Abstract

A 2,3,4,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane (F4-TCNQ) doping interlayer was developed to improve charge imbalance and the efficiency in indium phosphide (InP)-based quantum dot light-emitting diodes (QLEDs). The doping layer was coated between a hole injecting layer (HIL) and a hole transport layer (HTL) and successfully diffused with thermal annealing. This doping reduces the hole injection barrier and improves the charge balance of InP-based QLEDs, resulting in enhancement of an external quantum efficiency (EQE) of 3.78% (up from 1.6%) and a power efficiency of 6.41 lm/W (up from 2.77 lm/W). This work shows that F4-TCNQ interlayer doping into both HIL and HTL facilitates hole injection and can provide an efficient solution of improving charge balance in QLED for the device efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Colloidal quantum dots (QDs) have great potential for next generation displays because of their high color purity, tunability of emission wavelength and low-cost solution processability [14]. Therefore, QDs have been studied for various photoluminescence (PL) and electroluminescence applications such as color conversion films in liquid crystal displays (LCD), color conversion pixels in blue organic light-emitting diodes (QD-OLED), color conversion matrices in micro light-emitting diodes (µ-LED) and self-emitting layers in quantum dot light-emitting diodes (QLEDs) [58,20]. Cadmium (Cd)-based QDs have been widely studied for QLED application and have achieved comparable device efficiency in organic light-emitting diodes (OLEDs) [8,10,30]. However, the use of Cd-based QDs is restricted under EU's Restriction of Hazardous Substances (RoHS) Directive due to its toxicity [1,11]. Indium phosphide (InP)-based QDs are considered as a promising alternative to Cd-based QDs because of their low toxicity and tunable wavelength at visible region [1,9,12]. However, the device efficiency of InP-based QLEDs is still lower than that of Cd-based QLEDs [9,12,14,22,34]. Therefore, the device efficiency of InP-based QLEDs needs to be improved for replacing Cd-based QLEDs.

The device efficiency of QLEDs is significantly affected by Auger recombination resulting from the charge imbalance of electron and hole carriers [4,1520]. Large hole injection barrier between the highest occupied molecular orbital (HOMO) level of the hole transport layer (HTL) and the valence band edge of QDs is one of the main reasons for charge imbalance [13,1620,23]. A big discrepancy of electron and hole mobility in transport layers is another reason for the charge imbalance [4,24,31]. The electron mobility of the ZnO electron transport layer (ETL) is known to be higher than the hole mobility of organic HTL materials [8,24,35]. The charge imbalance can be improved by suppressing electron injection by inserting insulating layers such as poly(methyl methacrylate) (PMMA), doping magnesium (Mg) into zinc oxide nanoparticles (ZnO NPs), or synthesizing QDs with appropriate valence band shells [15,21,24]. However, these approaches of suppressing electron injection into the QD layer can increase the turn-on voltage. Increasing hole injection into the QD layer by doping HTL with p-type dopants can improve efficiency with low turn-on voltage [13,18,19]. 2,3,4,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane (F4-TCNQ) is a p-type dopant used in organic light-emitting diodes (OLED) and organic photovoltaic (OPV) devices for higher hole conductivity [26,27,39]. Typically, F4-TCNQ and HTL polymers are mixed together in same solvents such as chlorobenzene and chloroform for doping. However, they exhibit high surface roughness and require a high storage temperature and diluted concentrations because of their aggregation and low solubility of F4-TCNQ [25,26]. The rough underlying layer increases contact resistance and leakage current, and induces charge imbalance of the device [31]. Therefore, doping F4-TCNQ with uniform films in organic polymer layers is challenging.

In this study, an F4-TCNQ doping interlayer was introduced between hole injection layer (HIL) and HTL with thermal annealing for the first time in the InP-based QLEDs. The F4-TCNQ interlayer was coated sequentially on poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) HIL and then a poly(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl)) diphenylamine) (TFB) HTL coating was followed. F4-TCNQ was reported to diffuse into small molecules and polymers with a thermal annealing temperature less than 150 °C [2529]. Through the annealing process, F4-TCNQ was diffused into adjacent PEDOT:PSS and TFB layers. Doped PEDOT:PSS and TFB layers were confirmed by depth profiling of F with time-of-flight secondary ion mass spectrometry (TOF-SIMS). The effects of the doping on HOMO level shift and hole conductivity were examined. Current density of hole-only device (HOD), device efficiency and electroluminescence (EL) intensity of QLEDs were investigated with different concentrations of F4-TCNQ interlayer.

