowledge this value and 2 W in [19] are the highest output powers at 206 nm for picosecond pulses at a repetition rate in the order of magnitude of 100 kHz. The highest 5H-output was found by tuning the delay line, see Fig. 2. The conversion efficiency curve shows that at the maximum 5H output about 20% of 4H-photons were converted. Figure 8(b) is the spectrum of the fifth harmonic. The FWHM is 0.28 nm (optical resolution 0.18 nm), the corresponding transform limited duration is 0.22 ps.

 figure: Fig. 8.

Fig. 8. (a) 5H-output power dependence on the 1H-input power at the 4H-input power being constant 4.2 W. Corrections for uncoated CLBO II are included; conversion efficiency shows the number of 4H-photons converted into 5H-photons. (b) Spectrum of the fifth harmonic.

Download Full Size | PPT Slide | PDF

5.1 Synchronization of 1H- and 4H-pulses and 5H-pulse duration

A question arises about the appropriate temporal overlap of both pulses in the crystal in order to get the efficient sum frequency generation. In our case, for picosecond pulses and DUV generation, the overlap will be affected by different group velocities of all three waves. The CLBO II crystal is 4 mm long (L), therefore the temporal walk-off between the 1H- and 4H-pulses after passing the crystal is given by their group velocity mismatch (GVM), L×(1/ug4 – 1/ug1) = 2.8   ps (ug1=c/1.499, ug4=c/1.710, ug5=c/1.820). Owing to the pulse duration of the fundamental, FWHM being 1.5 ps, our crystal is longer than optimum, the interaction length is only 2.1 mm. Due to the GVM and moderate intensities of both input beams, it can be expected that the 5H-pulse duration will be longer than that of the input 1H- and 4H-pulses, as the group velocities of both pump pulses are higher than that of the 5H pulse, which leads to a temporal broadening of the 5H pulse [4648]. Further, the 5H output power will be weakened by the processes of one-beam TPA of the 4H and 5H photons, and also by the two-beam TPA, as the group velocities of both DUV beams are close [49] and the pulses stay in a good overlap.

In principle, the synchronization of both pulses, i.e. the overlap of their centers, at the entrance of the crystal does not ensure the highest 5H generation. We studied experimentally and in simulations the effect of the variable delay of the pulses on the 5H production under great abundance of 1H-photons. The PM type was ooe, the 4H-input was 4.2 W and the 1H-input was 40 W, i.e. the whole remaining 1H-beam after the SHG. Figure 9(a) presents the measured dependence of the normalized output power of the fifth harmonic frequency on the delay between the 4H and 1H pulses. The zero point on the x-axis denotes that at this delay line setting the 5H output was maximum. Positive values of the delay mean that the 1H pulse path has been sequentially shortened, negative values correspond to the 1H pulse path lengthening.

 figure: Fig. 9.

Fig. 9. (a) Experimental dependence of the 5H-output power on the delay variation between the 1H- and 4H-pulses; (b) Relevant simulation of the process by the SNLO program [30].

Download Full Size | PPT Slide | PDF

The question is what was the temporal distance between the 4H- and 1H-pulses at the crystal entrance. A certain elucidation of this problem provides Fig. 9(b), which is the SNLO simulation of the 5HG process, where the used pulse and beam parameters correspond to our experiment. The maximal 5H-output is when the 1H-pulse is by about 1.4 ps delayed after the 4H-pulse. It follows from the calculation that in that case the maxima of both pulses overlap in the middle of the crystal. The experimental curve in Fig. 9(a) is broader than the theoretical one which can be explained by the side-lobes on the Lorentzian pulse profile of the fundamental beam.

Figure 10(a) shows the evolution of the 5H-pulse duration (FWHM) in the dependence on the same delay variation as in Fig. 9. It follows from Figs. that at the maximum generation of the fifth harmonic, when the 1H-pulse is delayed by ∼1.4 ps after the 4H-pulse, the emerging 5H-pulse is the longest. An insight into what is going in the crystal under this delay is given in Fig. 10(b). The x-axis presents the distances from the crystal entrance. The y-axis shows the times at which the pulse maxima of 1H and 4H reach the given distance. At the crystal entrance, at x = 0 mm, first is the 4H-pulse and after 1.4 ps enters the 1H-pulse. At approx. x = 1.5 mm a small peak appears at the rear part of the 4H-pulse. At x = 2 mm, i.e. in the center of the crystal, the 4H-pulse shape consists of two equally high peaks. At a distance of about 3.5 mm the 4H-pulse consists of only one peak again and lags behind the 1H-pulse due to its lower group velocity. A note should be made that the generated 5H-pulse, not shown in Fig. 10(b), was always found in the gap between the two-peaks of the 4H-pulse. Further, no side peaks were apparent in the 1H-pulse, which can be explained by abundant 1H-beam power (40 W). The peculiar behavior of the 4H-pulse can be explained as being due a reconversion of a part of the 5H-pulse into 4H and 1H. This process extends the 4H-pulse duration inside the crystal. The rear part of the 5H-pulse inside the crystal is not smooth, there is a sign of a side maximum, as if the above mentioned reconverted part of the 4H-pulse generated the fifth harmonic again. Therefore, our simulation reveals that the process of the sum frequency generation of the fifth harmonic in the case of a great abundance of 1H-photons proceeds as a conversion and reconversion of the pulses inside the crystal.

 figure: Fig. 10.

Fig. 10. (a) SNLO simulation of the dependence of the 5H-pulse duration on the delay between 1H- and 4H-pulses. The horizontal reference line corresponds to the pulse duration of 1.8 ps, which is the duration of the 4H-pulse according to SNLO; (b) time behavior of 4H- and 1H-pulses maxima along the CLBO II crystal, see the text.

Download Full Size | PPT Slide | PDF

5.2 Optimum crystal length versus 5H-pulse energies

A question arises about the optimum energy relation between the 4H- and 1H-inputs to get the highest and good optical quality preserving 5H-output. It follows from our simulations (SNLO, 2D-mix-SP) that for a given crystal length and 4H-input, there is an optimal 1H-input for the generation of a smooth 5H-output. The correlation between the crystal length and the 1H-input is demonstrated in Table 2 for the 4H-input of 8 W (our highest 4H-output value) and parameters of our CLBO II. Table 2 was constructed in such a way that for the given 4H-input of 8W different 1H-inputs were added into the sum frequency process and optimum crystal length was found. The optimum length means that the 5H-output was the highest and at the same time its temporal profile was smooth. The proper delay between 4H and 1H pulses at the entrance of the crystal was included into the calculation.

Tables Icon

Table 2. Comparison of calculated 5H-outputs for different 1H-inputs at a constant 4H-input of 8 W.

It follows from Table 2 that the high 1H-input is beneficial for the 5H-generation, but the crystal must be correspondingly short. For longer crystals a reconversion from the 5H-beam back to the 4H- and 1H-beams appears which entails a structured profile of the outgoing 5H-pulse. The crystal lengths in Table 2 thus present optimum lengths. The case of a strong 1H wave and two weak 4H and 5H waves is treated in [45] for planar waves. The photon flux of the strong 1H wave is much higher than those of the 4H and 5H waves and in such situation the energy is periodically exchanged between both weaker waves, even in the case of perfect phase matching. As given in [45], the energy exchange is completed in a certain length, after which a full, i.e. 100%, conversion of 4H photons into 5H photons may happen for continuous plane waves. For a longer crystal, a reconversion takes place. In our case of Gaussian beams and pulses, the highest percentage of the 4H photons converted into 5H photons was 64%.

