Abstract

We successfully demonstrated an electrically injected blue(202¯1¯)semipolar vertical-cavity surface-emitting laser with a 5λ cavity length, an ion implanted aperture, and a dual dielectric DBR design. The peak power under pulsed operation was 1.85 mW, the threshold current was 4.6 kA/cm2, and the differential efficiency was 2.4% for the mode at 445 nm of a device with a 12 µm aperture. Lasing was achieved up to a 50% duty cycle and the thermal impedance was estimated to be 1800 K/W. The lasing emission was found to be 100% plane polarized along the a-direction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Group III-Nitride vertical-cavity surface-emitting lasers (VCSELs) have several unique properties that are advantageous over conventional LEDs and edge emitting laser diodes for certain applications, such as lighting, displays, and optical sensors. This is primarily due to their low threshold current, circular beam profile, and arraying capabilities. Since III-N VCSELs were first demonstrated in 2008 [1], multiple groups have shown electrically injected operation with differential efficiencies (ηd) up to 32% [2–11]. Though a wide variety of device designs have been utilized, the crystal orientation of the substrate has been mostly confined to the basal c-plane. Nonpolar and semipolar growth planes provide an interesting alternative to c-plane devices due to the reduced quantum confined Stark effect; higher material gain [12]; lower transparency current density; and inherent polarization [13,14]. Anisotropic gain in lasers grown on nonbasal substrates leads to VCSEL arrays in which each laser is polarization locked in the same direction, an important feature not easily achieved on the more common basal c-plane, as was demonstrated on m-plane [15–17]. However, it is challenging to push m-plane lasers to blue and green wavelengths due to poor indium incorporation and high defect formation [18–20]. On the other hand, certain semipolar orientations have shown enhanced indium incorporation, uniformity, and morphology, enabling long wavelength devices [21,22].

Forman et al. showed CW lasing of an m-plane VCSEL for the first time by optimizing the MBE grown tunnel junction (TJ) intracavity contact, minimizing surface roughness before deposition of the distributed Bragg reflector (DBR), increasing the thickness for heat spreading, and improving the bond interface [15]. The device utilized a flip-chip, dual-dielectric design with an Al ion implanted aperture. Although CW lasing was achieved, the device suffered from a poor ηd of 0.3% near threshold, with an increase to 0.8% at a higher drive current. Mishkat-Ul-Masabih et al. later showed similar device properties for an m-plane device incorporating a porous-GaN based DBR, with a peak pulsed power of 1.5mW and a ηd of 0.3% [17]. Both of these devices operated near 410 nm. Accordingly, we report here the first demonstration of semipolar(202¯1¯)VCSELs emitting at 444.5 nm which are polarization locked along the a-direction.

2. Method

The VCSELs, shown in Fig. 1, use a dual-dielectric DBR design with substrate removal through selective photoelectrochemical etching of a sacrificial layer, and aperture definition through Al ion implantation, similar to Ref [15]. The epitaxial structure was grown using atmospheric metal-organic chemical-vapor deposition (MOCVD) on freestanding(202¯1¯)GaN substrates and consists of a sacrificial 3x MQW (3 nm wells, 7 nm barriers, 430 nm emission), 20 nm n+GaN, 390 nm n-GaN, 45 period superlattice (3 nm In0.04Ga0.96N, 3 nm In0.06Ga0.94N), 2x MQW active region (3.5 nm wells, 7 nm barriers), 10 nm p-AlGaN electron-blocking layer (EBL), 105 nm p-GaN, and 10 nm p++GaN. After activating the p-GaN, mesas were etched with reactive ion etching (RIE) and a Ti/Au hard mask was deposited to define the aperture during ion implantation. Al ions were implanted with a dose of 1014 cm−2 and an acceleration voltage of 20kV. The reduction in the implant dose, compared to previous samples, was done to limit the risk of optical absorption loss, since the lower dose was found to still provide adequate electrical isolation. After removing the metal hard mask with heated aqua regia, the sample was cleaned directly prior to the tunnel junction (TJ) growth by dipping in buffered HF for 5 min. A 10 nm n++GaN tunneling layer followed by a 52 nm n-GaN current spreading layer were grown by MOCVD and the p-GaN was re-activated through the mesa sidewalls. Ion beam deposition (IBD) was used to deposit the 16 period SiO2/Ta2O5 p-DBR with a 65 nm Ta2O5 cavity tuning spacer. A deep RIE etch exposed the sacrificial wells and was followed by Ti/Au (20 nm/ 700 nm) deposition in the etched trenches as the PEC cathode, and on the mesas as the p-side contact. The sample was flip chip bonded to a sapphire submount coated in Ti/Au/In/Au (20 nm/ 700 nm / 1500 nm/ 200 nm) through solid-liquid interdiffusion bonding.

