Abstract

Bi-anisotropic optical metamaterials are playing an increasingly important role in current wave-functional metamaterials and topological photonics due to their extra degree of freedom in addition to the permittivity and permeability. In this work, we derived the closed-form expressions for effective constitutive parameters of 2-dimensional (2D) bi-anisotropic metamaterials whose chirality tensors can possess both diagonal and off-diagonal components in the long-wavelength limit based on the Mie theory. Our formulas can be regarded as an extension of the Maxwell-Garnet formula to 2D bi-anisotriopic metamaterials and are verified through full wave numerical simulations. These closed-form formulas will benefit the design and analysis of the optical properties of 2D bi-anisotriopic metamaterials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Recently, a great deal of attention has been paid to bi-anisotropic metamaterials due to their intriguing properties in wave manipulations, such as negative refraction [1–4], strong optical activity [5–7] and circular dichroism [8–10]. Bi-anisotropic metamaterials have also been widely noticed as a fruitful platform for realizing nontrivial topological phenomena in photonics [11–14], due to the inversion symmetry breaking and strong spin-orbital coupling effects.

In the framework of effective medium theory (EMT) [15], the scattering properties of metamaterials as well as the propagating properties of light inside metamaterials are sufficiently described by the effective constitutive parameters. As a result, acquiring these effective constitutive parameters correctly and efficiently is the main concern in the EMT. There have been lots of models and methods employed for determining the effective constitutive parameters, either analytically or numerically [16–23]. For the cases of achiral inclusions, the well-known Maxwell-Garnet (MG) formula is widely used for obtaining the effective constitutive parameters in the long-wavelength limit due to its accuracy and efficiency [24]. Although the MG formula has already been extended to three-dimensional (3D) chiral metamaterials composed of isotropic spherical chiral particles fora longtime[25,26], the more nontrivial extension tobi-anisotropic cylinders in two-dimensional (2D) system (the system is translation invariant along out-of-plane direction) is still lacking. Unlike the 3D isotropic chiral metamaterials, the 2D bi-anisotropic metamaterials is inherently anisotropic due to the asymmetry between the in-plane and out-of-plane directions even if the inclusions are isotropic. This structural anisotropy as well as the material anisotropy of the inclusion itself bring us great difficulty to obtain a close-form formula when applying the EMT and conventionally the effective constitutive parameters are only obtainable by numerical retrieval [27–33].

In this work, we derived for the first time the analytic formulas of the effective constitutive parameters for 2D bi-anisotropic metamaterials whose chirality tensors have both diagonal and off-diagonal terms, in the long-wavelength limit through the use of Mie theory. Two sets of formulas were derived, one is based on the Mie coefficients of the inclusions which are valid even for inclusions having complex underlying structures, the other is based on the constitutive parameters of the homogeneous inclusions. The latter set of formulas are directly reduced to the traditional MG formula for 2D systems in the limit of vanishing chirality. Consequently, the formulas can be regarded as an extension of the MG formula to the 2D bi-anisotriopic metamaterials. The validities of our analytical formulas are confirmed by the full wave numerical simulations. Our work will benefit the investigation of wave manipulating properties of the bi-anisotropic metamaterials, and will also be conductive to the design of metamaterials for practical uses.

2. Helmhotz equation for the bi-anisotropic medium

The geometrical sketch of the bianisotropic metamaterial considered in this study are schematically shown in Fig. 1, where identical bi-anisotropic inclusions are arranged into a regular or random lattice in the xy plane (in-plane) embedded in air with permittivity ε0 and permeability µ0. The inclusions are invariant along z (out-of-plane) direction, and only the in-plane propagating electromagnetic waves (the out-of-plane wavenumber kz = 0) are considered throughout this paper. Therefore, the electromagnetic fields are independent of z.

 

Fig. 1 Top view of the bianisotropic metamaterial with parallel cylindrical inclusions arranged in either (a) regular or (b) random lattice in the xy plane. The in-plane and out-of-plane directions are along xy and z directions, respectively.

Download Full Size | PPT Slide | PDF

The constitutive relations of the bi-anisotropic medium are given by [34]

D=ε0ε¯¯E+icκ¯¯H,B=μ0μ¯¯Hicκ¯¯TE,
where c is the light speed in vacuum, and ε¯¯,μ¯¯, κ¯¯ are the relative permittivity, permeability and chirality tensors. For the sake of simplicity, in the following we will set ϵ0 = µ0 = c = 1. We assume that the medium is reciprocal (ε¯¯=ε¯¯T,μ¯¯=μ¯¯T) and isotropic in the xy plane. Therefore the permittivity and permeability tensors can be written as
ε¯¯=εtx^x^+εty^y^+εzz^z^,μ¯¯=μtx^x^+μty^y^+μzz^z^,
where εtz (µtz) are the in-plane and out-of-plane relative permittivities (permeabilities). The chirality tensor considered here has both diagonal and off-diagonal terms and is written as
κ¯¯=κtx^x^+κty^y^+κzz^z^+κkx^y^κky^x^.

We will show that the electromagnetic wave equation inside this medium can be written into a Helmholtz form. Therefore, the fields can be expanded in terms of the vector cylindrical wave functions (VCWFs) [35].

According to the Maxwell’s equations and note that the system is invariant along z direction, namely, z f = 0, where f is any field component, we can obtain that

D=(ε¯¯E+iκ¯¯H)=εtE+iκtH+iκk(×H)z^=0,B=(μ¯¯Hiκ¯¯TH)=μtHiκtE+iκk(×E)z^=0,×D=×(ε¯¯E+iκ¯¯TH)=ε¯¯×E+iκ¯¯×HiκkHz^,×B=×(μ¯¯Hiκ¯¯TH)=μ¯¯×Hiκ¯¯×EiκkEz^,
where
ε¯¯=εz(x^x^+y^y^)+εtz^z^,μ¯¯=μz(x^x^+y^y^)+μtz^z^,κ¯¯=κz(x^x^+y^y^)+κtz^z^.

Note that ∇×E = ik0B, ∇×H = −ik0D, where k0 = ω/c is the wavenumber in vacuum, and combine the first two subequations in Eq. (4), we obtain that

E=ik0κk(κtBziμtDz)εtμtκt2,H=ik0κk(κtDziεtBz)εtμtκt2.

We can see that the electromagnetic fields are divergent-less only when κk = 0. Substituting Eq. (6) into Eq. (4), the last two subequations become

×D=k0(M¯¯1D+iM¯¯2B),×B=k0(M¯¯1BiM¯¯3D),
where
M¯¯1=κz(x^x^+y^y^)+εtμtκt2κk2εtμtκt2κtz^z^,M¯¯2=εz(x^x^+y^y^)+εtμtκt2κk2εtμtκt2εtz^z^,M¯¯3=μz(x^x^+y^y^)+εtμtκt2κk2εtμtκt2μtz^z^.

Therefore,

×D=2D=k02(M˜1M¯¯1+M˜2M¯¯3)D+ik02(M˜1M¯¯2+M˜2M¯¯1)B,×B=2B=k02(M˜1M¯¯1+M˜3M¯¯2)Bik02(M˜1M¯¯3+M˜3M¯¯1)D,
where we have used ∇×D = ∇ (∇·D) − ∇2D = −∇2D, and
M˜1=εtμtκt2κk2εtμtκt2κt(x^x^+y^y^)+κzz^z^,M˜2=εtμtκt2κk2εtμtκt2εt(x^x^+y^y^)+εzz^z^,M˜3=εtμtκt2κk2εtμtκt2μt(x^x^+y^y^)+μzz^z^.

We can formulate Eq. (9) into a Helmholtz equation as

2(DB)+k02(M˜1M¯¯1+M˜2M¯¯3i(M˜1M¯¯2+M˜2M¯¯1)M˜1M¯¯1+M˜3M¯¯3i(M˜1M¯¯3+M˜3M¯¯1))(DB)=0,
whose basic solutions are the VCWFs.