The first data row in Table 2 presents the case when the relation between 4H- and 1H-inputs corresponds to the creation of the 5H-photon: 5ω = 4ω + 1ω, i.e. the 1H-input is a quarter of the 4H-input. In this case, the longer is the crystal, the higher is the 5H-output, up to the output decrease caused by linear and nonlinear absorptions. However, the 5H-output in this case is lower than that for higher 1H-inputs and shorter crystals, see Table 2. This result is valid for picosecond pulses, where the effect of different group velocities of the participating beams is important. The fifth harmonic generation at e.g. nanosecond pulses is different. We made similar simulations for nanosecond 4H- and 1H-pulses, where the input intensity of 4H- and 1H-beams on CLBO II was the same as in the case of picosecond pulses (we took the inputs of 4H- and 1H-beams 10x higher and the beam diameter 10x smaller). In this case, the conversion efficiency of 4H-photons into 5H-photons was about 60% for all 1H-inputs and optimum crystals lengths.

6. Summary

We report on the generation of DUV radiation in picosecond pulses at 257 nm and 206 nm which were produced as the fourth and fifth harmonic frequencies of the diode pumped high-power Yb:YAG thin disk laser at a repetition rate of 77 kHz. The pulse duration of the fundamental was 1.5 ps. The nonlinear crystals used were LBO for the second harmonic and two CLBO crystals as DUV convertors. The fundamental pump beam was 80 W. The fourth harmonic was generated by frequency quadrupling and 7.6 W was achieved. The fifth harmonic was produced in the sum frequency process of 1ω+4ω with 1 W output. Within our knowledge the DUV output power attained at 206 nm ranks among the highest for picosecond pulses and near 100 kHz repetition rate. The DUV radiation in the nonlinear crystals is affected by nonlinear absorption, in our case via two-photon absorption (TPA). This effect causes an asymmetric temperature gradient along the beam in the crystal, as well as a structured DUV beam profile. Both these effects entail a phase mismatch of the interacting beams so that a new PM condition, i.e. a new PM angle, has to be set. We also measured the transmission of the fourth harmonic through the CLBO crystal and found satisfactory agreement with a TPA coefficient of ∼5×10−10 cm/W. In regard to the fifth harmonic frequency, we studied experimentally and in simulations the time delay between the 4H- and 1H-pulses to find the right timing for the highest fifth harmonic output. We found that the 1H-pulse should lag 1.4 ps behind the 4H-pulse pulse at the CLBO crystal (4 mm long) entrance to get the maximum 5H-output. The maximum 5H-pulse is also the longest, about 2.5 ps. Further, we studied the 5H-output power under different ratios between the 4H- and 1H-inputs. It was found in simulations that for picosecond pulses a great abundance of 1H-photons is beneficial for the 5H generation, but only in correspondingly short crystals. The temporal shape of the pulses inside the crystal under excess flux of 1H-photons suggests that there is a reconversion of the fifth harmonic into the pump beams, if the crystal length is not appropriate for the given ratio between 4H- and 1H-input powers.

Funding

European Regional Development Fund (ERDF) (CZ.02.1.01/0.0/0.0/15_006/0000674); Horizon 2020 Framework Programme (H2020) (739573); Ministerstvo Školství, Mládeže a Tělovýchovy (MŠMT) (LM2015015086, LO1602).

References

1. P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016). [CrossRef]  

2. T. Nakajyo, J. Yang, F. Sakai, and Y. Aoki, “Quantum Efficiencies of Mg Photocathode under Illumination with 3rd and 4th Harmonics Nd:LiYF4 Laser Light in RF Gun,” Jpn. J. Appl. Phys. 42(Part 1), 1470–1474 (2003). [CrossRef]  

3. T. Nakazato, I. Ito, Y. Kobayashi, X. Wang, C. Chen, and S. Watanabe, “Phase-matched frequency conversion below 150 nm in KBe2BO3F2,” Opt. Express 24(15), 17149–17158 (2016). [CrossRef]  

4. S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016). [CrossRef]  

5. D. G. Nikitin, O. A. Byalkovskiy, O. I. Vershinin, P. V. Puyu, and V. A. Tyrtyshnyy, “Sum frequency generation of UV laser radiation at 266 nm in LBO crystal,” Opt. Lett. 41(7), 1660–1663 (2016). [CrossRef]  

6. P. Koch, J. Bartschke, and J. A. L’Huillier, “Single-mode deep-UV light source at 191.7 nm by seventh-harmonic generation of a high-power, Q-switched, injection-locked 1342 nm Nd:YVO4 laser,” Appl. Opt. 55(8), 1871–1877 (2016). [CrossRef]  

7. S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016). [CrossRef]  

8. H. Xuan, C. Qu, Z. Zao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29178 (2017). [CrossRef]  

9. L. Goldberg, B. Cole, C. McIntosh, V. King, A. D. Hays, and S. R. Chinn, “Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb:YAG laser,” Opt. Express 24(15), 17397 (2016). [CrossRef]  

10. X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016). [CrossRef]  

11. I. A. Begishev, J. Bromage, S. T. Yang, P. S. Datte, S. Patankar, and J. D. Zuegel, “Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate,” Opt. Lett. 43(11), 2462–2465 (2018). [CrossRef]  

12. M. Baudisch, B. Wolter, M. Pullen, M. Hemmer, and J. Biegert, “High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs,” Opt. Lett. 41(15), 3583–3586 (2016). [CrossRef]  

13. M. Müller, A. Klenke, T. Gottschall, R. Klas, C. Rothhardt, S. Demmler, J. Rothhardt, J. Limpert, and A. Tünnermann, “High-average-power femtosecond laser at 258 nm,” Opt. Lett. 42(14), 2826–2829 (2017). [CrossRef]  

14. O. Novak, H. Turcicova, M. Smrz, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41(22), 5210–5213 (2016). [CrossRef]  

15. C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016). [CrossRef]  

16. Z. Fang, Z. Hou, F. Yang, L.-J. Liu, X.-Y. Wang, Z.-Y. Xu, and C.-T. Chen, “High-efficiency UV generation at 266 nm in a new nonlinear optical crystal NaSr3Be3B3O9F4,” Opt. Express 25(22), 26500–26507 (2017). [CrossRef]  

17. S. Patankar, S. T. Yang, J. D. Moody, G. F. Swadling, A. C. Erlandson, A. J. Bayramian, D. Barker, P. Datte, R. L. Acree, B. Pepmeier, R. E. Madden, M. R. Borden, and J. S. Ross, “Two-photon absorption measurements of deep UV transmissible materials at 213 nm,” Appl. Opt. 56(30), 8309–8312 (2017). [CrossRef]  

18. S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018). [CrossRef]  

19. B. Willenberg, F. Brunner, C. R. Phillips, and U. Keller, “Efficient 2-W average power 206 nm deep-UV generation from 100-kHz picosecond pulses,” presented at 2019 Conference on Lasers and Electro-Optics Europe, Munic, Germany, 23-27 June 2019.