 

Fig. 1 Schematic of the semipolar VCSEL device structure.

Download Full Size | PPT Slide | PDF

It has been shown that on(202¯1¯)samples room temperature PEC etching leads to a rough etching surface [23]. However, upon decreasing the temperature of the etch, the resulting surface roughness can be reduced. Etching of(202¯1¯)samples was conducted at multiple bath temperatures, and it was found that at −5 °C, the roughness becomes comparable to the epitaxial roughness at 400 pm RMS roughness as measured by AFM on test samples. Therefore, PEC etching of the sacrificial wells was performed in 1M KOH under a 405nm LED array at −5 °C to limit surface roughness for these VCSELs. After removal of a residue present after PEC etching, by swabbing in a dilute Tergitol solution, the Ti/Au (20 nm/ 370 nm) n-contact was deposited by electron-beam deposition. Finally, a 12 period SiO2/Ta2O5 n-DBR with a Ta2O5 spacer layer (45 nm) was deposited by IBD. The spacer layers were deposited to align the TJ and the active region with the node and antinode of the expected lasing mode, respectively. The spacers also served to align the cavity resonance with the gain spectral peak, as estimated by the peak of the room temperature spontaneous emission modified with a small red shift to account for self-heating. While the spontaneous emission and the gain spectra do not perfectly align, the spontaneous emission peak is used as a proxy to estimate the position of the gain peak

Increasing cavity length has been shown to increase the threshold, and decrease the power for a given input power [24]. The increase in the confinement factor, as well as the decrease in the round trip loss of the shorter cavity are expected to lower the threshold gain. Having a shorter effective length increases the mirror loss, thereby increasing the expected differential efficiency. Therefore, the devices were designed to have a 5λ cavity length, compared to the previous 23λ m-plane devices to reduce the threshold current and increase the differential efficiency. However, shorter cavities have also been shown to have inferior thermal performance, potentially inhibiting CW operation [2,15,25].

Polarization was measured by inserting an optical polarizer between the device and an optical fiber coupled spectrometer aligned above the lasing mode. The polarization ratio (p) is given by:

p=(I[1¯21¯0]I[1¯014¯])(I[1¯21¯0]+I[1¯014¯]),
where I is the integrated intensity when the polarizer is aligned along the specified direction. [1¯014¯]is the projection of the c-axis along the (202¯1¯)surface.

3. Results and discussion

As shown in Fig. 2, under pulsed operation with 1000 ns pulse width and a 2.5% duty cycle, the peak power was 1.85 mW and the threshold current and voltage were 4.6 kA/cm2 and 7 V. At threshold, the peak of the spontaneous emission was at 435 nm, 10 nm shorter than the wavelength of the lasing mode, suggesting the presence of a misalignment between the gain spectrum and the resonance mode. This misalignment occurred due to the n-side Ta2O5 spacer layer being of the wrong thickness and likely resulted in a higher threshold current being required to produce the necessary gain. It is expected that the spontaneous emission initially blue-shifts with increasing current injection due to band filling and screening of the polarization field, though the effect is significantly reduced compared to c-plane devices due to the reduced polarization fields across the quantum well on(202¯1¯). It is then expected to redshift due to self heating, though this effect is also minimal when using low duty cycle pulsed operation. Thus the net misalignment is expected to have remained relatively consistent throughout testing as will be discussed later. The differential efficiency was 2.4% for the mode at 445 nm, which had a spectrometer limited resolution of 2 nm. The differential efficiency from one side of the device can be found with the following equation:

ηd1=F1ηiαmαm+αi+αs,
where F1 is the fraction of total output power emitted from the side of interest, ηi is the injection efficiency, αm is the mirror loss, αi is the internal loss, and αs is the scattering loss. Using a 1D transmission matrix model, the internal loss was calculated to be 13.3 cm−1 and the top and bottom mirror reflectivities were calculated to be 99.939% and 99.995%, respectively. The internal loss was calculated by multiplying the material absorption and mode overlap of each layer and summing over all layers. The absorption values used can be found in Ref [26]. The mirror reflectivities led to an expected mirror loss of 3.1 cm−1 and an F1 parameter out the top of 0.499 [27]. The scattering loss due to roughness at the DBR interface is expected to be around 5 cm−1 as estimated from AFM measurements on test samples [28]. Assuming an injection efficiency of 60%, as shown for semipolar (202¯1¯) edge emitting lasers [29], the calculated differential efficiency out the top of the device would be 4.3%. Compared to the measured ηd, this suggests an additional 17 cm−1 of loss was not accounted for in the model.