3. Mie coefficients of the bi-anisotropic cylinder

3.1. κk = 0

We first consider that the chirality tensor has no off-diagonal terms, i.e., κk = 0. This kind of bi-anisotropic metamaterial can be realized using a lattice of metallic helical structures [1, 4] and were used for realizing Weyl metamaterials [13, 14]. In the absence of κk, the Helmholtz equation Eq. (11) can be greatly simplified. Note that the in-plane fields are decoupled from the out-of-plane fields, we only need to consider the wave equation for the out-of-plane fields. Using the constitutive relations in Eq. (1), we formulated the eigenvalue problem as

k2(EzHz)=k02(εzμt+κzκtiμtκz+iμzκtiεtκziεzκtεtμz+κzκt)(EzHz).

The two wavenumbers inside the medium are determined by the eigenvalues of the 2 by 2 matrix in Eq. (12) which are

2(k±/k0)2=εzμt+εtμz+2κzκt±Δ,Δ=(εzμtεtμz)2+4κzκt(εzμt+εtμz)+4κz2εtμt+4κt2εzμz,
and the corresponding polarization settings are determined by the corresponding eigenvectors
(EzHz)(i(εzμtεtμz±Δ)2(κzμt+κtμz)1)=(iv±1).

Consider that an electromagnetic wave is scattered by a bi-anisotropic cylinder with radius r0. Based on the idea of Mie theory [35], we expanded the electric field inside the cylinder in series of the VCWFs as

Eins(r)=n[cnNn(1)(k+,r)+cnMn(1)(k+,r)+dnNn(1)(k,r)+dnMn(1)(k,r)],
where r = (r,ϕ) is the cylindrical coordinate with the origin located at the cylinder’s center, cn,cn,dn,dn are expansion coefficients to be determined, and Ln(J),Mn(J),Nn(1) are the VCWFs with explicit expressions given by [35, 36]
Ln(J)=[inρzn(J)(ρ)ϕ^+zn(J)(ρ)r^]einϕ,Mn(J)=[inρzn(J)(ρ)r^+zn(J)(ρ)ϕ^]einϕ,Nn(J)=zn(J)(ρ)einϕz^,

In Eq. (16), ρ = kr, zn(1)=Jn and zn(3)=Hn(1) are the Bessel function and Hankel function of the first kind, and zn(J)=dzn(J)(ρ)/dρ. The curls and divergences of VCWFs satisfy the following relations [35]

×Ln(J)=Mn(J)=Nn(J)=0,×Mn(J)=Ln(J)z^=kNn(J),×Nn(J)=kMn(J).

Note that the electromagnetic fields are divergent-less for κk = 0, according to Eq. (17), they are expanded only using Mn(J) and Nn(J), see Eq. (15). The magnetic field inside the cylinder can be obtained according to

×Eins=iωBins=iω(μ¯¯Hinsiκ¯¯Eins),
which gives
Hins=iμtn[k+cnκtcn)Mn(1)(k+,r)+(kdnκtdn)Mn(1)(k,r)+(k+cnκzcn)Nn(1)(k+,r)+(kdnκzdn)Nn(1)(k,r)].

According to the polarization settings defined in Eq. (14), and combing the expressions of the electric (Eq. (15)) and magnetic (Eq. (19)) fields, we obtained that

iμzcn=iv+(k+cnκzcn)iμzdn=iv(kdnκzdn).

Assuming the background is air, the incident (Ei, Hi) and scattered (Es, Hs) fields can be expressed as

Ei=n[qnNn(1)(k0,r)+pnMn(1)(k0,r)],Hi=in[pnNn(1)(k0,r)+qnMn(1)(k0,r)],Es=n[bnNn(3)(k0,r)+anMn(3)(k0,r)],Hs=in[anNn(3)(k0,r)+bnMn(3)(k0,r)],
where pn, qn are beam shape coefficients and an, bn are scattering coefficients. They are related by the Mie coefficients as [35]
an=Anpn+Cnqn,bn=Dnpn+Bnqn.

Applying the boundary conditions that the tangential electromagnetic field components should be continuous at r = r0,

qnJn(x0)bnHn(1)(x0)=cnJn(x+)+dnJn(x),pnJn(x0)anHn(1)(x0)=cnJn(x+)dnJn(x),pnJn(x0)anHn(1)(x0)=μz1[(k+cnκzcn)Jn(x+)+(kdnκzdn)Jn(x)],qnJn(x0)bnHn(1)(x0)=μt1[(k+cnκtcn)Jn(x+)+(kdnκtdn)Jn(x)],
where x0 = k0r0, x± = k±r0 are the dimensionless size parameters, the Mie coefficients for the bi-anisotropic cylinder are obtained by solving Eqs. (20), (22) and (23). In the long-wavelength limit where x0 ≪ 1, the zeroth and first order Mie coefficients are
A0=i4(μz1)πx02,A±1=i4(1εt)(1+μt)+κt2(1+εt)(1+μt)κt2πx02,B0=i4(εz1)πx02,B±1=i4(1+εt)(1μt)+κt2(1+εt)(1+μt)κt2πx02,C0=D0=i4κzπx02,C±=D±1=i2κt(1+εt)(1+μt)κt2πx02.

3.2. κt = κz = 0

Next we consider that the chirality tensor possesses no diagonal terms, i.e., κt = κz = 0. This kind of bi-anisotropic metamaterial canbe realized using alattice of split-ring resonators [2, 10] or Ω-particles [37–39]. The matrix in Eq. (11) becomes diagonal. It is easy to obtain the two wavenumbers inside the medium as

(k1/k0)2=εzεt1(εtμtκk2),(k2/k0)2=μzμt1(εtμtκk2),
and the corresponding polarization settings are Dx = Dy = Bz = 0 and Dz = Bx = By = 0, respectively. Therefore, the electric displacement and magnetic induced fields can be expanded as
Dins=n[dnNn(1)(k1,r)+enMn(1)(k2,r),Bins=n[cnMn(1)(k1,r)+fnNn(1)(k2,r),
where cn, dn, en, fn are expansion coefficients, According to Eq. (7) and using the properties of VCWFs, see Eq. (17), we obtained that
dnk1=iεzcn,enk2=i(εtκk2μt)fn,
and the electromagnetic fields inside the medium as
Eins=ndnεzNn(1)(k1,r)+μtenεtμtκk2Mn(1)(k2,r)+iκkcnεtμtκk2Ln(1)(k1,r),Hins=nfnμzNn(1)(k2,r)+εtenεtμtκk2Mn(1)(k1,r)+iκkenεtμtκk2Ln(1)(k2,r).

The electromagnetic fields are non longer divergent-less because of the nonzero κk. Also imposing the boundary conditions,

qnJn(x0)bnHn(1)(x0)=εz1dnJn(x1),ipnJn(x0)+ianHn(1)(x0)=μz1fnJn(x2),pnJn(x0)anHn(1)(x0)=μtenεtμtκk2Jn(x2)+κkcnεtμtκk2nx1Jn(x1),iqnJn(x0)+ibnHn(1)(x0)=εtcnεtμtκk2Jn(x1)+κkenεtμtκk2nx2Jn(x2),
where x1,2 = k1,2r0, the Mie coefficients are obtained by solving Eqs. (22), (27) and (29). In the long-wavelength limit, the zeroth and first order Mie coefficients are
A0=i4(μz1)πx02,A±1=i4(1εt)(1+μt)+κk2(εt+1)(μt+1)κk2πx02,B0=i4(εz1)πx02,B±1=i4(1+εt)(1μt)+κk2(εt+1)(μt+1)κk2πx02,C0=D0=0,C±1=D±1=±12κk(εt+1)(μt+1)κk2πx02.

Combining Eqs. (24) and (30), we can conclude that the general expressions of Mie coefficients for bi-anisotropic cylinders with chirality tensor possessing both diagonal and off-diagonal terms are

A0=i4(μz1)πx02,A±1=i4(1εt)(1+μt)+κk2(εt+1)(μt+1)κk2πx02,B0=i4(εz1)πx02,B±1=i4(1+εt)(1μt)+κk2(εt+1)(μt+1)κk2πx02,C0=D0=i4κzπx02,C±1=D±1=12iκt±κk(εt+1)(μt+1)κk2πx02.