2. Experimental section

2.1 Synthesis of red InP/ZnSeS/ZnS QDs

Red InP/ZnSeS/ZnS QDs were synthesized by modifying the methods reported earlier. [9] Sulfur (7.7 mmol) in 4 mL of trioctylphosphine (TOP:S) was introduced into synthesized InP/ZnSeS/ZnS QDs in one pot for surface passivation treatment at 140 °C for 14 h. [32] After being cooling to room temperature, the as-synthesized InP/ZnSeS/ZnS QDs was diluted with hexane and excess anhydrous ethanol to remove excess ligands and precursors by centrifugation. Finally, the InP/ZnSeS/ZnS QDs were dispersed in octane for further application and analysis.

2.2 QLEDs Fabrication

The device with a conventional structure fabricated in this study consists of indium tin oxide (ITO)/PEDOT:PSS/F4-TCNQ/TFB/QDs/ZnMgO/Al. The band energy levels of each material in device structure are shown in Fig. 6(a). All layers were formed with a solution process by a spin-coating except for the evaporated aluminum (Al) layer. A 150-nm-thick patterned ITO on a glass substrate was cleaned sequentially with acetone and methanol. A 40-nm-thick PEDOT:PSS mixed with 35% of IPA HIL was spin-coated at 3000 rpm for 30 s and baked at 130 °C for 15 min. The F4-TCNQ doping interlayer consisting of 2 to 4 mg/mL solutions were deposited on the PEDOT:PSS layer by spin-coating at 2500 rpm for 30 s and baked at 100 °C for 5 min. A 20-nm-thick TFB (in chlorobenzene, 8 mg/mL) HTL was spin-coated on top of an F4-TCNQ interlayer at 4000 rpm for 30 s and baked at 150 °C for 20 min. A 12-nm thick InP-based QD emitting layer (EML) (in octane, OD = 2.0 at 574 nm) and a 60-nm-thick 11 mol% ZnMgO ETL (in ethanol, 40 mg/mL) were spin-coated at 3000 rpm for 30 s sequentially. All layers were deposited and baked in a nitrogen-filled glove box (H2O < 1 ppm). Finally, Al electrodes (150 nm) were deposited by thermal evaporation under a high vacuum of ∼6 × 10−6 torr.

2.3 Characterizations

Absorption spectra were captured with a UV–visible spectrophotometer (JASCO, V630) and UV-vis-NIR spectrophotometer (Shimadzu UV–3600). PL emission spectra were obtained using a Cary Eclipse fluorescence spectrophotometer (Agilent Technologies, G9803A). The diameters of QDs were determined by a Cs–corrected high–resolution transmission electron microscopy (HRTEM) with an accelerating voltage of 200 keV (JEOL, JEM–2100F). The thickness of the each layer was determined by field emission scanning electron microscopy (FE-SEM) with an accelerating voltage of 0.1−30 kV (JEOL, JSM–7600F). The surface roughness was measured by high-resolution atomic force microscope (PSIA, XE150). Tracing F from F4-TCNQ in the layers was measured by time-of-flight secondary ion mass spectrometry (ION–TOF, TOF–SIMS–5). Band energy levels of each material were determined using an X-ray monochromator (Thermo–Scientific, ESCALAB 250Xi) and UV-visible spectrophotometer. Electrical and optical properties of the InP-based QLEDs were obtained with spectroradiometer (Konica–Minolta, CS–2000) coupled with a voltage–current source unit (Tektronix, Keithley 2400).

3. Results and discussion

The synthesized InP/ZnSeS/ZnS QDs used in our device, had average diameters of 6.3 nm with an absorption peak at 574 nm and a PL emission peak at 610 nm, as shown in Fig. 1. Photoluminescence quantum yield (PL QY) of 77% and full width at half-maximum (FWHM) of 53 nm were obtained with TOP:S treatment which passivate surface defect of QDs as shown in Table 1.

 figure: Fig. 1.

Fig. 1. The absorption and PL spectra of InP/ZnSeS/ZnS QDs with TOP:S treatment. (inset) high-resolution transmission electron microscopy (HRTEM) image of InP/ZnSeS/ZnS QDs after TOP:S treatment for 14 h.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Characteristics of synthesized InP/ZnSeS/ZnS QDs depending on reaction time with trioctylphosphine sulfide (TOP:S) treatment for surface passivation.