 

Fig. 2 Light-current-voltage results (a) for a 12 µm aperture VCSEL under pulsed operation with a 2.5% duty cycle and a 1 μs pulse width. The inset of (a) depicts the nearfield pattern at 5% above threshold. This pattern is maintained at higher current densities. The spectrum (b) for an adjacent 12 µm aperture device is shown for different stage temperatures when held at 12 mA. This second device was used for thermal characterization due to a catastrophic failure of the other during testing.

Download Full Size | PPT Slide | PDF

The experimental differential efficiency being just under half the simulated value is likely due to a combination of factors. As the lasing mode was shifted from the design wavelength, the tunnel junction was not likely placed directly on the null of the standing wave and therefore increased the absorption in the cavity. Additionally, the inset of Fig. 2(a) shows that the lasing mode was near the edge of the aperture and, therefore, partially overlapped with the implanted region and the contacting metal. Spatial misalignment and complicated mode structure have been seen by many groups with planar cavity VCSELs [1,3,10,26,30,31], and is thought to be due to inhomogeneous current injection across the aperture, though the exact cause is still unknown [26]. While Hamaguchi et al. have shown mode control using a curved mirror [32], this is still a significant issue for planar cavity devices that bears further investigation. The overlap was determined by modeling the mode as a two dimensional Gaussian as a close approximation to the LP01 mode, and determining the percentage of the mode extending into the absorbing region, either the implanted area or the metal. The resulting 1/e2 spot diameter was 2.1 µm. As seen in Fig. 3(a), it was difficult to ascertain the exact positions of the absorbing regions relative to the mode; thus, a range of potential losses was found by shifting the center of the mode 200 nm towards, and away, from the center of the non-absorbing region. Due to the nonlinearity of a Gaussian profile, there is a much greater effect on the calculated loss when the absorbing region is closer to the mode. Despite lowering the implant dose to reduce absorption loss, the implant still has a rather high absorption coefficient of 1400 cm−1 as measured from transmission/reflection spectra on an implanted test wafer. The center of the unimplanted area was found to be 3 μm from the center of the mode and introduced ~1 cm−1 of loss (0.6-2 cm−1 depending on the exact position of the edge of the implant). The lasing mode also overlaps with the metalized region, significantly increasing the absorption. The edge of the metal was estimated to be 4.2 µm from the center of the mode, which would suggest 0.0065% of the mode overlaps with the metal. This gives 6 cm−1 of loss (3-12 cm−1 depending on the exact position of the edge of the metal) assuming that the metal overlap only occurs over the effective penetration depth into the top mirror [33,34]. While these losses don’t account for all of the excess loss, they do highlight the importance of centering the mode in the aperture. The polarization dependence of the emission spectrum is shown in Fig. 3(b) and the polarization along the a-direction is clearly seen.

 

Fig. 3 The white circle on the nearfield pattern (a) defines the edge of the metal contact. The green circle represents the unimplanted aperture, while the red circle defines the mode. The light seen to the right of the unimplanted aperture is due to scattering from the edge of the bonding metal. (b) Shows the spectrum of an example 8 um VCSEL at different polarization angles. The polarization of maximum intensity was found to be parallel to the a-direction.

Download Full Size | PPT Slide | PDF

Although the threshold current and differential efficiency show improvement relative to previously reported m-plane VCSELs with a similar structure, the devices were not able to lase under CW operation. Above threshold, the devices had a differential resistivity of 8.9 × 10−5 Ω cm2. The rather high operating voltage increased the dissipated power in the device, increasing the heat generated. The thermal impedance of the devices was estimated from the shift in the spectrum with changing stage temperature (Δλ/ΔTst) at low duty cycles and while changing duty cycle (Δλ/ΔP) at fixed stage temperature. Lasing was maintained up to 50% duty cycle and to a stage limited temperature of 70 ̊C. Δλ/ΔTst and Δλ/ΔP were found to be 0.07nm/K and 125 nm/W, respectively, which give a thermal impedance of 1800 K/W, in fair agreement with the value of 1500 K/W found by direct measurement of the operating device with a thermal imaging microscope. This is higher than the 1400 K/W predicted by a COMSOL model of the 5 λ devices [15], and is likely due to a poor bonding interface, as shown in Fig. 4. At 50% duty cycle, the LIV curve began rolling over at 12.6 mA and 7.9 V, which would suggest a roll over temperature of 110 ̊C, in between previously reported values of 98 C [35], and 160 C [2,15]. Investigating the shift in the lasing peak with changing duty cycle gave a Δλlasing/ΔP of 25 nm/W, indicating that as the input power increases for a set operating temperature the lasing mode shifts towards the gain peak at 100 nm/W. Additionally, the lasing mode shifted at 0.01 nm/K with changing stage temperature, significantly less than the spontaneous peak. In actual operation it was found that there was a negligible change in the peak separation when changing input current for the 1 μs pulses used in most of the testing. An 8 micron diameter device operated up to 75% duty cycle with a 500 ns pulse width.