4. Closed-form experssions for the effective constitutive parameters

Consider a metamaterial composed of identical bi-anisotropic inclusions arranged into a regular or random lattice embedded in air. The lattice constant fulfills k0a ≪ 1. Therefore, the local effective medium theory, such as the coherent potential approximation (CPA) method, can be applied due to the weak multiple scattering. Following the idea of CPA method [17], the zeroth and first order Mie coefficients of a single bi-anisotropic inclusion should equal to those of an effective cylinder with the effective constitutive parameters and occupying a unit cell volume, namely

Aie=Ai,Bie=Bi,Cie=Ci,Die=Di,i=1,0,1
where Ai, Bi, Ci, Di are Mie coefficients of the inclusion, and Aie,Bie,Cie,Die are the Mie coefficients of the effective cylinder calculated by substituting the effective constitutive parameters into Eq. (31). According to Eqs. (31) and (32), we can obtain the effective constitutive parameters as
εez=1+iΛB0,μez=1+iΛA0,κez=iΛC0,εet=(iΛA1)(i+ΛB1)+Λ2C1D1(i+ΛA1)(i+ΛB1)Λ2C1D1,μet=(i+ΛA1)(iΛB1)+Λ2C1D1(i+ΛA1)(i+ΛB1)Λ2C1D1,κet=iΛ2(C1D1)(i+ΛA1)(i+ΛB1)Λ2C1D1,κek=Λ(C1D1)(i+ΛA1)(i+ΛB1)Λ2C1D1,
where Λ=4/k02Ω with Ω being the volume of a unit cell. If the inclusion is cylindrical and homogeneous, substituting Eq. (31) into Eq. (33), we obtain that
εez=(εz1)p+1,μez=(μz1)p+1,κez=κzp,εet=(1+εt)(1+μt)κt2κk2+2(εtμt)p[(1εt)(1μt)κt2κk2]p2(1+εt)(1+μt)κt2κk2+2(1εtμt+κt2+κt2)p+[(1εt)(1μt)κt2κk2]p2,μet=(1+εt)(1+μt)κt2κk2+2(εtμt)p[(1εt)(1μt)κt2κk2]p2(1+εt)(1+μt)κt2κk2+2(1εtμt+κt2+κt2)p+[(1εt)(1μt)κt2κk2]p2,κet=4κtp(1+εt)(1+μt)κt2κk2+2(1εtμt+κt2+κt2)p+[(1εt)(1μt)κt2κk2]p2κek=4κkp(1+εt)(1+μt)κt2κk2+2(1εtμt+κt2+κt2)p+[(1εt)(1μt)κt2κk2]p2,
where p=πx02/k02Ω is the filling ratio. For κk = 0, and consider the inclusion to be isotropic (its permittivity, permeability and chirality are scalars), Eqs. (33) and (34) are just reduced to Eqs. (20) and (22) in our previous work [40], which were derived using the multiple scattering technique. Eq. (34) is reduced to the well-known MG formula in the absence of chirality (κt = κz = κk = 0). Therefore, we can regard Eq. (34) as the extended MG formula for bi-anistropic metamateials. We note that although Eq. (33) is less efficient than Eq. (34) in calculating the effective constitutive parameters, it is more fundamental since it does not require the inclusion to be homogeneous. For the inclusion whose Mie coefficients satisfy A1 = A−1, B1 = B−1, C±1 = D∓1, Eq. (33) can be applied, even if the inclusion has complex underlying structures, e.g., the inclusion is made of helices [40]. The Mie coefficients of inclusion having complex structures need to be retrieved using the scattering fields in the far field region. However, the retrieval of the Mie coefficients only needs to be done once if the metamaterials with different filling ratios and lattice symmetries are composed of the same inclusions. This is a great advantage comparing with conventional parameter retrieval methods, which requires the repetition of the retrieval procedures when the filling ratio or lattice symmetry changes.

Note that Eqs. (33) and (34) are valid only when the long-wavelength approximation holds, which requires that the incident wavelength is about 10 times larger than the lattice constant of the metamaterial. Therefore, the frequency usually should not be greater than c/(10a). When the frequency is too high, the effective constitutive parameters can only be obtained by the numerical retrieval, because for this case no analytic expressions can be derived due to the non-local effect and boundary sensitivity. Eqs. (33) and (34) are valid irrespective of the material parameters of the inclusions and the lattice structures. When the filling ratio is not too large, i.e., p < 0.5, Eqs. (33) and (34) are always accurate. However, if the filling ratio is too high, i.e., p > 0.5, the multiple scattering effect between cylinders will become important. Then the multiple scattering technique should be used and the high filling ratio corrections to the formulas should be taken into account [41].

5. Numerical testing

In this section, we will test the validity of our formula Eq. (34) using the full wave numerical simulations. Consider a plane wave obliquely incident on a metamaterial slab which is infinite along y direction and has a finite width d = 50a along x direction, where a is the lattice constant of the square lattice that the bi-anisotropic cylindrical inclusions are arranged into, see the inset in Fig. 2(a). For comparison, we also considered the same plane wave illuminates on an effective medium slab possessing the same width d and effective constitutive parameters calculated by Eq. (34). The validity of the effective parameters can be tested by checking the consistence between the spatially averaged lattice fields, such as the electric field or displacement field: E¯=ΩEdxdy/Ω, D¯=ΩDdxdy/Ω, where the spatial integrals are over the whole unit cell, and the fields in the effective medium Ee, De, since these two are equal in the long-wavelength limit [42,43].

In Fig. 2, we showed the spatially averaged lattice fields in the metamaterials having the square lattice structure and the corresponding fields in effective medium by circles and lines, respectively. All the fields are calculated using the finite-element method package COMSOL [44]. We can see that for different incident angles, the spatially averaged lattice fields (circles) both inside and outside the slab are in accordance with the fields in the effective medium (lines). Such consistence also exists for other field components and polarized incident waves. This indicates that our formula Eq. (34) can indeed determine the effective constitutive parameters correctly for this kind of bianisotropic metamaterials.

 

Fig. 2 The spatially averaged electric field and displacement field of each layer inside the metamaterials having the square lattice structure for the incident angle (a) θ = π/6 and (b) θ = π/3 are noted by circles, while the electric field and displacement field along the x direction in corresponding effective continuous medium under the same incidence are shown by lines. The effective medium slab (photonic crystal) region is between the dotted lines. The incident beam is Ez polarized with amplitude E0. The constitutive parameters of the cylinder are εt = 2,εz = 5,µt = µz = 1,κt = 0.5,κz = 0.3,κk = 0.4, and the radius is r0 = 0.3a.

Download Full Size | PPT Slide | PDF

In Fig. 3, we also compared the spatially averaged lattice fields in the metamaterials having a triangular lattice structure and the corresponding fields in effective medium slab. Now 60 layers (d=303a) are used. The excellent agreement is also seen. In fact, because our formulas is obtained based on the local EMT, they are valid irrespective of the lattice symmetry.

 

Fig. 3 The spatially averaged electric field and displacement field of each layer inside the metamaterials having the triangular lattice structure for the incident angle (a) θ = π/6 and (b) θ = π/3 are noted by circles, while the electric field and displacement field along the x direction in corresponding effective continuous medium under the same incidence are shown by lines. The effective medium slab (photonic crystal) region is between the dotted lines. The incident beam is Ez polarized with amplitude E0. The constitutive parameters of the cylinder are εt = 8,εz = 3, µt = µz = 1, κt = 0.3, κz = 0.4, κk = 0.5, and the radius is r0 = 0.3a.

Download Full Size | PPT Slide | PDF

The validity of Eq. (34) can also be tested according to the effective refractive indices, which are calculated either according to the slopes of the band dispersion of the metamaterial possessing a lattice structure, i.e., n/c = dk/ in the limit of ω →0, k →0, or by n = k/k0 which are obtained by substituting the effective constitutive parameters into Eq. (13) or (25). The results by these two methods should be equal if the effective constitutive parameters are correct.

The refractive indices calculated by these two methods for κk = 0 and κt = κz = 0 are shown in Figs. 4(a) and 4(b), respectively. We first used Eq. (34) to calculate the effective constitutive parameters and then substituted them into Eqs. (13) and (25) to obtain the refractive indices analytically. The band dispersion for the square lattice is obtained using COMSOL. It is seen that the numerical results based on the band dispersion analysis (circles) match the analytic results using the formulas very well, again confirming the validity of Eq. (34).