Doping of F4-TCNQ into PEDOT:PSS as hole injection and TFB layers was achieved through a thermal annealing process. Because F atoms are included only in F4-TCNQ, doping of F4-TCNQ molecules into PEDOT:PSS and TFB layers can be verified by tracing F through depth profiling with time-of-flight secondary ion mass spectrometry (TOF-SIMS) as shown in Fig. 2(a). An F4-TCNQ interlayer coated on PEDOT:PSS was first diffused into the PEDOT:PSS layer by thermal annealing process at 100 °C. Then, the TFB layer was coated on the F4-TCNQ interlayer, which was followed by thermal annealing at 150 °C. Thus, F4-TCNQ was diffused into both PEDOT:PSS and TFB layers. The F count in the PEDOT:PSS layer is higher than in TFB overall because PEDOT: PSS layer undergoes thermal annealing twice, whereas TFB layer undergoes it only once. The ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectra of PEDOT:PSS/F4-TCNQ/TFB multilayer were also investigated to confirm F4-TCNQ doping as shown in Fig. 2(b) [28,39]. The F4-TCNQ anion peak increases around 1.5 eV as the doping concentration of F4-TCNQ doping interlayer increases. The HOMO level shift of the F4-TCNQ-doped TFB was investigated by ultraviolet photoelectron spectroscopy (UPS), as shown in Fig. 3. The TFB HOMO level is –5.3 eV, the QD valence band maximum is –5.9 eV, and the hole injection barrier is 0.6 eV. The HOMO level of the TFB layer is shifted to –5.6 eV with a F4-TCNQ interlayer made of 3 mg/mL solution, and the deepened HOMO level reduces hole injection barrier from 0.6 to 0.3 eV, thus allowing better hole injection into the QD EML.

 figure: Fig. 2.

Fig. 2. (a) Chemical profiling of PEDOT:PSS/TFB and PEDOT:PSS/F4-TCNQ/TFB with F4-TCNQ interlayer coated with a 3 mg/mL solution using time of flight secondary ion mass spectrometry (TOF-SIMS) to detect fingerprints of the F4-TCNQ molecule (F ions). The sputter times versus F counts reveals diffusion of F4-TCNQ into PEDOT:PSS and TFB layer. (inset) chemical structure of F4-TCNQ. (b) Ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectra of PEDOT:PSS, F4-TCNQ, TFB and PEDOT:PSS/F4-TCNQ/TFB multilayers with F4-TCNQ doping interlayer with 0, 2-4 mg/mL solution.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. Ultraviolet photoelectron spectra (UPS) of (a) TFB and (b) F4-TCNQ-doped TFB with F4-TCNQ interlayer (3 mg/mL solution). (c) The optical band gap of TFB, F4-TCNQ-doped TFB from Tauc plots of ${(\alpha hv)^2} - (hv)$ relation.

Download Full Size | PPT Slide | PDF

The effect of F4-TCNQ doping into the HIL and HTL was investigated, as shown in Fig. 4, with the current density-voltage (J-V) characteristics of HOD having the layer structure of ITO/PEDOT:PSS/F4-TCNQ/TFB/QDs/CuSCN/Al, in which CuSCN was adopted for electron blocking. Electron-only devices (EOD) were also fabricated with the layer structure of ITO/ZnMgO/QDs/ZnMgO/Al, in which both ZnMgO blocked the hole injection from the electrode. HOD and EOD with single holes or electrons moving through QDs can compare hole and electron transport behavior in devices [33,36]. Two regions can be identified by different values of the exponent n of V ($J \propto {V^n}$ relation), the Ohmic region (n = 1) and space charge limited current (SCLC) region (n = 2) [37]. The carrier transport behavior can be compared in SCLC region [38]. The current density of doped HOD increases as the concentration of F4-TCNQ doping interlayer increases in SCLC region where shown as $J \propto {V^2}$. The current density of the HOD increases with a higher F4-TCNQ doping concentration and the enhanced hole conductivity is attributed to reduced hole injection barrier. This work thus demonstrated that hole conductivity can be controlled by varying the doping concentration.

 figure: Fig. 4.

Fig. 4. The current density of hole-only device (HOD) of undoped and doped with F4-TCNQ doping interlayer with 1-4 mg/mL solutions and electron-only device (EOD) of 11 mol% ZnMgO.