20. L. B. Sharma, H. Daido, Y. Kato, and S. Nakai, “Fourth-harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals,” Appl. Phys. Lett. 69(25), 3812–3814 (1996). [CrossRef]  

21. T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009). [CrossRef]  

22. J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005). [CrossRef]  

23. K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015). [CrossRef]  

24. S. C. Kumar, J. C. Asals, E. S. Bautista, K. Devi, and M. Ebrahihim-Zadeh, “Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm,” Opt. Lett. 40(10), 2397–2400 (2015). [CrossRef]  

25. M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017). [CrossRef]  

26. O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015). [CrossRef]  

27. M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015). [CrossRef]  

28. Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996). [CrossRef]  

29. Y. K. Yap, T. Inoue, H. Sakai, Y. Kagebayashi, Y. Mori, and T. Sasaki, “Long-term operation of CsLiB6O10 at elevated crystal temperature,” Opt. Lett. 23(1), 34–36 (1998). [CrossRef]  

30. V. Smith, “SNLO nonlinear optics code,“ AS-Photonics, http://as-photonics-com/products/snlo.

31. Y. Mori, I. Kuroda, S. Nakajima, and T. Sasaki, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett. 67(13), 1818 (1995). [CrossRef]  

32. M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005). [CrossRef]  

33. Information on the Oxide Co. webpage, http://www.opt-oxide.com

34. A. Dubietis, G. Tamošauskas, A. Varanavičius, and G. Valiulis, “Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm,” Appl. Opt. 39(15), 2437–2440 (2000). [CrossRef]  

35. T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005). [CrossRef]  

36. R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “Generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet radiation of 271.2 nm,” Appl. Opt. 54(32), 9613–9621 (2015). [CrossRef]  

37. S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside beta-BBO crystal during UV nonlinear optical conversion,” Proc. SPIE 3928, 221 (2000). [CrossRef]  

38. T. Nakazato, X. Wang, C. Chen, and S. Watanabe, “Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm,” Jap,” Jpn. J. Appl. Phys. 56(12), 122601 (2017). [CrossRef]  

39. C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015). [CrossRef]  

40. R. L. Sutherland, Handbook of Nonlinear Optics, p. 583 (CRC Press, 2003).

41. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006). [CrossRef]  

42. H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997). [CrossRef]  

43. J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008). [CrossRef]  

44. K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and (-BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014). [CrossRef]  

45. V. Smith, “Crystal Nonlinear Optics,” publ. AS-Photonics, Albuquerque, NM, USA, p. 68 (2015).

46. R. Buffa, “Transient sum-frequency mixing with temporally tailored laser pulses,” Opt. Lett. 26(10), 722–724 (2001). [CrossRef]  

47. A. Stabinis and G. Valiulis, “Effective sum frequency puls compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991). [CrossRef]  

48. R. Buffa, “Optimal control of transient sum-frequency mixing processes,” J. Opt. Soc. Am. B 19(7), 1599–1603 (2002). [CrossRef]  

49. A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, and R. Danielius, “Generation of femtosecond radiation at 211 nm by femtosecond pulse upconversion in the field of a picosecond pulse,” Opt. Lett. 25(15), 1116–1118 (2000). [CrossRef]  

References

  • View by:

  1. P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
    [Crossref]
  2. T. Nakajyo, J. Yang, F. Sakai, and Y. Aoki, “Quantum Efficiencies of Mg Photocathode under Illumination with 3rd and 4th Harmonics Nd:LiYF4 Laser Light in RF Gun,” Jpn. J. Appl. Phys. 42(Part 1), 1470–1474 (2003).
    [Crossref]
  3. T. Nakazato, I. Ito, Y. Kobayashi, X. Wang, C. Chen, and S. Watanabe, “Phase-matched frequency conversion below 150 nm in KBe2BO3F2,” Opt. Express 24(15), 17149–17158 (2016).
    [Crossref]
  4. S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
    [Crossref]
  5. D. G. Nikitin, O. A. Byalkovskiy, O. I. Vershinin, P. V. Puyu, and V. A. Tyrtyshnyy, “Sum frequency generation of UV laser radiation at 266 nm in LBO crystal,” Opt. Lett. 41(7), 1660–1663 (2016).
    [Crossref]
  6. P. Koch, J. Bartschke, and J. A. L’Huillier, “Single-mode deep-UV light source at 191.7 nm by seventh-harmonic generation of a high-power, Q-switched, injection-locked 1342 nm Nd:YVO4 laser,” Appl. Opt. 55(8), 1871–1877 (2016).
    [Crossref]
  7. S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
    [Crossref]
  8. H. Xuan, C. Qu, Z. Zao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29178 (2017).
    [Crossref]
  9. L. Goldberg, B. Cole, C. McIntosh, V. King, A. D. Hays, and S. R. Chinn, “Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb:YAG laser,” Opt. Express 24(15), 17397 (2016).
    [Crossref]
  10. X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
    [Crossref]
  11. I. A. Begishev, J. Bromage, S. T. Yang, P. S. Datte, S. Patankar, and J. D. Zuegel, “Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate,” Opt. Lett. 43(11), 2462–2465 (2018).
    [Crossref]
  12. M. Baudisch, B. Wolter, M. Pullen, M. Hemmer, and J. Biegert, “High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs,” Opt. Lett. 41(15), 3583–3586 (2016).
    [Crossref]
  13. M. Müller, A. Klenke, T. Gottschall, R. Klas, C. Rothhardt, S. Demmler, J. Rothhardt, J. Limpert, and A. Tünnermann, “High-average-power femtosecond laser at 258 nm,” Opt. Lett. 42(14), 2826–2829 (2017).
    [Crossref]
  14. O. Novak, H. Turcicova, M. Smrz, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41(22), 5210–5213 (2016).
    [Crossref]
  15. C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
    [Crossref]
  16. Z. Fang, Z. Hou, F. Yang, L.-J. Liu, X.-Y. Wang, Z.-Y. Xu, and C.-T. Chen, “High-efficiency UV generation at 266 nm in a new nonlinear optical crystal NaSr3Be3B3O9F4,” Opt. Express 25(22), 26500–26507 (2017).
    [Crossref]
  17. S. Patankar, S. T. Yang, J. D. Moody, G. F. Swadling, A. C. Erlandson, A. J. Bayramian, D. Barker, P. Datte, R. L. Acree, B. Pepmeier, R. E. Madden, M. R. Borden, and J. S. Ross, “Two-photon absorption measurements of deep UV transmissible materials at 213 nm,” Appl. Opt. 56(30), 8309–8312 (2017).
    [Crossref]
  18. S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
    [Crossref]
  19. B. Willenberg, F. Brunner, C. R. Phillips, and U. Keller, “Efficient 2-W average power 206 nm deep-UV generation from 100-kHz picosecond pulses,” presented at 2019 Conference on Lasers and Electro-Optics Europe, Munic, Germany, 23-27 June 2019.
  20. L. B. Sharma, H. Daido, Y. Kato, and S. Nakai, “Fourth-harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals,” Appl. Phys. Lett. 69(25), 3812–3814 (1996).
    [Crossref]
  21. T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009).
    [Crossref]
  22. J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
    [Crossref]
  23. K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
    [Crossref]
  24. S. C. Kumar, J. C. Asals, E. S. Bautista, K. Devi, and M. Ebrahihim-Zadeh, “Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm,” Opt. Lett. 40(10), 2397–2400 (2015).
    [Crossref]
  25. M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
    [Crossref]
  26. O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
    [Crossref]
  27. M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
    [Crossref]
  28. Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
    [Crossref]
  29. Y. K. Yap, T. Inoue, H. Sakai, Y. Kagebayashi, Y. Mori, and T. Sasaki, “Long-term operation of CsLiB6O10 at elevated crystal temperature,” Opt. Lett. 23(1), 34–36 (1998).
    [Crossref]
  30. V. Smith, “SNLO nonlinear optics code,“ AS-Photonics, http://as-photonics-com/products/snlo .
  31. Y. Mori, I. Kuroda, S. Nakajima, and T. Sasaki, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett. 67(13), 1818 (1995).
    [Crossref]
  32. M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
    [Crossref]
  33. Information on the Oxide Co. webpage, http://www.opt-oxide.com
  34. A. Dubietis, G. Tamošauskas, A. Varanavičius, and G. Valiulis, “Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm,” Appl. Opt. 39(15), 2437–2440 (2000).
    [Crossref]
  35. T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
    [Crossref]
  36. R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “Generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet radiation of 271.2 nm,” Appl. Opt. 54(32), 9613–9621 (2015).
    [Crossref]
  37. S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside beta-BBO crystal during UV nonlinear optical conversion,” Proc. SPIE 3928, 221 (2000).
    [Crossref]
  38. T. Nakazato, X. Wang, C. Chen, and S. Watanabe, “Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm,” Jap,” Jpn. J. Appl. Phys. 56(12), 122601 (2017).
    [Crossref]
  39. C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
    [Crossref]
  40. R. L. Sutherland, Handbook of Nonlinear Optics, p. 583 (CRC Press, 2003).
  41. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
    [Crossref]
  42. H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
    [Crossref]
  43. J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
    [Crossref]
  44. K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and (-BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014).
    [Crossref]
  45. V. Smith, “Crystal Nonlinear Optics,” publ. AS-Photonics, Albuquerque, NM, USA, p. 68 (2015).
  46. R. Buffa, “Transient sum-frequency mixing with temporally tailored laser pulses,” Opt. Lett. 26(10), 722–724 (2001).
    [Crossref]
  47. A. Stabinis and G. Valiulis, “Effective sum frequency puls compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
    [Crossref]
  48. R. Buffa, “Optimal control of transient sum-frequency mixing processes,” J. Opt. Soc. Am. B 19(7), 1599–1603 (2002).
    [Crossref]
  49. A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, and R. Danielius, “Generation of femtosecond radiation at 211 nm by femtosecond pulse upconversion in the field of a picosecond pulse,” Opt. Lett. 25(15), 1116–1118 (2000).
    [Crossref]