 

Fig. 4 Comparison between the refractive indices obtained from the formulas (lines) and those from the slopes of band dispersion (circles). (a) The chirality tensor of the cylinder has no off-diagonal terms (κk = 0) and κz = 0.5. (b) The chirality tensor of the cylinder has no diagonal terms (κt = κz = 0). The other constitutive parameters of the cylinder are εt = 10, εz = 5, µt = µz = 1 and the radius is r0 = 0.35a.

Download Full Size | PPT Slide | PDF

The cases of strong resonances were also investigated. In Fig. 5, we showed the refractive indices calculated by these two methods when the cylinder is around the surface plasmon resonance. Resonances with very high quality factors occurr at κt ≈ 0.9 and κk ≈ 0.7 for Figs. 5(a) and 5(b), respectively. We can see that even very close to the resonance peak where the refractive index goes to infinity, the formulas can still produce the effective refractive indices accurately, indicating that our formulas are also valid for strong resonance cases. Note that the unplotted ranges for n (κt < 0.9) and n2(κk < 0.7) are corresponding to the photonic band gaps for n and n2, respectively.

 

Fig. 5 Comparison between the refractive indices obtained from the formulas (lines) and those from the slopes of band dispersion (circles). (a) The chirality tensor of the cylinder has no off-diagonal and out-of-plane terms (κk = κz = 0). (b) The chirality tensor of the cylinder has no diagonal terms (κt = κz = 0). The other constitutive parameters of the cylinder are εt = εz = −1.5, µt = µz = 1 and the radius is r0 = 0.3a.

Download Full Size | PPT Slide | PDF

6. Conclusion

In summary, by deriving the expressions of Mie coefficients and using the CPA method, we derived the closed-form expressions for the effective constitutive parameters of 2D bi-anisotropic metamaterials in the long-wavelength limit. Our formulas work for reciprocal metamaterials whose chirality tensors can have both diagonal and off-diagonal terms and satisfy κxy = −κyx = κk. The formulas can be regarded as the extended MG formulas for bi-anisotropic metamaterials since they are directly reduced to the traditional MG formulas when the chirality is vanishing. In principle, our method for deriving the closed-form formulas can be extended to the case that metamaterials are composed of non-reciprocal inclusions, e.g., the permittivity tensor possesses pure imaginary off-diagonal components, although the Mie coefficients will become more complicated. However, for κxy = κyx, our method fails because the wave equation inside the medium is no longer the Helmholtz form and the fields cannot be expanded in series of VCWFs.

Funding

Natural Science Foundation of SZU (2019009); National Natural Science Foundation of China (NSFC) (11734012 and 11574218).

References

1. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004). [CrossRef]   [PubMed]  

2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef]   [PubMed]  

3. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009). [CrossRef]   [PubMed]  

4. C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010). [CrossRef]  

5. E. Plum, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007). [CrossRef]  

6. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007). [CrossRef]  

7. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008). [CrossRef]  

8. S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71(3), 037603 (2005). [CrossRef]  

9. V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006). [CrossRef]   [PubMed]  

10. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009). [CrossRef]   [PubMed]  

11. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013). [CrossRef]  

12. W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014). [CrossRef]   [PubMed]  

13. W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015). [CrossRef]   [PubMed]  

14. B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018). [CrossRef]   [PubMed]  

15. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 1999).

16. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005). [CrossRef]  

17. Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006). [CrossRef]  

18. B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014). [CrossRef]  

19. J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, “Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties,” Phys. Rev. B 40(18), 12164–12175 (1989). [CrossRef]  

20. A. Modinos, N. Stefanou, and V. Yannopapas, “Applications of the layer-KKR method to photonic crystals,” Opt. Express 8(3), 197–202 (2001). [CrossRef]   [PubMed]  

21. J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, “Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling,” Phys. Rev. B 59(8), 5470–5478 (1999). [CrossRef]  

22. G.W. Milton, The Theory of Composites (Cambridge University, 2002). [CrossRef]  

23. A. Priou, A. Sihvola, and S. Tretyakow, Advances in Complex Electromagnetic Materials (Springer Science & Business Media, 2012).

24. J. C. M. Garnet, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904). [CrossRef]  

25. A. H. Sihvola and I. V. Lindell, “Chiral Maxwell-Garnett mixing formula,” Electron. Lett. 26(2), 118–119 (1990). [CrossRef]  

26. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “On the Maxwell-Garnett model of chiral composites,” J. Mater. Res. 8(4), 917–922 (1993). [CrossRef]  

27. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008). [CrossRef]  

28. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009). [CrossRef]  

29. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010). [CrossRef]   [PubMed]  

30. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71(4), 046610 (2005). [CrossRef]  

31. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79(2), 026610 (2009). [CrossRef]  

32. X. Jing, R. Xia, W. Wang, Y. Tian, and Z. Hong, “Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region,” J. Opt. Soc. Am. A 33(5), 954–961 (2016). [CrossRef]  

33. J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017). [CrossRef]  

34. J.A. Kong, Electromagnetic Wave Theory (Cambridge University, 2008).

35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley and Sons, 1983).

36. N. Wang, J. Chen, S. Liu, and Zhifang Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013). [CrossRef]  

37. A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).

38. M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using novel pseudochiral or ω medium,” Microw. Opt. Technol. Lett. 5(4), 184–188 (1992). [CrossRef]  

39. S. A. Tretyakov, C. R. Simovski, and M. Hudlicka, “Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,” Phys. Rev. B 75(15), 153104 (2007). [CrossRef]  

40. N. Wang, S. Wang, Z.-Q. Zhang, and C. T. Chan, “Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations,” Phys. Rev. B 98(4), 045426 (2018). [CrossRef]  

41. W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015). [CrossRef]  

42. N. Wang, S. Wang, and J. Ng, “Electromagnetic stress tensor for an amorphous metamaterial medium,” Phys. Rev. A 97(3), 033839 (2018). [CrossRef]  

43. M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75(11), 115104 (2007). [CrossRef]  

44. www.comsol.com.

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [Crossref] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  3. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  4. C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
    [Crossref]
  5. E. Plum, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
    [Crossref]
  6. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
    [Crossref]
  7. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
    [Crossref]
  8. S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71(3), 037603 (2005).
    [Crossref]
  9. V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  10. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
    [Crossref] [PubMed]
  11. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
    [Crossref]
  12. W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
    [Crossref] [PubMed]
  13. W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
    [Crossref] [PubMed]
  14. B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
    [Crossref] [PubMed]
  15. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 1999).
  16. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
    [Crossref]
  17. Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
    [Crossref]
  18. B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
    [Crossref]
  19. J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, “Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties,” Phys. Rev. B 40(18), 12164–12175 (1989).
    [Crossref]
  20. A. Modinos, N. Stefanou, and V. Yannopapas, “Applications of the layer-KKR method to photonic crystals,” Opt. Express 8(3), 197–202 (2001).
    [Crossref] [PubMed]
  21. J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, “Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling,” Phys. Rev. B 59(8), 5470–5478 (1999).
    [Crossref]
  22. G.W. Milton, The Theory of Composites (Cambridge University, 2002).
    [Crossref]
  23. A. Priou, A. Sihvola, and S. Tretyakow, Advances in Complex Electromagnetic Materials (Springer Science & Business Media, 2012).
  24. J. C. M. Garnet, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904).
    [Crossref]
  25. A. H. Sihvola and I. V. Lindell, “Chiral Maxwell-Garnett mixing formula,” Electron. Lett. 26(2), 118–119 (1990).
    [Crossref]
  26. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “On the Maxwell-Garnett model of chiral composites,” J. Mater. Res. 8(4), 917–922 (1993).
    [Crossref]
  27. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008).
    [Crossref]
  28. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
    [Crossref]
  29. R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
    [Crossref] [PubMed]
  30. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71(4), 046610 (2005).
    [Crossref]
  31. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79(2), 026610 (2009).
    [Crossref]
  32. X. Jing, R. Xia, W. Wang, Y. Tian, and Z. Hong, “Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region,” J. Opt. Soc. Am. A 33(5), 954–961 (2016).
    [Crossref]
  33. J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
    [Crossref]
  34. J.A. Kong, Electromagnetic Wave Theory (Cambridge University, 2008).
  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley and Sons, 1983).
  36. N. Wang, J. Chen, S. Liu, and Zhifang Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
    [Crossref]
  37. A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).
  38. M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using novel pseudochiral or ω medium,” Microw. Opt. Technol. Lett. 5(4), 184–188 (1992).
    [Crossref]
  39. S. A. Tretyakov, C. R. Simovski, and M. Hudlicka, “Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,” Phys. Rev. B 75(15), 153104 (2007).
    [Crossref]
  40. N. Wang, S. Wang, Z.-Q. Zhang, and C. T. Chan, “Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations,” Phys. Rev. B 98(4), 045426 (2018).
    [Crossref]
  41. W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015).
    [Crossref]
  42. N. Wang, S. Wang, and J. Ng, “Electromagnetic stress tensor for an amorphous metamaterial medium,” Phys. Rev. A 97(3), 033839 (2018).
    [Crossref]
  43. M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75(11), 115104 (2007).
    [Crossref]
  44. www.comsol.com .