 

Fig. 4 The secondary ion image taken with focused ion beam microscopy shows the voids formed in the bonding metal, highlighted by the red rectangle.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we demonstrated a blue(202¯1¯)semipolar VCSEL with a cavity length of 5λ, an ion implanted aperture, and a dual dielectric DBR design. The peak power under pulsed operation at a 2.5% duty cycle was 1.85 mW for a 31.5 kA/cm2 current density. The threshold current was 4.6 kA/cm2 and the differential efficiency was 2.4% for the mode at 445 nm of a device with a 12 µm aperture. The lasing emission was found to be 100% plane polarized along the a-direction. Lasing was achieved up to a 50% duty cycle and the thermal impedance was estimated to be 1800 K/W.

Funding

Solid State Lighting and Energy Electronics Center (SSLEEC) at UCSB.

Acknowledgements

This research made use of several shared facilities, including the Materials Research Laboratory: an NSF MRSEC, supported by NSF DMR 1121053, the UCSB Nanofabrication Facility, and the California NanoSystems Institute (CNSI) at UCSB. The authors would like to thank Elohim for help and guidance during fabrication and testing.

References

1. T. C. Lu, T. T. Kao, S. W. Chen, C. C. Kao, H. C. Kuo, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting lasers,” 2008 Conf. Quantum Electron. Laser Sci. Conf. Lasers Electro-Optics, CLEO/QELS 141102, 1–4 (2008).

2. M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019). [CrossRef]  

3. D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011). [CrossRef]  

4. M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014). [CrossRef]  

5. T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016). [CrossRef]  

6. T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019). [CrossRef]  

7. P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016). [CrossRef]  

8. T. Furuta, K. Matsui, Y. Kozuka, S. Yoshida, N. Hayasi, T. Akagi, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “1.7-mW nitride-based vertical-cavity surface-emitting lasers using AlInN/GaN bottom DBRs,” 2016 Int. Semicond. Laser Conf. 1–2 (2016).

9. J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015). [CrossRef]  

10. J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016). [CrossRef]  

11. C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012). [CrossRef]  

12. S.-H. Park and D. Ahn, “Depolarization effects in(112¯2), ” Appl. Phys. Lett. 90(1), 013505 (2007). [CrossRef]  

13. L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011). [CrossRef]  

14. Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011). [CrossRef]  

15. C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018). [CrossRef]  

16. C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014). [CrossRef]  

17. S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019). [CrossRef]  

18. T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012). [CrossRef]  

19. B. Leung, D. Wang, Y.-S. Kuo, and J. Han, “Complete orientational access for semipolar GaN devices on sapphire,” Phys. Status Solidi 253(1), 23–35 (2016). [CrossRef]  

20. Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010). [CrossRef]  

21. S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010). [CrossRef]  

22. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009). [CrossRef]  

23. A. S. Abbas, A. Y. Alyamani, S. Nakamura, and S. P. Dembaars, “Enhancement of n-type GaN(202¯1),” Appl. Phys. Express 12(3), 036503 (2019). [CrossRef]  

24. W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015). [CrossRef]   [PubMed]  

25. R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016). [CrossRef]  

26. J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015). [CrossRef]  

27. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012), Chap. 3.

28. J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015). [CrossRef]  

29. D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019). [CrossRef]  

30. Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Express 1, 121102 (2008). [CrossRef]  