2018 (2)

I. A. Begishev, J. Bromage, S. T. Yang, P. S. Datte, S. Patankar, and J. D. Zuegel, “Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate,” Opt. Lett. 43(11), 2462–2465 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

2017 (6)

2016 (11)

L. Goldberg, B. Cole, C. McIntosh, V. King, A. D. Hays, and S. R. Chinn, “Narrow-band 1 W source at 257 nm using frequency quadrupled passively Q-switched Yb:YAG laser,” Opt. Express 24(15), 17397 (2016).
[Crossref]

X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
[Crossref]

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

T. Nakazato, I. Ito, Y. Kobayashi, X. Wang, C. Chen, and S. Watanabe, “Phase-matched frequency conversion below 150 nm in KBe2BO3F2,” Opt. Express 24(15), 17149–17158 (2016).
[Crossref]

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

D. G. Nikitin, O. A. Byalkovskiy, O. I. Vershinin, P. V. Puyu, and V. A. Tyrtyshnyy, “Sum frequency generation of UV laser radiation at 266 nm in LBO crystal,” Opt. Lett. 41(7), 1660–1663 (2016).
[Crossref]

P. Koch, J. Bartschke, and J. A. L’Huillier, “Single-mode deep-UV light source at 191.7 nm by seventh-harmonic generation of a high-power, Q-switched, injection-locked 1342 nm Nd:YVO4 laser,” Appl. Opt. 55(8), 1871–1877 (2016).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

O. Novak, H. Turcicova, M. Smrz, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41(22), 5210–5213 (2016).
[Crossref]

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

M. Baudisch, B. Wolter, M. Pullen, M. Hemmer, and J. Biegert, “High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs,” Opt. Lett. 41(15), 3583–3586 (2016).
[Crossref]

2015 (6)

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
[Crossref]

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

S. C. Kumar, J. C. Asals, E. S. Bautista, K. Devi, and M. Ebrahihim-Zadeh, “Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm,” Opt. Lett. 40(10), 2397–2400 (2015).
[Crossref]

R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “Generation of 1.5 W average power, 18 kHz repetition rate coherent mid-ultraviolet radiation of 271.2 nm,” Appl. Opt. 54(32), 9613–9621 (2015).
[Crossref]

2014 (1)

2009 (1)

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009).
[Crossref]

2008 (1)

J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
[Crossref]

2006 (1)

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

2005 (3)

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[Crossref]

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

2003 (1)

T. Nakajyo, J. Yang, F. Sakai, and Y. Aoki, “Quantum Efficiencies of Mg Photocathode under Illumination with 3rd and 4th Harmonics Nd:LiYF4 Laser Light in RF Gun,” Jpn. J. Appl. Phys. 42(Part 1), 1470–1474 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (3)

1998 (1)

1997 (1)

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

1996 (2)

Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
[Crossref]

L. B. Sharma, H. Daido, Y. Kato, and S. Nakai, “Fourth-harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals,” Appl. Phys. Lett. 69(25), 3812–3814 (1996).
[Crossref]

1995 (1)

Y. Mori, I. Kuroda, S. Nakajima, and T. Sasaki, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett. 67(13), 1818 (1995).
[Crossref]

1991 (1)

A. Stabinis and G. Valiulis, “Effective sum frequency puls compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
[Crossref]

Acree, R. L.

Adachi, S.

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009).
[Crossref]

Agrawal, P. K.

Aoki, Y.

T. Nakajyo, J. Yang, F. Sakai, and Y. Aoki, “Quantum Efficiencies of Mg Photocathode under Illumination with 3rd and 4th Harmonics Nd:LiYF4 Laser Light in RF Gun,” Jpn. J. Appl. Phys. 42(Part 1), 1470–1474 (2003).
[Crossref]

Arakawa, M.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Asals, J. C.

Babu Reddy, J. N.