2018 (3)

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

N. Wang, S. Wang, Z.-Q. Zhang, and C. T. Chan, “Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations,” Phys. Rev. B 98(4), 045426 (2018).
[Crossref]

N. Wang, S. Wang, and J. Ng, “Electromagnetic stress tensor for an amorphous metamaterial medium,” Phys. Rev. A 97(3), 033839 (2018).
[Crossref]

2017 (1)

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
[Crossref]

2016 (1)

2015 (2)

W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015).
[Crossref]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

2014 (2)

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

2013 (2)

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

N. Wang, J. Chen, S. Liu, and Zhifang Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

2010 (2)

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

2009 (4)

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79(2), 026610 (2009).
[Crossref]

2008 (2)

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008).
[Crossref]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

2007 (4)

E. Plum, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

S. A. Tretyakov, C. R. Simovski, and M. Hudlicka, “Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,” Phys. Rev. B 75(15), 153104 (2007).
[Crossref]

M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75(11), 115104 (2007).
[Crossref]

2006 (2)

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

2005 (3)

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71(3), 037603 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71(4), 046610 (2005).
[Crossref]

2004 (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

A. Modinos, N. Stefanou, and V. Yannopapas, “Applications of the layer-KKR method to photonic crystals,” Opt. Express 8(3), 197–202 (2001).
[Crossref] [PubMed]

1999 (1)

J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, “Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling,” Phys. Rev. B 59(8), 5470–5478 (1999).
[Crossref]

1993 (1)

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “On the Maxwell-Garnett model of chiral composites,” J. Mater. Res. 8(4), 917–922 (1993).
[Crossref]

1992 (1)

M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using novel pseudochiral or ω medium,” Microw. Opt. Technol. Lett. 5(4), 184–188 (1992).
[Crossref]

1990 (1)

A. H. Sihvola and I. V. Lindell, “Chiral Maxwell-Garnett mixing formula,” Electron. Lett. 26(2), 118–119 (1990).
[Crossref]

1989 (1)

J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, “Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties,” Phys. Rev. B 40(18), 12164–12175 (1989).
[Crossref]

1904 (1)

J. C. M. Garnet, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904).
[Crossref]

Aydin, K.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79(2), 026610 (2009).
[Crossref]

Barr, L. E.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Beri, B.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley and Sons, 1983).

Butler, W. H.

J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, “Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling,” Phys. Rev. B 59(8), 5470–5478 (1999).
[Crossref]

Chan, C. T.

N. Wang, S. Wang, Z.-Q. Zhang, and C. T. Chan, “Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations,” Phys. Rev. B 98(4), 045426 (2018).
[Crossref]

W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015).
[Crossref]

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Chan, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Chen, J.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

N. Wang, J. Chen, S. Liu, and Zhifang Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

Chen, P.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

Chen, W.-J.

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

Chen, X.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71(4), 046610 (2005).
[Crossref]

Chen, X.-D

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Choy, T. C.

T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 1999).

Crampin, S.

J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, “Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties,” Phys. Rev. B 40(18), 12164–12175 (1989).
[Crossref]

Dong, J.-W.

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

Engheta, N.

M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using novel pseudochiral or ω medium,” Microw. Opt. Technol. Lett. 5(4), 184–188 (1992).
[Crossref]

Fang, C.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Fang, F.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

Fedotov, V. A.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Gao, W.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

Garnet, J. C. M.

J. C. M. Garnet, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904).
[Crossref]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Grzegorczyk, T. M.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71(4), 046610 (2005).
[Crossref]

Guo, Q.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Hibbins, A.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Hong, Z.

Hudlicka, M.

S. A. Tretyakov, C. R. Simovski, and M. Hudlicka, “Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,” Phys. Rev. B 75(15), 153104 (2007).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley and Sons, 1983).

Jiang, S.-J.

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

Jing, X.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
[Crossref]

X. Jing, R. Xia, W. Wang, Y. Tian, and Z. Hong, “Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region,” J. Opt. Soc. Am. A 33(5), 954–961 (2016).
[Crossref]

Kafesaki, M.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Kargarian, M.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Kong, J. A.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71(4), 046610 (2005).
[Crossref]

Kong, J.A.

J.A. Kong, Electromagnetic Wave Theory (Cambridge University, 2008).

Koschny, T.

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
[Crossref] [PubMed]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Krishnamurthy, S.

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

Lakhtakia, A.

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “On the Maxwell-Garnett model of chiral composites,” J. Mater. Res. 8(4), 917–922 (1993).
[Crossref]

Lawrence, M.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008).
[Crossref]

Li, H.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Li, J.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Li, T.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

Li, T. Q.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

Li, Z.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79(2), 026610 (2009).
[Crossref]

Lin, Zhifang

N. Wang, J. Chen, S. Liu, and Zhifang Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

Lindell, I. V.

A. H. Sihvola and I. V. Lindell, “Chiral Maxwell-Garnett mixing formula,” Electron. Lett. 26(2), 118–119 (1990).
[Crossref]

Liu, F.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

Liu, H.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Liu, R.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Liu, S.

N. Wang, J. Chen, S. Liu, and Zhifang Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Lu, L.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

MacDonald, A. H.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

MacLaren, J. M.

J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, “Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling,” Phys. Rev. B 59(8), 5470–5478 (1999).
[Crossref]

J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, “Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties,” Phys. Rev. B 40(18), 12164–12175 (1989).
[Crossref]

Menzel, C.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008).
[Crossref]

Milton, G.W.

G.W. Milton, The Theory of Composites (Cambridge University, 2002).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Modinos, A.

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Ng, J.

N. Wang, S. Wang, and J. Ng, “Electromagnetic stress tensor for an amorphous metamaterial medium,” Phys. Rev. A 97(3), 033839 (2018).
[Crossref]

Ng, Jack

W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015).
[Crossref]

Ozbay, E.

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79(2), 026610 (2009).
[Crossref]

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Paul, T.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008).
[Crossref]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, “Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties,” Phys. Rev. B 40(18), 12164–12175 (1989).
[Crossref]

Plum, E.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[Crossref]

Priou, A.

A. Priou, A. Sihvola, and S. Tretyakow, Advances in Complex Electromagnetic Materials (Springer Science & Business Media, 2012).

prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71(3), 037603 (2005).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Saadoun, M. M. I.

M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using novel pseudochiral or ω medium,” Microw. Opt. Technol. Lett. 5(4), 184–188 (1992).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[Crossref]

Semchenko, I. V.

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).

Serdyukov, A. N.

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shevets, G.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Shi, G.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
[Crossref]

Sihvola, A.

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).

A. Priou, A. Sihvola, and S. Tretyakow, Advances in Complex Electromagnetic Materials (Springer Science & Business Media, 2012).

Sihvola, A. H.

A. H. Sihvola and I. V. Lindell, “Chiral Maxwell-Garnett mixing formula,” Electron. Lett. 26(2), 118–119 (1990).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75(11), 115104 (2007).
[Crossref]

Simovski, C. R.

S. A. Tretyakov, C. R. Simovski, and M. Hudlicka, “Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,” Phys. Rev. B 75(15), 153104 (2007).
[Crossref]

Slovick, B. A.