31. N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018). [CrossRef]  

32. T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018). [CrossRef]   [PubMed]  

33. P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974). [CrossRef]  

34. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

35. W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. T. C. Lu, T. T. Kao, S. W. Chen, C. C. Kao, H. C. Kuo, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting lasers,” 2008 Conf. Quantum Electron. Laser Sci. Conf. Lasers Electro-Optics, CLEO/QELS 141102, 1–4 (2008).
  2. M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
    [Crossref]
  3. D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
    [Crossref]
  4. M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
    [Crossref]
  5. T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016).
    [Crossref]
  6. T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
    [Crossref]
  7. P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
    [Crossref]
  8. T. Furuta, K. Matsui, Y. Kozuka, S. Yoshida, N. Hayasi, T. Akagi, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “1.7-mW nitride-based vertical-cavity surface-emitting lasers using AlInN/GaN bottom DBRs,” 2016 Int. Semicond. Laser Conf. 1–2 (2016).
  9. J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
    [Crossref]
  10. J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
    [Crossref]
  11. C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
    [Crossref]
  12. S.-H. Park and D. Ahn, “Depolarization effects in(112¯2), ” Appl. Phys. Lett. 90(1), 013505 (2007).
    [Crossref]
  13. L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011).
    [Crossref]
  14. Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
    [Crossref]
  15. C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
    [Crossref]
  16. C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
    [Crossref]
  17. S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019).
    [Crossref]
  18. T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
    [Crossref]
  19. B. Leung, D. Wang, Y.-S. Kuo, and J. Han, “Complete orientational access for semipolar GaN devices on sapphire,” Phys. Status Solidi 253(1), 23–35 (2016).
    [Crossref]
  20. Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
    [Crossref]
  21. S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
    [Crossref]
  22. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
    [Crossref]
  23. A. S. Abbas, A. Y. Alyamani, S. Nakamura, and S. P. Dembaars, “Enhancement of n-type GaN(202¯1),” Appl. Phys. Express 12(3), 036503 (2019).
    [Crossref]
  24. W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
    [Crossref] [PubMed]
  25. R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016).
    [Crossref]
  26. J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
    [Crossref]
  27. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012), Chap. 3.
  28. J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
    [Crossref]
  29. D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019).
    [Crossref]
  30. Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Express 1, 121102 (2008).
    [Crossref]
  31. N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
    [Crossref]
  32. T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
    [Crossref] [PubMed]
  33. P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [Crossref]
  34. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  35. W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
    [Crossref]

2019 (6)

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019).
[Crossref]

A. S. Abbas, A. Y. Alyamani, S. Nakamura, and S. P. Dembaars, “Enhancement of n-type GaN(202¯1),” Appl. Phys. Express 12(3), 036503 (2019).
[Crossref]

D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019).
[Crossref]

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

2018 (3)

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

2016 (5)

B. Leung, D. Wang, Y.-S. Kuo, and J. Han, “Complete orientational access for semipolar GaN devices on sapphire,” Phys. Status Solidi 253(1), 23–35 (2016).
[Crossref]

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016).
[Crossref]

R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016).
[Crossref]

2015 (4)

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

2014 (2)

M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

2012 (2)

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

2011 (3)

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011).
[Crossref]

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

2010 (2)

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

2009 (1)

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

2008 (1)

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

2007 (1)

S.-H. Park and D. Ahn, “Depolarization effects in(112¯2), ” Appl. Phys. Lett. 90(1), 013505 (2007).
[Crossref]

1974 (1)

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abbas, A. S.

A. S. Abbas, A. Y. Alyamani, S. Nakamura, and S. P. Dembaars, “Enhancement of n-type GaN(202¯1),” Appl. Phys. Express 12(3), 036503 (2019).
[Crossref]

Adachi, M.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Ahn, D.

S.-H. Park and D. Ahn, “Depolarization effects in(112¯2), ” Appl. Phys. Lett. 90(1), 013505 (2007).
[Crossref]

Akagi, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Akasaki, I.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Akatsuka, Y.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

Akita, K.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Akiyama, H.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Alyamani, A. Y.

A. S. Abbas, A. Y. Alyamani, S. Nakamura, and S. P. Dembaars, “Enhancement of n-type GaN(202¯1),” Appl. Phys. Express 12(3), 036503 (2019).
[Crossref]

Aragon, A. A.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019).
[Crossref]

Becerra, D. L.

D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019).
[Crossref]

Cai, Z. P.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Chang, C.-C.

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

Chen, S. Q.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Chen, Y.-T.

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

Christy, R.

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chung, R. B.

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Cohen, D. A.

D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

Dembaars, S. P.

A. S. Abbas, A. Y. Alyamani, S. Nakamura, and S. P. Dembaars, “Enhancement of n-type GaN(202¯1),” Appl. Phys. Express 12(3), 036503 (2019).
[Crossref]

DenBaars, S. P.

D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

Enya, Y.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Farrell, R. M.

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

Feezell, D.

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

Feezell, D. F.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

Forman, C. A.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

Fujii, K.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Fujito, K.

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

Furuta, T.

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Fuutagawa, N.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016).
[Crossref]

Fuwa, R.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

Gebski, M.