J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
[Crossref]

Barker, D.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, G. F. Swadling, A. C. Erlandson, A. J. Bayramian, D. Barker, P. Datte, R. L. Acree, B. Pepmeier, R. E. Madden, M. R. Borden, and J. S. Ross, “Two-photon absorption measurements of deep UV transmissible materials at 213 nm,” Appl. Opt. 56(30), 8309–8312 (2017).
[Crossref]

Bartschke, J.

Baudisch, M.

Bautista, E. S.

Bayramian, A. J.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, G. F. Swadling, A. C. Erlandson, A. J. Bayramian, D. Barker, P. Datte, R. L. Acree, B. Pepmeier, R. E. Madden, M. R. Borden, and J. S. Ross, “Two-photon absorption measurements of deep UV transmissible materials at 213 nm,” Appl. Opt. 56(30), 8309–8312 (2017).
[Crossref]

Beck, S.M.

X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
[Crossref]

Begishev, I. A.

I. A. Begishev, J. Bromage, S. T. Yang, P. S. Datte, S. Patankar, and J. D. Zuegel, “Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate,” Opt. Lett. 43(11), 2462–2465 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

Bhat, H. L.

J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
[Crossref]

Biegert, J.

Biswal, R.

Blake, G. A.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside beta-BBO crystal during UV nonlinear optical conversion,” Proc. SPIE 3928, 221 (2000).
[Crossref]

Bo, Y.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Bohus, J.

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

Bonora, S.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Borden, M. R.

Bromage, J.

I. A. Begishev, J. Bromage, S. T. Yang, P. S. Datte, S. Patankar, and J. D. Zuegel, “Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate,” Opt. Lett. 43(11), 2462–2465 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

Brunner, F.

B. Willenberg, F. Brunner, C. R. Phillips, and U. Keller, “Efficient 2-W average power 206 nm deep-UV generation from 100-kHz picosecond pulses,” presented at 2019 Conference on Lasers and Electro-Optics Europe, Munic, Germany, 23-27 June 2019.

Buffa, R.

Byalkovskiy, O. A.

Carr, C. W.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

Cernohorská, J.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Chang, C.-L.

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

Chen, C.

T. Nakazato, X. Wang, C. Chen, and S. Watanabe, “Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm,” Jap,” Jpn. J. Appl. Phys. 56(12), 122601 (2017).
[Crossref]

T. Nakazato, I. Ito, Y. Kobayashi, X. Wang, C. Chen, and S. Watanabe, “Phase-matched frequency conversion below 150 nm in KBe2BO3F2,” Opt. Express 24(15), 17149–17158 (2016).
[Crossref]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009).
[Crossref]

Chen, C. T.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Chen, C.-T.

Chen, L.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Chen, M.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Chinn, S. R.

Chyla, M.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
[Crossref]

Clemmons, J. H.

X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
[Crossref]

Cole, B.

Cui, D. F.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Dai, S.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Daido, H.

L. B. Sharma, H. Daido, Y. Kato, and S. Nakai, “Fourth-harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals,” Appl. Phys. Lett. 69(25), 3812–3814 (1996).
[Crossref]

Danielius, R.

Datte, P.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, G. F. Swadling, A. C. Erlandson, A. J. Bayramian, D. Barker, P. Datte, R. L. Acree, B. Pepmeier, R. E. Madden, M. R. Borden, and J. S. Ross, “Two-photon absorption measurements of deep UV transmissible materials at 213 nm,” Appl. Opt. 56(30), 8309–8312 (2017).
[Crossref]

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Datte, P. S.

Demmler, S.

Devi, K.

Divall, E. J.

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

Divall, M.

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

Divoký, M.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Dixit, S. K.

Dubietis, A.

Ebrahihim-Zadeh, M.

Elizabeth, S.

J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
[Crossref]

Endo, A.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novak, H. Turcicova, M. Smrz, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41(22), 5210–5213 (2016).
[Crossref]

M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Erlandson, A. C.

Fang, Z.

Froula, D.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Fu, H.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Fuchimukai, A.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Fujita, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Galbraith, J.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Glenzer, S.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Goldberg, L.

Gottschall, T.

Hatch, B.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Hays, A. D.

Hemmer, M.

Hong, K.-H.

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Horácková, L.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Horibe, H.

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Hou, Z.

Huynh, J.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Igarashi, H.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Imade, M.

Inagaki, M.

Inoue, T.

Ito, I.

Ito, S.

H. Xuan, C. Qu, Z. Zao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29178 (2017).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Jambunathan, V.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Ji, W.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Jia, M.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Kagebayashi, Y.

Kakizaki, K.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Kamba, Y.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Kamimura, T.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Kanai, T.

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009).
[Crossref]

Kärtner, F. X.

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

Kato, Y.

L. B. Sharma, H. Daido, Y. Kato, and S. Nakai, “Fourth-harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals,” Appl. Phys. Lett. 69(25), 3812–3814 (1996).
[Crossref]

Keller, U.

B. Willenberg, F. Brunner, C. R. Phillips, and U. Keller, “Efficient 2-W average power 206 nm deep-UV generation from 100-kHz picosecond pulses,” presented at 2019 Conference on Lasers and Electro-Optics Europe, Munic, Germany, 23-27 June 2019.

Kilkenny, J.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

King, V.

Klas, R.

Klebniczki, J.

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

Kleinbauer, J.

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[Crossref]

Klenke, A.

Knappe, R.

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[Crossref]

Kobayashi, Y.

H. Xuan, C. Qu, Z. Zao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29178 (2017).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

T. Nakazato, I. Ito, Y. Kobayashi, X. Wang, C. Chen, and S. Watanabe, “Phase-matched frequency conversion below 150 nm in KBe2BO3F2,” Opt. Express 24(15), 17149–17158 (2016).
[Crossref]

Koch, P.

Krogen, P.

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

Kumar, S. C.

Kurdi, G.

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

Kuroda, I.

Y. Mori, I. Kuroda, S. Nakajima, and T. Sasaki, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett. 67(13), 1818 (1995).
[Crossref]

L’Huillier, J. A.

Lai, C.-J.

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Landen, O.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Li, H.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Li, R. K.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Liang, H.

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

Limpert, J.

Linnemann, J.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Liu, L. J.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Liu, L.-J.

Liu, X.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Lotshaw, W. T.

X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
[Crossref]

Lucianetti, A.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Luo, Z.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Madden, R. E.

Mann, K.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Manuel, A. M.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

McIntosh, C.

Mennerat, G.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

Mesícek, J.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Miura, T.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novak, H. Turcicova, M. Smrz, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41(22), 5210–5213 (2016).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
[Crossref]

Mizoguchi, H.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Mocek, T.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novak, H. Turcicova, M. Smrz, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41(22), 5210–5213 (2016).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
[Crossref]

Molander, W.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Montgomery, D.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Moody, J.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Moody, J. D.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, G. F. Swadling, A. C. Erlandson, A. J. Bayramian, D. Barker, P. Datte, R. L. Acree, B. Pepmeier, R. E. Madden, M. R. Borden, and J. S. Ross, “Two-photon absorption measurements of deep UV transmissible materials at 213 nm,” Appl. Opt. 56(30), 8309–8312 (2017).
[Crossref]

Mori, Y.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and (-BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014).
[Crossref]

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Y. K. Yap, T. Inoue, H. Sakai, Y. Kagebayashi, Y. Mori, and T. Sasaki, “Long-term operation of CsLiB6O10 at elevated crystal temperature,” Opt. Lett. 23(1), 34–36 (1998).
[Crossref]

Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
[Crossref]

Y. Mori, I. Kuroda, S. Nakajima, and T. Sasaki, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett. 67(13), 1818 (1995).
[Crossref]

Moses, J.