Download Full Size | PPT Slide | PDF

Surface roughness is one of the critical factors in determining device efficiency because a rough surface can cause high contact resistance and leakage current in the device [31]. In addition, the surface roughness of PEDOT:PSS/F4-TCNQ/TFB multilayers was determined using atomic force microscopy (AFM), as shown in Fig. 5. A slight change in roughness of less than 0.03 nm root-mean-square (RMS) was observed with the F4-TCNQ interlayer. Acetonitrile was chosen as an F4-TCNQ solvent because it is orthogonal to the PEDOT:PSS and TFB layers and prevent both layers from being rinsed. High solubility of F4-TCNQ in acetonitrile enables smooth films with high doping concentration up to 4 mg/mL to be formed without aggregation. The doping method of mixing F4-TCNQ with an HTL solution is known to generate a rough surface because of aggregation [2527]. However, the interlayer doping method developed in this study can provide both HIL and HTL doping and a smooth surface even with high doping concentrations.

 figure: Fig. 5.

Fig. 5. Atomic force microscopy (AFM) images of PEDOT:PSS/TFB and PEDOT:PSS/F4-TCNQ/TFB multilayers with F4-TCNQ doping interlayer with 1-4 mg/mL solutions. The root-mean-square (RMS) surface roughness of the multilayer films were (a) 0.477 nm, (b) 0.443 nm, (c) 0.498 nm, (d) 0.501 nm and (e) 0.506 nm

Download Full Size | PPT Slide | PDF

Band energy level diagrams and a cross-SEM image of the QLED fabricated with F4-TCNQ doping interlayer between HIL and HTL are provided in Figs. 6(a) and 6(b). The band energy level diagrams are displayed based on HOMO levels and the valence band maximum from UPS shown and the band-gap calculated from UV-vis absorption spectra. The device had a layer structure of ITO/PEDOT:PSS/F4-TCNQ/TFB/QDs/ZnMgO/Al, and the electrical device characteristics are shown in Figs. 6(c), 6(d) and 6(e). The current density and luminance increase as the concentration of the solution that comprises the F4-TCNQ interlayer increases from 2 to 4 mg/mL, as shown in Fig. 6(d). The luminance increases up to 2.9 times with the F4-TCNQ-doping interlayer with a 4 mg/mL solution. The enhanced current density and the luminance are attributed to the reduced hole injection barrier, which results in better hole injection as revealed by in UPS and HOD analyses. Details on the device performance are provided in Table 2. The external quantum efficiency (EQE) and power efficiency also increases with increased F4-TCNQ doping, as shown in Fig. 6(e) and Table 2. The maximum current efficiency, power efficiency, and EQE are achieved with F4-TCNQ doping with a 3 mg/mL solution. The maximum current efficiency and power efficiency are 5.1 cd/A and 6.41 lm/W, respectively, which are approximately 2.3 times higher than those of the undoped device. The maximum EQE increases by approximately 2.4 times from 1.60 to 3.78% as compared to the undoped device. However, the device efficiency with the F4-TCNQ doping interlayer with a 4 mg/mL solution is reduced because of excessive hole injection. Excessive hole injection is also shown in the current density of the HOD with the F4-TCNQ doping interlayer with a 4 mg/mL solution, which is higher than that of EOD with a ZnMgO layer.

 figure: Fig. 6.

Fig. 6. (a) Band energy level of a multilayered QLED structure with an F4-TCNQ doping interlayer. (b) cross-SEM image of the device with an F4-TCNQ interlayer with a 3 mg/mL solution. The electrical properties of undoped QLED (No F4-TCNQ) and QLEDs doped with F4-TCNQ interlayer with 2-4 mg/mL solutions. (c) the current density and the luminance versus the operating voltage curves of QLEDs. (d) the external quantum efficiency (EQE) versus the current density curves of QLEDs. (e) the power efficiency (PE) versus the current density curves of QLEDs

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. Summarized device performances of InP-based QLEDs depending on different concentration of F4-TCNQ doping interlayer.