R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016).
[Crossref]

Hamaguchi, T.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016).
[Crossref]

Han, J.

B. Leung, D. Wang, Y.-S. Kuo, and J. Han, “Complete orientational access for semipolar GaN devices on sapphire,” Phys. Status Solidi 253(1), 23–35 (2016).
[Crossref]

Hayashi, K.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

Hayashi, N.

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

He, J. H.

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

Higuchi, Y.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Hoffmann, V.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

Holder, C.

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Holder, C. O.

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

Hsiung, C.-L.

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

Hu, X. L.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Huang, C.-Y.

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

Ikegami, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Imafuji, O.

M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
[Crossref]

Ito, M.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Iwaya, M.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Iwayama, S.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Izumi, S.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016).
[Crossref]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jyoukawa, T.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

Kamiyama, S.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Kasahara, D.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Katayama, K.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Katayama, T.

M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
[Crossref]

Kawaguchi, M.

M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
[Crossref]

Kawamata, J.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Kearns, J. A.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

Knauer, A.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

Kneissl, M.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011).
[Crossref]

Kobayashi, N.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Kobayashi, S.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

Koda, R.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Kosugi, T.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Kuo, H.-C.

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

Kuo, Y.-S.

B. Leung, D. Wang, Y.-S. Kuo, and J. Han, “Complete orientational access for semipolar GaN devices on sapphire,” Phys. Status Solidi 253(1), 23–35 (2016).
[Crossref]

Kuramoto, M.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

Kyono, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Lee, S.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

Leonard, J. T.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

Leung, B.

B. Leung, D. Wang, Y.-S. Kuo, and J. Han, “Complete orientational access for semipolar GaN devices on sapphire,” Phys. Status Solidi 253(1), 23–35 (2016).
[Crossref]

Lin, D.-W.

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

Lin, Y.-D.

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

Liou, J.-S.

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

Liu, W. J.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Luk, T. S.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019).
[Crossref]

Marciniak, M.

R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016).
[Crossref]

Margalith, T.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

Matou, T.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

Matsui, K.

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Matsumura, H.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Megalini, L.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

Mehari, S.

D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019).
[Crossref]

Mishkat-Ul-Masabih, S. M.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019).
[Crossref]

Mitomo, J.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Monavarian, M.

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019).
[Crossref]

Morita, D.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Mukai, T.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Muranaga, W.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

Murayama, M.

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016).
[Crossref]

Nagamatsu, K.

M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
[Crossref]

Nakagawa, K.

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

Nakajima, H.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Nakamura, S.

D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019).
[Crossref]

A. S. Abbas, A. Y. Alyamani, S. Nakamura, and S. P. Dembaars, “Enhancement of n-type GaN(202¯1),” Appl. Phys. Express 12(3), 036503 (2019).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Nakamura, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Nakwaski, W.

R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016).
[Crossref]

Narui, H.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016).
[Crossref]

Netzel, C.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

Ogimoto, J.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Ohara, M.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Ohta, H.

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

Omae, K.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Pan, C.-C.

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Park, S.-H.

S.-H. Park and D. Ahn, “Depolarization effects in(112¯2), ” Appl. Phys. Lett. 90(1), 013505 (2007).
[Crossref]

Pijanowski, K.

R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016).
[Crossref]

Ploch, S.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

Rass, J.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

Saito, T.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

Sarzala, R. P.

R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016).
[Crossref]

Satou, S.

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Schade, L.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011).
[Crossref]

Schwarz, U.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

Schwarz, U. T.

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011).
[Crossref]

Sonoda, J.

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Speck, J. S.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

Sumitomo, T.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Takeuchi, T.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

Takigawa, S.

M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
[Crossref]

Tanaka, K.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

Tanaka, M.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Tanaka, S.

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

Tazawa, K.

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

Tokuyama, S.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Ueno, M.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Van de Walle, C. G.

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

Wang, D.

B. Leung, D. Wang, Y.-S. Kuo, and J. Han, “Complete orientational access for semipolar GaN devices on sapphire,” Phys. Status Solidi 253(1), 23–35 (2016).
[Crossref]

Watanabe, H.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

Wernicke, T.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011).
[Crossref]

Weyers, M.

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011).
[Crossref]

Wu, C. C.

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

Wu, F.

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

Yamamoto, S.

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Yamanaka, K.

M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
[Crossref]

Yan, Q.

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

Yanashima, K.

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

Yeh, P. S.

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

Ying, L. Y.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Yonkee, B.

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

Yonkee, B. P.

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

Yoshida, S.

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

Yoshizumi, Y.