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Mu, X.

X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
[Crossref]

Müller, M.

Mužík, J.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Naik, V. B.

J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
[Crossref]

Nakai, S.

L. B. Sharma, H. Daido, Y. Kato, and S. Nakai, “Fourth-harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals,” Appl. Phys. Lett. 69(25), 3812–3814 (1996).
[Crossref]

Nakajima, S.

Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
[Crossref]

Y. Mori, I. Kuroda, S. Nakajima, and T. Sasaki, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett. 67(13), 1818 (1995).
[Crossref]

Nakajyo, T.

T. Nakajyo, J. Yang, F. Sakai, and Y. Aoki, “Quantum Efficiencies of Mg Photocathode under Illumination with 3rd and 4th Harmonics Nd:LiYF4 Laser Light in RF Gun,” Jpn. J. Appl. Phys. 42(Part 1), 1470–1474 (2003).
[Crossref]

Nakamura, R.

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Nakatsuka, M.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Nakazato, T.

T. Nakazato, X. Wang, C. Chen, and S. Watanabe, “Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm,” Jap,” Jpn. J. Appl. Phys. 56(12), 122601 (2017).
[Crossref]

T. Nakazato, I. Ito, Y. Kobayashi, X. Wang, C. Chen, and S. Watanabe, “Phase-matched frequency conversion below 150 nm in KBe2BO3F2,” Opt. Express 24(15), 17149–17158 (2016).
[Crossref]

Nakhe, S. V.

Narayana Rao, D.

J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
[Crossref]

Navrátil, P.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Nikitin, D. G.

Nishioka, M.

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Norton, M.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

Novak, O.

Novák, O.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
[Crossref]

Oizumi, H.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Onose, T.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Osvay, K.

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

Patankar, S.

Peng, Q. J.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Pepmeier, B.

Peter, A.

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

Phillips, C. R.

B. Willenberg, F. Brunner, C. R. Phillips, and U. Keller, “Efficient 2-W average power 206 nm deep-UV generation from 100-kHz picosecond pulses,” presented at 2019 Conference on Lasers and Electro-Optics Europe, Munic, Germany, 23-27 June 2019.

Pilar, J.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Polgar, K.

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

Pranovich, A.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Pullen, M.

Puyu, P. V.

Qu, C.

Qua, C.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Rose, T. S.

X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
[Crossref]

Roškot, L.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Ross, J. S.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, G. F. Swadling, A. C. Erlandson, A. J. Bayramian, D. Barker, P. Datte, R. L. Acree, B. Pepmeier, R. E. Madden, M. R. Borden, and J. S. Ross, “Two-photon absorption measurements of deep UV transmissible materials at 213 nm,” Appl. Opt. 56(30), 8309–8312 (2017).
[Crossref]

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Rostohar, D.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Rothhardt, C.

Rothhardt, J.

Sakai, F.

T. Nakajyo, J. Yang, F. Sakai, and Y. Aoki, “Quantum Efficiencies of Mg Photocathode under Illumination with 3rd and 4th Harmonics Nd:LiYF4 Laser Light in RF Gun,” Jpn. J. Appl. Phys. 42(Part 1), 1470–1474 (2003).
[Crossref]

Sakai, H.

Sankar Nagisetty, S.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Sasaki, T.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and (-BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014).
[Crossref]

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Y. K. Yap, T. Inoue, H. Sakai, Y. Kagebayashi, Y. Mori, and T. Sasaki, “Long-term operation of CsLiB6O10 at elevated crystal temperature,” Opt. Lett. 23(1), 34–36 (1998).
[Crossref]

Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
[Crossref]

Y. Mori, I. Kuroda, S. Nakajima, and T. Sasaki, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett. 67(13), 1818 (1995).
[Crossref]

Sasaki, Y.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Sawicka-Chyla, M.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Severová, P.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Sharma, L. B.

L. B. Sharma, H. Daido, Y. Kato, and S. Nakai, “Fourth-harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals,” Appl. Phys. Lett. 69(25), 3812–3814 (1996).
[Crossref]

Sikocinski, P.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Siqueira, J. P.

Slezák, O.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Smith, V.

V. Smith, “SNLO nonlinear optics code,“ AS-Photonics, http://as-photonics-com/products/snlo .

V. Smith, “Crystal Nonlinear Optics,” publ. AS-Photonics, Albuquerque, NM, USA, p. 68 (2015).

Smrz, M.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novak, H. Turcicova, M. Smrz, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41(22), 5210–5213 (2016).
[Crossref]

Smrž, M.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
[Crossref]

Stabinis, A.

A. Stabinis and G. Valiulis, “Effective sum frequency puls compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
[Crossref]

Stein, G. J.

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Steinvurzel, P.

X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
[Crossref]

Sun, S.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside beta-BBO crystal during UV nonlinear optical conversion,” Proc. SPIE 3928, 221 (2000).
[Crossref]

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics, p. 583 (CRC Press, 2003).

Swadling, G.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Swadling, G. F.

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

S. Patankar, S. T. Yang, J. D. Moody, G. F. Swadling, A. C. Erlandson, A. J. Bayramian, D. Barker, P. Datte, R. L. Acree, B. Pepmeier, R. E. Madden, M. R. Borden, and J. S. Ross, “Two-photon absorption measurements of deep UV transmissible materials at 213 nm,” Appl. Opt. 56(30), 8309–8312 (2017).
[Crossref]

Takachiho, K.

Takahashi, Y.

Tamiya, M.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Tamošauskas, G.

Tanaka, S.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Tünnermann, A.

Turcicova, H.

Turcicová, H.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Tyrtyshnyy, V. A.

Valiulis, G.

Varanavicius, A.

Venkatram, N.

J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
[Crossref]

Vergel de Dios, G.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Vershinin, O. I.

Vitalich, M.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Vojna, D.

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

Vyvlecka, M.

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

Wallenstein, R.

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[Crossref]

Wang, X.

T. Nakazato, X. Wang, C. Chen, and S. Watanabe, “Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm,” Jap,” Jpn. J. Appl. Phys. 56(12), 122601 (2017).
[Crossref]

T. Nakazato, I. Ito, Y. Kobayashi, X. Wang, C. Chen, and S. Watanabe, “Phase-matched frequency conversion below 150 nm in KBe2BO3F2,” Opt. Express 24(15), 17149–17158 (2016).
[Crossref]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009).
[Crossref]

Wang, X. Y.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Wang, X.-Y.

Wang, Z. C.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Wang, Z. M.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Watanabe, S.