Improvement of the charge balance with F4-TCNQ interlayer doping was also confirmed by monitoring the EL emission peak from TFB, as shown in Fig. 7. A blue spectrum peak can be regarded as an emission of the TFB layer, which tends to increase with a higher driving voltage. TFB emission is originated with excessive electron injection from QD EML which inducing exciton formation in the TFB HTL. The normalized blue EL emission peak from 417 to 500 nm is appeared at 4 V and the integration of the peak area decreased with F4-TCNQ doping from 0.037 to 0.019. The lowest unoccupied molecular orbital (LUMO) energy level of the TFB and F4-TCNQ-doped TFB are estimated with the HOMO level and the optical band-gap from UV-Vis absorption spectra, shown in Fig. 3. The electron blocking barrier is reduced by shifting the LUMO energy level of the TFB from –2.37 eV to –2.67 eV with F4-TCNQ doping. Despite the reduction in the electron blocking barrier, the blue EL emission peak of the F4-TCNQ-doped device is still decreased. This can only be explained by the enhanced charge balance derived from efficient hole injection resulting in more exciton formation in the QD EML rather than in the TFB layer through F4-TCNQ interlayer doping.

 figure: Fig. 7.

Fig. 7. Normalized EL spectra of (a) undoped QLED and (b) QLED doped with F4-TCNQ interlayer with a 3 mg/mL solution at 2 V, 2.5 V of the maximum EQE and 4 V of the maximum luminance. (inset) EL intensity spectra magnified at the 350-600 nm spectral region

Download Full Size | PPT Slide | PDF

4. Conclusion

F4-TCNQ was chosen as a p-type doping material in InP-based QLEDs and diffused into PEDOT:PSS and TFB layers as form of interlayer through the thermal annealing process. The study showed that this interlayer doping process enabled doping without producing a rough surface even at high concentrations. The F4-TCNQ doping allowed efficient hole injection to occur with a reduced hole injection barrier, resulting in a balanced charge injection of QLEDs. The QLEDs doped with F4-TCNQ interlayer with a 3 mg/mL solution demonstrated an increase in efficiency of 2.3 times as compared to the undoped device with 3.87% of EQE. It also yielded 6.41 lm/W and 5.1 cd/A of power and current efficiencies, respectively. The maximum luminance of F4-TCNQ-doped QLED increased by 27% as compared to the undoped device. The improved charge balance also reduced blue EL emission from the TFB layer. These results demonstrated that interlayer doping with thermal annealing can be an effective solution for efficient QLEDs by improving hole injection and charge imbalance.

Funding

National Research Foundation under Ministry of Science, ICT and Future Planning, Korea (2012M3A6A7054855).

Acknowledgments

Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea (Grant No. 2012M3A6A7054855).

References

1. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016). [CrossRef]  

2. Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017). [CrossRef]  

3. J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

4. W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013). [CrossRef]  

5. H. J. Kim, M. H. Shin, J. Y. Lee, and Y. J. Kim, “Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film,” Opt. Express 25(10), 10724–10734 (2017). [CrossRef]  

6. M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018). [CrossRef]  

7. T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018). [CrossRef]  

8. Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018). [CrossRef]  

9. J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016). [CrossRef]  

10. H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018). [CrossRef]  

11. The European Parliament and The Council of The European Union, “Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. Union L'174, 88–110 (2011).

12. F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018). [CrossRef]  

13. Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016). [CrossRef]  

14. H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019). [CrossRef]  

15. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013). [CrossRef]  

16. W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015). [CrossRef]  

17. Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017). [CrossRef]  

18. M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013). [CrossRef]  

19. S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015). [CrossRef]  

20. H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019). [CrossRef]  

21. H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017). [CrossRef]  

22. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013). [CrossRef]  

23. D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017). [CrossRef]  

24. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014). [CrossRef]  

25. I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016). [CrossRef]  

26. F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016). [CrossRef]  

27. Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019). [CrossRef]  

28. H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015). [CrossRef]  

29. J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015). [CrossRef]  

30. H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017). [CrossRef]  

31. K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017). [CrossRef]  

32. S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard III, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016). [CrossRef]  

33. H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015). [CrossRef]  

34. Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019). [CrossRef]  

35. Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015). [CrossRef]  

36. J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018). [CrossRef]  

37. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015). [CrossRef]  

38. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011). [CrossRef]  