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

Young, E. C.

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

Zhang, B. P.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Zhang, J. Y.

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Appl. Phys. Express (9)

D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, and T. Mukai, “Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature,” Appl. Phys. Express 4(7), 072103 (2011).
[Crossref]

T. Hamaguchi, H. Nakajima, M. Tanaka, M. Ito, M. Ohara, T. Jyoukawa, N. Kobayashi, T. Matou, K. Hayashi, H. Watanabe, R. Koda, and K. Yanashima, “Sub-milliampere-threshold continuous wave operation of GaN-based vertical-cavity surface-emitting laser with lateral optical confinement by curved mirror,” Appl. Phys. Express 12(4), 044004 (2019).
[Crossref]

C. Holder, J. S. Speck, S. P. DenBaars, S. Nakamura, and D. Feezell, “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Express 5(9), 092104 (2012).
[Crossref]

Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,” Appl. Phys. Express 3(8), 082001 (2010).
[Crossref]

S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, “High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar(202¯1),” Appl. Phys. Express 3(12), 122102 (2010).
[Crossref]

Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, “531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar(202¯1),” Appl. Phys. Express 2, 082101 (2009).
[Crossref]

A. S. Abbas, A. Y. Alyamani, S. Nakamura, and S. P. Dembaars, “Enhancement of n-type GaN(202¯1),” Appl. Phys. Express 12(3), 036503 (2019).
[Crossref]

S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F. Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed Bragg reflector mirrors,” Appl. Phys. Express 12(3), 036504 (2019).
[Crossref]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Express 1, 121102 (2008).
[Crossref]

Appl. Phys. Lett. (8)

J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact,” Appl. Phys. Lett. 107(9), 091105 (2015).
[Crossref]

S.-H. Park and D. Ahn, “Depolarization effects in(112¯2), ” Appl. Phys. Lett. 90(1), 013505 (2007).
[Crossref]

Y. Zhao, S. Tanaka, Q. Yan, C.-Y. Huang, R. B. Chung, C.-C. Pan, K. Fujito, D. Feezell, C. G. Van de Walle, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High optical polarization ratio from semipolar(202¯1¯),” Appl. Phys. Lett. 99(5), 051109 (2011).
[Crossref]

C. A. Forman, S. Lee, E. C. Young, J. A. Kearns, D. A. Cohen, J. T. Leonard, T. Margalith, S. P. DenBaars, and S. Nakamura, “Continuous-wave operation of m -plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact,” Appl. Phys. Lett. 112(11), 111106 (2018).
[Crossref]

C. O. Holder, J. T. Leonard, R. M. Farrell, D. A. Cohen, B. Yonkee, J. S. Speck, S. P. Denbaars, S. Nakamura, and D. F. Feezell, “Nonpolar III-nitride vertical-cavity surface emitting lasers with a polarization ratio of 100% fabricated using photoelectrochemical etching,” Appl. Phys. Lett. 105(3), 1–6 (2014).
[Crossref]

P. S. Yeh, C.-C. Chang, Y.-T. Chen, D.-W. Lin, J.-S. Liou, C. C. Wu, J. H. He, and H.-C. Kuo, “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett. 109(24), 241103 (2016).
[Crossref]

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture,” Appl. Phys. Lett. 107(1), 011102 (2015).
[Crossref]

J. T. Leonard, B. P. Yonkee, D. A. Cohen, L. Megalini, S. Lee, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture,” Appl. Phys. Lett. 108(3), 031111 (2016).
[Crossref]

Appl. Sci. (Basel) (1)

M. Kuramoto, S. Kobayashi, T. Akagi, K. Tazawa, K. Tanaka, T. Saito, and T. Takeuchi, “High-Power GaN-Based Vertical-Cavity Surface-Emitting Lasers with AlInN/GaN Distributed Bragg Reflectors,” Appl. Sci. (Basel) 9(3), 416 (2019).
[Crossref]

J. Appl. Phys. (1)

J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts,” J. Appl. Phys. 118(14), 145304 (2015).
[Crossref]

J. Cryst. Growth (1)

D. L. Becerra, D. A. Cohen, S. Mehari, S. P. DenBaars, and S. Nakamura, “Compensation effects of high oxygen levels in semipolar AlGaN electron blocking layers and their mitigation via growth optimization,” J. Cryst. Growth 507, 118–123 (2019).
[Crossref]

Jpn. J. Appl. Phys. (1)

W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “GaN-based vertical-cavity surface-emitting lasers using n-type conductive AlInN/GaN bottom distributed Bragg reflectors with graded interfaces,” Jpn. J. Appl. Phys. 58(SC), SCCC01 (2019).
[Crossref]