T. Nakazato, X. Wang, C. Chen, and S. Watanabe, “Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm,” Jap,” Jpn. J. Appl. Phys. 56(12), 122601 (2017).
[Crossref]

T. Nakazato, I. Ito, Y. Kobayashi, X. Wang, C. Chen, and S. Watanabe, “Phase-matched frequency conversion below 150 nm in KBe2BO3F2,” Opt. Express 24(15), 17149–17158 (2016).
[Crossref]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009).
[Crossref]

Weaver, J.

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Willenberg, B.

B. Willenberg, F. Brunner, C. R. Phillips, and U. Keller, “Efficient 2-W average power 206 nm deep-UV generation from 100-kHz picosecond pulses,” presented at 2019 Conference on Lasers and Electro-Optics Europe, Munic, Germany, 23-27 June 2019.

Wolter, B.

Wu, S.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside beta-BBO crystal during UV nonlinear optical conversion,” Proc. SPIE 3928, 221 (2000).
[Crossref]

Wu, Y.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Xu, Z. Y.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Xu, Z.-Y.

Xuan, H.

H. Xuan, C. Qu, Z. Zao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29178 (2017).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Yamamoto, M.

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Yang, F.

Z. Fang, Z. Hou, F. Yang, L.-J. Liu, X.-Y. Wang, Z.-Y. Xu, and C.-T. Chen, “High-efficiency UV generation at 266 nm in a new nonlinear optical crystal NaSr3Be3B3O9F4,” Opt. Express 25(22), 26500–26507 (2017).
[Crossref]

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Yang, J.

T. Nakajyo, J. Yang, F. Sakai, and Y. Aoki, “Quantum Efficiencies of Mg Photocathode under Illumination with 3rd and 4th Harmonics Nd:LiYF4 Laser Light in RF Gun,” Jpn. J. Appl. Phys. 42(Part 1), 1470–1474 (2003).
[Crossref]

Yang, S. T.

Yao, J.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Yap, Y. K.

Yoshida, H.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

Yoshida, K.

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Yoshimura, M.

K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, and Y. Mori, “Ultraviolet laser-induced degradation of CsLiB6O10 and (-BaB2O4,” Opt. Mater. Express 4(3), 559–567 (2014).
[Crossref]

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

Yu, H.

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside beta-BBO crystal during UV nonlinear optical conversion,” Proc. SPIE 3928, 221 (2000).
[Crossref]

Yuan, C.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Zao, Z.

Zapata, L. E.

Zeng, C.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Zhang, F. F.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Zhang, H.

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Zhang, J. Y.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Zhang, S.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Zhang, X.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Zhao, Z.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

Zhou, F.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Zong, N.

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Zuegel, J. D.

Appl. Opt. (4)

Appl. Phys. B (2)

M. Divall, K. Osvay, G. Kurdi, E. J. Divall, J. Klebniczki, J. Bohus, A. Peter, and K. Polgar, “Two-photon-absorption of frequency converter crystals at 248 nm,” Appl. Phys. B 81(8), 1123–1126 (2005).
[Crossref]

J. Kleinbauer, R. Knappe, and R. Wallenstein, “A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet,” Appl. Phys. B 80(3), 315–320 (2005).
[Crossref]

Appl. Phys. Lett. (2)

L. B. Sharma, H. Daido, Y. Kato, and S. Nakai, “Fourth-harmonic generation of picosecond glass laser pulses with cesium lithium borate crystals,” Appl. Phys. Lett. 69(25), 3812–3814 (1996).
[Crossref]

Y. Mori, I. Kuroda, S. Nakajima, and T. Sasaki, “New nonlinear optical crystal: Cesium lithium borate,” Appl. Phys. Lett. 67(13), 1818 (1995).
[Crossref]

Appl. Sci. (2)

M. Smrz, O. Novák, J. Mužík, H. Turčičová, M. Chyla, S. Sankar Nagisetty, M. Vyvlečka, L. Roškot, T. Miura, J. Černohorská, P. Sikocinski, L. Chen, J. Huynh, P. Severová, A. Pranovich, A. Endo, and T. Mocek, “Advances in high-power, ultrashort pulse DPSSL technologies at HiLASE,” Appl. Sci. 7(10), 1016 (2017).
[Crossref]

O. Novák, T. Miura, M. Smrž, M. Chyla, S. Sankar Nagisetty, J. Mužík, J. Linnemann, H. Turčičová, V. Jambunathan, O. Slezák, M. Sawicka-Chyla, J. Pilař, S. Bonora, M. Divoký, J. Měsíček, A. Pranovich, P. Sikocinski, J. Huynh, P. Severová, P. Navrátil, D. Vojna, L. Horáčková, K. Mann, A. Lucianetti, A. Endo, D. Rostohar, and T. Mocek, “Status of the high average power diode-pumped solid state laser development at HiLASE,” Appl. Sci. 5(4), 637–665 (2015).
[Crossref]

J. Appl. Phys. (3)

T. Kamimura, R. Nakamura, H. Horibe, M. Nishioka, M. Yamamoto, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal,” Jap,” J. Appl. Phys. 44(21), L665–L667 (2005).
[Crossref]

H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependence of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jap,” J. Appl. Phys. 45(2A), 766–769 (2006).
[Crossref]

J. N. Babu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104(5), 053108 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Conf. Ser. (1)

P. Datte, J. S. Ross, D. Froula, J. Galbraith, S. Glenzer, B. Hatch, J. Kilkenny, O. Landen, A. M. Manuel, W. Molander, D. Montgomery, J. Moody, G. Swadling, J. Weaver, G. Vergel de Dios, and M. Vitalich, “The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility,” J. Phys.: Conf. Ser. 717, 012089 (2016).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Nakajyo, J. Yang, F. Sakai, and Y. Aoki, “Quantum Efficiencies of Mg Photocathode under Illumination with 3rd and 4th Harmonics Nd:LiYF4 Laser Light in RF Gun,” Jpn. J. Appl. Phys. 42(Part 1), 1470–1474 (2003).
[Crossref]

T. Nakazato, X. Wang, C. Chen, and S. Watanabe, “Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm,” Jap,” Jpn. J. Appl. Phys. 56(12), 122601 (2017).
[Crossref]

Laser Phys. Lett. (1)

S. Dai, M. Chen, S. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Opt. Commun. (2)

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

A. Stabinis and G. Valiulis, “Effective sum frequency puls compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
[Crossref]

Opt. Express (4)

Opt. Lett. (12)

S. C. Kumar, J. C. Asals, E. S. Bautista, K. Devi, and M. Ebrahihim-Zadeh, “Yb-fiber-laser-based, 1.8 W average power, picosecond ultraviolet source at 266 nm,” Opt. Lett. 40(10), 2397–2400 (2015).
[Crossref]

Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
[Crossref]

Y. K. Yap, T. Inoue, H. Sakai, Y. Kagebayashi, Y. Mori, and T. Sasaki, “Long-term operation of CsLiB6O10 at elevated crystal temperature,” Opt. Lett. 23(1), 34–36 (1998).
[Crossref]

C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. Lai, J. P. Siqueira, L. E. Zapata, F. X. Kärtner, and K.-H. Hong, “Multi-mJ, kHz, ps deep-ultraviolet source,” Opt. Lett. 40(4), 665–668 (2015).
[Crossref]