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

R. Zhao, T. Koschny, and C. M. Soukoulis, “Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt. Express 18(14), 14553–14567 (2010).
[Crossref] [PubMed]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Stefanou, N.

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Sun, W.

W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015).
[Crossref]

Tian, Y.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
[Crossref]

X. Jing, R. Xia, W. Wang, Y. Tian, and Z. Hong, “Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region,” J. Opt. Soc. Am. A 33(5), 954–961 (2016).
[Crossref]

Tremain, B.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Tretyakov, S. A.

S. A. Tretyakov, C. R. Simovski, and M. Hudlicka, “Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,” Phys. Rev. B 75(15), 153104 (2007).
[Crossref]

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).

Tretyakow, S.

A. Priou, A. Sihvola, and S. Tretyakow, Advances in Complex Electromagnetic Materials (Springer Science & Business Media, 2012).

Tsai, D. O.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Tse, W.-K.

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Varadan, V. K.

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “On the Maxwell-Garnett model of chiral composites,” J. Mater. Res. 8(4), 917–922 (1993).
[Crossref]

Varadan, V. V.

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “On the Maxwell-Garnett model of chiral composites,” J. Mater. Res. 8(4), 917–922 (1993).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Vvedensky, D. D.

J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, “Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties,” Phys. Rev. B 40(18), 12164–12175 (1989).
[Crossref]

Wang, B.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Wang, F. M.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

Wang, N.

N. Wang, S. Wang, Z.-Q. Zhang, and C. T. Chan, “Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations,” Phys. Rev. B 98(4), 045426 (2018).
[Crossref]

N. Wang, S. Wang, and J. Ng, “Electromagnetic stress tensor for an amorphous metamaterial medium,” Phys. Rev. A 97(3), 033839 (2018).
[Crossref]

N. Wang, J. Chen, S. Liu, and Zhifang Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

Wang, S.

N. Wang, S. Wang, and J. Ng, “Electromagnetic stress tensor for an amorphous metamaterial medium,” Phys. Rev. A 97(3), 033839 (2018).
[Crossref]

N. Wang, S. Wang, Z.-Q. Zhang, and C. T. Chan, “Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations,” Phys. Rev. B 98(4), 045426 (2018).
[Crossref]

Wang, S. B.

W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015).
[Crossref]

Wang, S. M.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

Wang, W.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
[Crossref]

X. Jing, R. Xia, W. Wang, Y. Tian, and Z. Hong, “Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region,” J. Opt. Soc. Am. A 33(5), 954–961 (2016).
[Crossref]

Wang, X.

J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, “Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling,” Phys. Rev. B 59(8), 5470–5478 (1999).
[Crossref]

Wei, Z.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Wu, B.-I.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71(4), 046610 (2005).
[Crossref]

Wu, C.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Wu, R. X.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

Wu, Y.

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Xia, R.

Xiang, Y.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Yan, Q.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

Yang, B.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

Yannopapas, V.

Yu, X.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Yu, Z. G.

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

Zhang, S.

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Zhang, X.-G.

J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, “Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling,” Phys. Rev. B 59(8), 5470–5478 (1999).
[Crossref]

Zhang, Z.-Q.

N. Wang, S. Wang, Z.-Q. Zhang, and C. T. Chan, “Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations,” Phys. Rev. B 98(4), 045426 (2018).
[Crossref]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

Zhao, J.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
[Crossref]

Zhao, R.

Zheludev, N. I.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71(3), 037603 (2005).
[Crossref]

Zhou, J.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Zhou, L.

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

Zhou, Lei

W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015).
[Crossref]

Zhu, B.

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

Zhu, D.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
[Crossref]

Zhu, S. N.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Appl. Phys. Lett. (3)

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92(13), 131111(2008).
[Crossref]

E. Plum, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[Crossref]

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett. 93(23), 233106 (2008).
[Crossref]

Electron. Lett. (1)

A. H. Sihvola and I. V. Lindell, “Chiral Maxwell-Garnett mixing formula,” Electron. Lett. 26(2), 118–119 (1990).
[Crossref]

J. Mater. Res. (1)

A. Lakhtakia, V. K. Varadan, and V. V. Varadan, “On the Maxwell-Garnett model of chiral composites,” J. Mater. Res. 8(4), 917–922 (1993).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Microw. Opt. Technol. Lett. (1)

M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using novel pseudochiral or ω medium,” Microw. Opt. Technol. Lett. 5(4), 184–188 (1992).
[Crossref]

Nat. Commun. (1)

W.-J. Chen, S.-J. Jiang, X.-D Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shevets, “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz,” Opt. Laser Technol. 95, 56–62 (2017).
[Crossref]

Philos. Trans. R. Soc. London A (1)

J. C. M. Garnet, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904).
[Crossref]

Phys. Rev. A (2)

N. Wang, J. Chen, S. Liu, and Zhifang Lin, “Dynamical and phase-diagram study on stable optical pulling force in Bessel beams,” Phys. Rev. A 87(6), 063812 (2013).
[Crossref]

N. Wang, S. Wang, and J. Ng, “Electromagnetic stress tensor for an amorphous metamaterial medium,” Phys. Rev. A 97(3), 033839 (2018).
[Crossref]

Phys. Rev. B (9)

M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75(11), 115104 (2007).
[Crossref]

S. A. Tretyakov, C. R. Simovski, and M. Hudlicka, “Bianisotropic route to the realization and matching of backward-wave metamaterial slabs,” Phys. Rev. B 75(15), 153104 (2007).
[Crossref]

N. Wang, S. Wang, Z.-Q. Zhang, and C. T. Chan, “Closed-form expressions for effective constitutive parameters: Electrostrictive and magnetostrictive tensors for bianisotropic metamaterials and their use in optical force density calculations,” Phys. Rev. B 98(4), 045426 (2018).
[Crossref]

W. Sun, S. B. Wang, Jack Ng, Lei Zhou, and C. T. Chan, “Analytic derivation of electrostrictive tensors and their application to optical force density calculations,” Phys. Rev. B 91(23), 235439 (2015).
[Crossref]

J. M. MacLaren, X.-G. Zhang, W. H. Butler, and X. Wang, “Layer KKR approach to Bloch-wave transmission and reflection: Application to spin-dependent tunneling,” Phys. Rev. B 59(8), 5470–5478 (1999).
[Crossref]

Y. Wu, J. Li, Z.-Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit,” Phys. Rev. B 74(8), 085111 (2006).
[Crossref]

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

J. M. MacLaren, S. Crampin, D. D. Vvedensky, and J. B. Pendry, “Layer Korringa-Kohn-Rostoker technique for surface and interface electronic properties,” Phys. Rev. B 40(18), 12164–12175 (1989).
[Crossref]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76(7), 073101 (2007).
[Crossref]

Phys. Rev. E (4)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

S. L. Prosvirnin and N. I. Zheludev, “Polarization effects in the diffraction of light by a planar chiral structure,” Phys. Rev. E 71(3), 037603 (2005).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71(4), 046610 (2005).
[Crossref]

Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79(2), 026610 (2009).
[Crossref]

Phys. Rev. Lett. (5)

V. A. Fedotov, P. L. Mladyonov, S. L. prosvirnin, A. V. Rogacheva, Y. Chan, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. O. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Beri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114(3), 037402 (2015).
[Crossref] [PubMed]

Science (3)

B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, “Ideal Weyl points and helicoid surface states in artificial photonic crystal structures,” Science 359(6379), 1013–1016 (2018).
[Crossref] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Other (7)

T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 1999).

J.A. Kong, Electromagnetic Wave Theory (Cambridge University, 2008).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley and Sons, 1983).

G.W. Milton, The Theory of Composites (Cambridge University, 2002).
[Crossref]

A. Priou, A. Sihvola, and S. Tretyakow, Advances in Complex Electromagnetic Materials (Springer Science & Business Media, 2012).

www.comsol.com .