Phys. Rev. B (2)

P. Johnson and R. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Status Solidi (3)

N. Hayashi, J. Ogimoto, K. Matsui, T. Furuta, T. Akagi, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “A GaN-Based VCSEL with a Convex Structure for Optical Guiding,” Phys. Status Solidi 215(10), 1700648 (2018).
[Crossref]

B. Leung, D. Wang, Y.-S. Kuo, and J. Han, “Complete orientational access for semipolar GaN devices on sapphire,” Phys. Status Solidi 253(1), 23–35 (2016).
[Crossref]

L. Schade, U. T. Schwarz, T. Wernicke, M. Weyers, and M. Kneissl, “Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi 248(3), 638–646 (2011).
[Crossref]

Proc. SPIE (3)

M. Kawaguchi, O. Imafuji, K. Nagamatsu, K. Yamanaka, S. Takigawa, and T. Katayama, “Design and lasing characteristics of GaN vertical elongated cavity surface emitting lasers,” Proc. SPIE 8986, 89861K (2014).
[Crossref]

T. Hamaguchi, N. Fuutagawa, S. Izumi, M. Murayama, and H. Narui, “Continuous wave operation of high power GaN-based blue vertical-cavity surface-emitting lasers using epitaxial lateral overgrowth,” Proc. SPIE 9748, 974817 (2016).
[Crossref]

R. P. Sarzała, K. Pijanowski, M. Gębski, M. Marciniak, and W. Nakwaski, “Designing of TJ VCSEL based on nitride materials,” Proc. SPIE 10159, 1015908 (2016).
[Crossref]

Sci. Rep. (2)

T. Hamaguchi, M. Tanaka, J. Mitomo, H. Nakajima, M. Ito, M. Ohara, N. Kobayashi, K. Fujii, H. Watanabe, S. Satou, R. Koda, and H. Narui, “Lateral optical confinement of GaN-based VCSEL using an atomically smooth monolithic curved mirror,” Sci. Rep. 8(1), 10350 (2018).
[Crossref] [PubMed]

W. J. Liu, X. L. Hu, L. Y. Ying, S. Q. Chen, J. Y. Zhang, H. Akiyama, Z. P. Cai, and B. P. Zhang, “On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers,” Sci. Rep. 5(1), 9600 (2015).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers, U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells,” Semicond. Sci. Technol. 27(2), 024014 (2012).
[Crossref]

Other (3)

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012), Chap. 3.

T. C. Lu, T. T. Kao, S. W. Chen, C. C. Kao, H. C. Kuo, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting lasers,” 2008 Conf. Quantum Electron. Laser Sci. Conf. Lasers Electro-Optics, CLEO/QELS 141102, 1–4 (2008).

T. Furuta, K. Matsui, Y. Kozuka, S. Yoshida, N. Hayasi, T. Akagi, N. Koide, T. Takeuchi, S. Kamiyama, M. Iwaya, and I. Akasaki, “1.7-mW nitride-based vertical-cavity surface-emitting lasers using AlInN/GaN bottom DBRs,” 2016 Int. Semicond. Laser Conf. 1–2 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the semipolar VCSEL device structure.
Fig. 2
Fig. 2 Light-current-voltage results (a) for a 12 µm aperture VCSEL under pulsed operation with a 2.5% duty cycle and a 1 μs pulse width. The inset of (a) depicts the nearfield pattern at 5% above threshold. This pattern is maintained at higher current densities. The spectrum (b) for an adjacent 12 µm aperture device is shown for different stage temperatures when held at 12 mA. This second device was used for thermal characterization due to a catastrophic failure of the other during testing.
Fig. 3
Fig. 3 The white circle on the nearfield pattern (a) defines the edge of the metal contact. The green circle represents the unimplanted aperture, while the red circle defines the mode. The light seen to the right of the unimplanted aperture is due to scattering from the edge of the bonding metal. (b) Shows the spectrum of an example 8 um VCSEL at different polarization angles. The polarization of maximum intensity was found to be parallel to the a-direction.
Fig. 4
Fig. 4 The secondary ion image taken with focused ion beam microscopy shows the voids formed in the bonding metal, highlighted by the red rectangle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p= ( I [ 1 ¯ 2 1 ¯ 0] I [ 1 ¯ 01 4 ¯ ] ) ( I [ 1 ¯ 2 1 ¯ 0] + I [ 1 ¯ 01 4 ¯ ] ) ,
η d1 = F 1 η i α m α m + α i + α s ,

Metrics