D. G. Nikitin, O. A. Byalkovskiy, O. I. Vershinin, P. V. Puyu, and V. A. Tyrtyshnyy, “Sum frequency generation of UV laser radiation at 266 nm in LBO crystal,” Opt. Lett. 41(7), 1660–1663 (2016).
[Crossref]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Lett. 17(10), 8696–8703 (2009).
[Crossref]

I. A. Begishev, J. Bromage, S. T. Yang, P. S. Datte, S. Patankar, and J. D. Zuegel, “Record fifth-harmonic-generation efficiency producing 211 nm, joule-level pulses using cesium lithium borate,” Opt. Lett. 43(11), 2462–2465 (2018).
[Crossref]

M. Baudisch, B. Wolter, M. Pullen, M. Hemmer, and J. Biegert, “High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs,” Opt. Lett. 41(15), 3583–3586 (2016).
[Crossref]

M. Müller, A. Klenke, T. Gottschall, R. Klas, C. Rothhardt, S. Demmler, J. Rothhardt, J. Limpert, and A. Tünnermann, “High-average-power femtosecond laser at 258 nm,” Opt. Lett. 42(14), 2826–2829 (2017).
[Crossref]

O. Novak, H. Turcicova, M. Smrz, T. Miura, A. Endo, and T. Mocek, “Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser,” Opt. Lett. 41(22), 5210–5213 (2016).
[Crossref]

A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, and R. Danielius, “Generation of femtosecond radiation at 211 nm by femtosecond pulse upconversion in the field of a picosecond pulse,” Opt. Lett. 25(15), 1116–1118 (2000).
[Crossref]

R. Buffa, “Transient sum-frequency mixing with temporally tailored laser pulses,” Opt. Lett. 26(10), 722–724 (2001).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (6)

S. Patankar, S. T. Yang, J. D. Moody, A. J. Bayramian, G. F. Swadling, D. Barker, P. Datte, G. Mennerat, M. Norton, C. W. Carr, I. A. Begishev, J. Bromage, and J. S. Ross, “Understanding fifth-harmonic generation in CLBO,” Proc. SPIE 10516, 1051603 (2018).
[Crossref]

X. Mu, P. Steinvurzel, T. S. Rose, W. T. Lotshaw, S.M. Beck, and J. H. Clemmons, “High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier,” Proc. SPIE 9731, 973108 (2016).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qua, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2016).
[Crossref]

S. Wu, G. A. Blake, S. Sun, and H. Yu, “Two-photon absorption inside beta-BBO crystal during UV nonlinear optical conversion,” Proc. SPIE 3928, 221 (2000).
[Crossref]

M. Smrž, M. Chyla, O. Novák, T. Miura, A. Endo, and T. Mocek, “Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor,” Proc. SPIE 9513, 951304 (2015).
[Crossref]

K.-H. Hong, C.-L. Chang, P. Krogen, H. Liang, G. J. Stein, J. Moses, C.-J. lai, and F. X. Kärtner, “Multi-mJ, kHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Rev. Sci. Instrum. (1)

C. Yuan, X. Liu, C. Zeng, H. Zhang, M. Jia, Y. Wu, Z. Luo, H. Fu, and J. Yao, “All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry,” Rev. Sci. Instrum. 87(2), 024102 (2016).
[Crossref]

Other (5)

B. Willenberg, F. Brunner, C. R. Phillips, and U. Keller, “Efficient 2-W average power 206 nm deep-UV generation from 100-kHz picosecond pulses,” presented at 2019 Conference on Lasers and Electro-Optics Europe, Munic, Germany, 23-27 June 2019.

V. Smith, “SNLO nonlinear optics code,“ AS-Photonics, http://as-photonics-com/products/snlo .

R. L. Sutherland, Handbook of Nonlinear Optics, p. 583 (CRC Press, 2003).

Information on the Oxide Co. webpage, http://www.opt-oxide.com

V. Smith, “Crystal Nonlinear Optics,” publ. AS-Photonics, Albuquerque, NM, USA, p. 68 (2015).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Block diagram of the sub-1 mJ PERLA C1-beam system, for details see [25]; (b) Autocorrelation of the fundamental beam (Lorentzian fit), pulse duration of 1.5 ps.
Fig. 2.
Fig. 2. Schematic layout of the 2H, 4H and 5H harmonics generation system pumped by 80 W of the fundamental beam. MM – motorized mirrors of the beam stabilization, HWP 1, 3 – half-wave plates for 1H beam, HWP 2 – half-wave plate for 2H beam, BD – beam dump, DM – dichroic mirrors, DL – delay line, LM – leaking mirror.
Fig. 3.
Fig. 3. Parameters of the fourth harmonic generated in CLBO. (a) Dependence of the 4H output power and conversion efficiency on the 2H input power; the upper inset is a beam profile of 4H = 3.5 W, the lower that of 2H = 30 W. (b) 4H spectrum, the FWHM 0.24 nm.
Fig. 4.
Fig. 4. Simulation of the conversion efficiency 2H→4H in CLBO for two β-coefficients of TPA: 5.3×10−10 cm/W (red) and 53×10−10 cm/W (green). Full squares refer to the case when only (4H + 4H) process was taken into account, empty triangles to the case when both (4H + 4H) and (2H + 4H) were accounted with the same β-coefficient, and black squares to the case without TPA.
Fig. 5.
Fig. 5. The PM angle tuning in the dependence on the second harmonic input. Left y-axis: PM angle (internal) change; right y-axis: relevant crystal temperature change. The crystal temperature recalculation of the angle was done by the SNLO program.
Fig. 6.
Fig. 6. The transmission of 257 nm radiation through CLBO II in dependence on the peak (on-axis) beam intensity. The black squares are experimental data, the red circles are simulation according [40]. The error bars correspond to ± 5% of the transmission value.
Fig. 7.
Fig. 7. 4H output power dependence of the 4H-beam diameter (D4σ) measured in front of CLBO II.
Fig. 8.
Fig. 8. (a) 5H-output power dependence on the 1H-input power at the 4H-input power being constant 4.2 W. Corrections for uncoated CLBO II are included; conversion efficiency shows the number of 4H-photons converted into 5H-photons. (b) Spectrum of the fifth harmonic.
Fig. 9.
Fig. 9. (a) Experimental dependence of the 5H-output power on the delay variation between the 1H- and 4H-pulses; (b) Relevant simulation of the process by the SNLO program [30].
Fig. 10.
Fig. 10. (a) SNLO simulation of the dependence of the 5H-pulse duration on the delay between 1H- and 4H-pulses. The horizontal reference line corresponds to the pulse duration of 1.8 ps, which is the duration of the 4H-pulse according to SNLO; (b) time behavior of 4H- and 1H-pulses maxima along the CLBO II crystal, see the text.

Tables (2)

Tables Icon

Table 1. Survey of references and record DUV output powers in 2016–2019

Tables Icon

Table 2. Comparison of calculated 5H-outputs for different 1H-inputs at a constant 4H-input of 8 W.

Metrics