A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Top view of the bianisotropic metamaterial with parallel cylindrical inclusions arranged in either (a) regular or (b) random lattice in the xy plane. The in-plane and out-of-plane directions are along xy and z directions, respectively.
Fig. 2
Fig. 2 The spatially averaged electric field and displacement field of each layer inside the metamaterials having the square lattice structure for the incident angle (a) θ = π/6 and (b) θ = π/3 are noted by circles, while the electric field and displacement field along the x direction in corresponding effective continuous medium under the same incidence are shown by lines. The effective medium slab (photonic crystal) region is between the dotted lines. The incident beam is Ez polarized with amplitude E0. The constitutive parameters of the cylinder are εt = 2,εz = 5,µt = µz = 1,κt = 0.5,κz = 0.3,κk = 0.4, and the radius is r0 = 0.3a.
Fig. 3
Fig. 3 The spatially averaged electric field and displacement field of each layer inside the metamaterials having the triangular lattice structure for the incident angle (a) θ = π/6 and (b) θ = π/3 are noted by circles, while the electric field and displacement field along the x direction in corresponding effective continuous medium under the same incidence are shown by lines. The effective medium slab (photonic crystal) region is between the dotted lines. The incident beam is Ez polarized with amplitude E0. The constitutive parameters of the cylinder are εt = 8,εz = 3, µt = µz = 1, κt = 0.3, κz = 0.4, κk = 0.5, and the radius is r0 = 0.3a.
Fig. 4
Fig. 4 Comparison between the refractive indices obtained from the formulas (lines) and those from the slopes of band dispersion (circles). (a) The chirality tensor of the cylinder has no off-diagonal terms (κk = 0) and κz = 0.5. (b) The chirality tensor of the cylinder has no diagonal terms (κt = κz = 0). The other constitutive parameters of the cylinder are εt = 10, εz = 5, µt = µz = 1 and the radius is r0 = 0.35a.
Fig. 5
Fig. 5 Comparison between the refractive indices obtained from the formulas (lines) and those from the slopes of band dispersion (circles). (a) The chirality tensor of the cylinder has no off-diagonal and out-of-plane terms (κk = κz = 0). (b) The chirality tensor of the cylinder has no diagonal terms (κt = κz = 0). The other constitutive parameters of the cylinder are εt = εz = −1.5, µt = µz = 1 and the radius is r0 = 0.3a.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

D = ε 0 ε ¯ ¯ E + i c κ ¯ ¯ H , B = μ 0 μ ¯ ¯ H i c κ ¯ ¯ T E ,
ε ¯ ¯ = ε t x ^ x ^ + ε t y ^ y ^ + ε z z ^ z ^ , μ ¯ ¯ = μ t x ^ x ^ + μ t y ^ y ^ + μ z z ^ z ^ ,
κ ¯ ¯ = κ t x ^ x ^ + κ t y ^ y ^ + κ z z ^ z ^ + κ k x ^ y ^ κ k y ^ x ^ .
D = ( ε ¯ ¯ E + i κ ¯ ¯ H ) = ε t E + i κ t H + i κ k ( × H ) z ^ = 0 , B = ( μ ¯ ¯ H i κ ¯ ¯ T H ) = μ t H i κ t E + i κ k ( × E ) z ^ = 0 , × D = × ( ε ¯ ¯ E + i κ ¯ ¯ T H ) = ε ¯ ¯ × E + i κ ¯ ¯ × H i κ k H z ^ , × B = × ( μ ¯ ¯ H i κ ¯ ¯ T H ) = μ ¯ ¯ × H i κ ¯ ¯ × E i κ k E z ^ ,
ε ¯ ¯ = ε z ( x ^ x ^ + y ^ y ^ ) + ε t z ^ z ^ , μ ¯ ¯ = μ z ( x ^ x ^ + y ^ y ^ ) + μ t z ^ z ^ , κ ¯ ¯ = κ z ( x ^ x ^ + y ^ y ^ ) + κ t z ^ z ^ .
E = i k 0 κ k ( κ t B z i μ t D z ) ε t μ t κ t 2 , H = i k 0 κ k ( κ t D z i ε t B z ) ε t μ t κ t 2 .
× D = k 0 ( M ¯ ¯ 1 D + i M ¯ ¯ 2 B ) , × B = k 0 ( M ¯ ¯ 1 B i M ¯ ¯ 3 D ) ,
M ¯ ¯ 1 = κ z ( x ^ x ^ + y ^ y ^ ) + ε t μ t κ t 2 κ k 2 ε t μ t κ t 2 κ t z ^ z ^ , M ¯ ¯ 2 = ε z ( x ^ x ^ + y ^ y ^ ) + ε t μ t κ t 2 κ k 2 ε t μ t κ t 2 ε t z ^ z ^ , M ¯ ¯ 3 = μ z ( x ^ x ^ + y ^ y ^ ) + ε t μ t κ t 2 κ k 2 ε t μ t κ t 2 μ t z ^ z ^ .
× D = 2 D = k 0 2 ( M ˜ 1 M ¯ ¯ 1 + M ˜ 2 M ¯ ¯ 3 ) D + i k 0 2 ( M ˜ 1 M ¯ ¯ 2 + M ˜ 2 M ¯ ¯ 1 ) B , × B = 2 B = k 0 2 ( M ˜ 1 M ¯ ¯ 1 + M ˜ 3 M ¯ ¯ 2 ) B i k 0 2 ( M ˜ 1 M ¯ ¯ 3 + M ˜ 3 M ¯ ¯ 1 ) D ,
M ˜ 1 = ε t μ t κ t 2 κ k 2 ε t μ t κ t 2 κ t ( x ^ x ^ + y ^ y ^ ) + κ z z ^ z ^ , M ˜ 2 = ε t μ t κ t 2 κ k 2 ε t μ t κ t 2 ε t ( x ^ x ^ + y ^ y ^ ) + ε z z ^ z ^ , M ˜ 3 = ε t μ t κ t 2 κ k 2 ε t μ t κ t 2 μ t ( x ^ x ^ + y ^ y ^ ) + μ z z ^ z ^ .
2 ( D B ) + k 0 2 ( M ˜ 1 M ¯ ¯ 1 + M ˜ 2 M ¯ ¯ 3 i ( M ˜ 1 M ¯ ¯ 2 + M ˜ 2 M ¯ ¯ 1 ) M ˜ 1 M ¯ ¯ 1 + M ˜ 3 M ¯ ¯ 3 i ( M ˜ 1 M ¯ ¯ 3 + M ˜ 3 M ¯ ¯ 1 ) ) ( D B ) = 0 ,
k 2 ( E z H z ) = k 0 2 ( ε z μ t + κ z κ t i μ t κ z + i μ z κ t i ε t κ z i ε z κ t ε t μ z + κ z κ t ) ( E z H z ) .
2 ( k ± / k 0 ) 2 = ε z μ t + ε t μ z + 2 κ z κ t ± Δ , Δ = ( ε z μ t ε t μ z ) 2 + 4 κ z κ t ( ε z μ t + ε t μ z ) + 4 κ z 2 ε t μ t + 4 κ t 2 ε z μ z ,
( E z H z ) ( i ( ε z μ t ε t μ z ± Δ ) 2 ( κ z μ t + κ t μ z ) 1 ) = ( i v ± 1 ) .
E i n s ( r ) = n [ c n N n ( 1 ) ( k + , r ) + c n M n ( 1 ) ( k + , r ) + d n N n ( 1 ) ( k , r ) + d n M n ( 1 ) ( k , r ) ] ,
L n ( J ) = [ i n ρ z n ( J ) ( ρ ) ϕ ^ + z n ( J ) ( ρ ) r ^ ] e i n ϕ , M n ( J ) = [ i n ρ z n ( J ) ( ρ ) r ^ + z n ( J ) ( ρ ) ϕ ^ ] e i n ϕ , N n ( J ) = z n ( J ) ( ρ ) e i n ϕ z ^ ,
× L n ( J ) = M n ( J ) = N n ( J ) = 0 , × M n ( J ) = L n ( J ) z ^ = k N n ( J ) , × N n ( J ) = k M n ( J ) .
× E i n s = i ω B i n s = i ω ( μ ¯ ¯ H i n s i κ ¯ ¯ E i n s ) ,
H i n s = i μ t n [ k + c n κ t c n ) M n ( 1 ) ( k + , r ) + ( k d n κ t d n ) M n ( 1 ) ( k , r ) + ( k + c n κ z c n ) N n ( 1 ) ( k + , r ) + ( k d n κ z d n ) N n ( 1 ) ( k , r ) ] .
i μ z c n = i v + ( k + c n κ z c n ) i μ z d n = i v ( k d n κ z d n ) .
E i = n [ q n N n ( 1 ) ( k 0 , r ) + p n M n ( 1 ) ( k 0 , r ) ] , H i = i n [ p n N n ( 1 ) ( k 0 , r ) + q n M n ( 1 ) ( k 0 , r ) ] , E s = n [ b n N n ( 3 ) ( k 0 , r ) + a n M n ( 3 ) ( k 0 , r ) ] , H s = i n [ a n N n ( 3 ) ( k 0 , r ) + b n M n ( 3 ) ( k 0 , r ) ] ,
a n = A n p n + C n q n , b n = D n p n + B n q n .
q n J n ( x 0 ) b n H n ( 1 ) ( x 0 ) = c n J n ( x + ) + d n J n ( x ) , p n J n ( x 0 ) a n H n ( 1 ) ( x 0 ) = c n J n ( x + ) d n J n ( x ) , p n J n ( x 0 ) a n H n ( 1 ) ( x 0 ) = μ z 1 [ ( k + c n κ z c n ) J n ( x + ) + ( k d n κ z d n ) J n ( x ) ] , q n J n ( x 0 ) b n H n ( 1 ) ( x 0 ) = μ t 1 [ ( k + c n κ t c n ) J n ( x + ) + ( k d n κ t d n ) J n ( x ) ] ,
A 0 = i 4 ( μ z 1 ) π x 0 2 , A ± 1 = i 4 ( 1 ε t ) ( 1 + μ t ) + κ t 2 ( 1 + ε t ) ( 1 + μ t ) κ t 2 π x 0 2 , B 0 = i 4 ( ε z 1 ) π x 0 2 , B ± 1 = i 4 ( 1 + ε t ) ( 1 μ t ) + κ t 2 ( 1 + ε t ) ( 1 + μ t ) κ t 2 π x 0 2 , C 0 = D 0 = i 4 κ z π x 0 2 , C ± = D ± 1 = i 2 κ t ( 1 + ε t ) ( 1 + μ t ) κ t 2 π x 0 2 .
( k 1 / k 0 ) 2 = ε z ε t 1 ( ε t μ t κ k 2 ) , ( k 2 / k 0 ) 2 = μ z μ t 1 ( ε t μ t κ k 2 ) ,
D i n s = n [ d n N n ( 1 ) ( k 1 , r ) + e n M n ( 1 ) ( k 2 , r ) , B i n s = n [ c n M n ( 1 ) ( k 1 , r ) + f n N n ( 1 ) ( k 2 , r ) ,
d n k 1 = i ε z c n , e n k 2 = i ( ε t κ k 2 μ t ) f n ,
E i n s = n d n ε z N n ( 1 ) ( k 1 , r ) + μ t e n ε t μ t κ k 2 M n ( 1 ) ( k 2 , r ) + i κ k c n ε t μ t κ k 2 L n ( 1 ) ( k 1 , r ) , H i n s = n f n μ z N n ( 1 ) ( k 2 , r ) + ε t e n ε t μ t κ k 2 M n ( 1 ) ( k 1 , r ) + i κ k e n ε t μ t κ k 2 L n ( 1 ) ( k 2 , r ) .
q n J n ( x 0 ) b n H n ( 1 ) ( x 0 ) = ε z 1 d n J n ( x 1 ) , i p n J n ( x 0 ) + i a n H n ( 1 ) ( x 0 ) = μ z 1 f n J n ( x 2 ) , p n J n ( x 0 ) a n H n ( 1 ) ( x 0 ) = μ t e n ε t μ t κ k 2 J n ( x 2 ) + κ k c n ε t μ t κ k 2 n x 1 J n ( x 1 ) , i q n J n ( x 0 ) + i b n H n ( 1 ) ( x 0 ) = ε t c n ε t μ t κ k 2 J n ( x 1 ) + κ k e n ε t μ t κ k 2 n x 2 J n ( x 2 ) ,
A 0 = i 4 ( μ z 1 ) π x 0 2 , A ± 1 = i 4 ( 1 ε t ) ( 1 + μ t ) + κ k 2 ( ε t + 1 ) ( μ t + 1 ) κ k 2 π x 0 2 , B 0 = i 4 ( ε z 1 ) π x 0 2 , B ± 1 = i 4 ( 1 + ε t ) ( 1 μ t ) + κ k 2 ( ε t + 1 ) ( μ t + 1 ) κ k 2 π x 0 2 , C 0 = D 0 = 0 , C ± 1 = D ± 1 = ± 1 2 κ k ( ε t + 1 ) ( μ t + 1 ) κ k 2 π x 0 2 .
A 0 = i 4 ( μ z 1 ) π x 0 2 , A ± 1 = i 4 ( 1 ε t ) ( 1 + μ t ) + κ k 2 ( ε t + 1 ) ( μ t + 1 ) κ k 2 π x 0 2 , B 0 = i 4 ( ε z 1 ) π x 0 2 , B ± 1 = i 4 ( 1 + ε t ) ( 1 μ t ) + κ k 2 ( ε t + 1 ) ( μ t + 1 ) κ k 2 π x 0 2 , C 0 = D 0 = i 4 κ z π x 0 2 , C ± 1 = D ± 1 = 1 2 i κ t ± κ k ( ε t + 1 ) ( μ t + 1 ) κ k 2 π x 0 2 .
A i e = A i , B i e = B i , C i e = C i , D i e = D i , i = 1 , 0 , 1
ε e z = 1 + i Λ B 0 , μ e z = 1 + i Λ A 0 , κ e z = i Λ C 0 , ε e t = ( i Λ A 1 ) ( i + Λ B 1 ) + Λ 2 C 1 D 1 ( i + Λ A 1 ) ( i + Λ B 1 ) Λ 2 C 1 D 1 , μ e t = ( i + Λ A 1 ) ( i Λ B 1 ) + Λ 2 C 1 D 1 ( i + Λ A 1 ) ( i + Λ B 1 ) Λ 2 C 1 D 1 , κ e t = i Λ 2 ( C 1 D 1 ) ( i + Λ A 1 ) ( i + Λ B 1 ) Λ 2 C 1 D 1 , κ e k = Λ ( C 1 D 1 ) ( i + Λ A 1 ) ( i + Λ B 1 ) Λ 2 C 1 D 1 ,
ε e z = ( ε z 1 ) p + 1 , μ e z = ( μ z 1 ) p + 1 , κ e z = κ z p , ε e t = ( 1 + ε t ) ( 1 + μ t ) κ t 2 κ k 2 + 2 ( ε t μ t ) p [ ( 1 ε t ) ( 1 μ t ) κ t 2 κ k 2 ] p 2 ( 1 + ε t ) ( 1 + μ t ) κ t 2 κ k 2 + 2 ( 1 ε t μ t + κ t 2 + κ t 2 ) p + [ ( 1 ε t ) ( 1 μ t ) κ t 2 κ k 2 ] p 2 , μ e t = ( 1 + ε t ) ( 1 + μ t ) κ t 2 κ k 2 + 2 ( ε t μ t ) p [ ( 1 ε t ) ( 1 μ t ) κ t 2 κ k 2 ] p 2 ( 1 + ε t ) ( 1 + μ t ) κ t 2 κ k 2 + 2 ( 1 ε t μ t + κ t 2 + κ t 2 ) p + [ ( 1 ε t ) ( 1 μ t ) κ t 2 κ k 2 ] p 2 , κ e t = 4 κ t p ( 1 + ε t ) ( 1 + μ t ) κ t 2 κ k 2 + 2 ( 1 ε t μ t + κ t 2 + κ t 2 ) p + [ ( 1 ε t ) ( 1 μ t ) κ t 2 κ k 2 ] p 2 κ e k = 4 κ k p ( 1 + ε t ) ( 1 + μ t ) κ t 2 κ k 2 + 2 ( 1 ε t μ t + κ t 2 + κ t 2 ) p + [ ( 1 ε t ) ( 1 μ t ) κ t 2 κ k 2 ] p 2 ,

Metrics