39. M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
    [Crossref]
  2. Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
    [Crossref]
  3. J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).
  4. W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
    [Crossref]
  5. H. J. Kim, M. H. Shin, J. Y. Lee, and Y. J. Kim, “Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film,” Opt. Express 25(10), 10724–10734 (2017).
    [Crossref]
  6. M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
    [Crossref]
  7. T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
    [Crossref]
  8. Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
    [Crossref]
  9. J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
    [Crossref]
  10. H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
    [Crossref]
  11. The European Parliament and The Council of The European Union, “Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. Union L'174, 88–110 (2011).
  12. F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
    [Crossref]
  13. Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
    [Crossref]
  14. H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
    [Crossref]
  15. W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
    [Crossref]
  16. W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
    [Crossref]
  17. Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
    [Crossref]
  18. M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
    [Crossref]
  19. S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
    [Crossref]
  20. H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
    [Crossref]
  21. H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
    [Crossref]
  22. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
    [Crossref]
  23. D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
    [Crossref]
  24. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
    [Crossref]
  25. I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
    [Crossref]
  26. F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
    [Crossref]
  27. Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
    [Crossref]
  28. H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
    [Crossref]
  29. J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
    [Crossref]
  30. H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
    [Crossref]
  31. K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
    [Crossref]
  32. S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
    [Crossref]
  33. H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
    [Crossref]
  34. Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
    [Crossref]
  35. Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
    [Crossref]
  36. J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
    [Crossref]
  37. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
    [Crossref]
  38. L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
    [Crossref]
  39. M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
    [Crossref]

2019 (5)

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

2018 (6)

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

2017 (7)

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

H. J. Kim, M. H. Shin, J. Y. Lee, and Y. J. Kim, “Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film,” Opt. Express 25(10), 10724–10734 (2017).
[Crossref]

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

2016 (6)

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Q. Huang, J. Pan, Y. Zhang, J. Chen, Z. Tao, C. He, K. Zhou, Y. Tu, and W. Lei, “High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering,” Opt. Express 24(23), 25955–25963 (2016).
[Crossref]

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
[Crossref]

2015 (7)

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

2014 (2)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

2013 (4)

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

2011 (2)

The European Parliament and The Council of The European Union, “Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. Union L'174, 88–110 (2011).

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Aasen, E. W.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Arbab, E. A. A.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

Atwater, H. A.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Augustine, M. P.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Bae, W. K.

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Bourgeois, L.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Brovelli, S.

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

Cao, F.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Cao, H.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Cao, L.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Cao, W.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Chae, H.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Char, K.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Chen, H.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Chen, H. Y.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Chen, J.

Chen, L.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Chen, S.

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

Chen, S. W. H.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Chen, Z.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Cho, S. M.

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Chung, H. K.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Chung, R. J.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Coe-Sullivan, S.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

Dai, X.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Ding, K.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Do, Y. R.

Dong, Q.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Du, Z.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Duhm, S.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Eisler, C.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Elawad, M.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

Endres, J.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Fan, L.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Fang, Y.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Fonseca, T. N.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Friedrich, S.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Frisch, J.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Fu, Y.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Fung, M. K.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Goddard, W. A.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Greer, J. R.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Guillain, F.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Guo, F.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Guo, W.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Han, C. Y.

He, C.

Heimel, G.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Hermans, Y.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Ho, J.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

Ho, M. D.

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Holloway, P. H.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Hou, X.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

Hu, B.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Hu, N.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Hu, Y.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Hua, X. C.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Huang, J.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Huang, Q.

Huang, Z.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Jacobs, I. E.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Jang, E. P.

Jeong, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Ji, W.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Jia, Y.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Jiang, W.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Jin, H.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Jin, Y.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Jing, P.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Jo, J. H.

Kahn, A.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Kim, D.

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Kim, H. J.

Kim, J.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Kim, J. H.

Kim, N.

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

Kim, S.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Kim, Y. J.

Klimov, V. I.

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Koch, N.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Kuo, H. C.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Lee, C.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Lee, C. F.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Lee, D.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Lee, H. J.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Lee, J. H.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Lee, J. Y.

Lee, K. H.

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
[Crossref]

Lee, S.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Lee, W.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

Lei, W.

Li, J.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Li, L. S.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Li, Y.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

Li, Y. H.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Liang, F.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Liang, S.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Liang, X.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Liang, Z.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Liao, L. S.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Lim, J.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Lin, C. E.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Lin, Q.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Lin, Y.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Lincheneau, C.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Liu, C. W.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Liu, R. S.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Liu, S.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Lu, X.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Lu, Y.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Luo, S.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Lv, L.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

Lv, Y.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Ma, Y. Y.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Mascal, M.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

McDaniel, H.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Méndez, H.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Mola, G. T.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

Moon, H.

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

Moule, A. J.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Moulé, A. J.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Mulligan, P.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Nam, S.

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Niu, J.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Niu, Y.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Oehzelt, M.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Oh, N.

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Oliveira, J. L.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Opitz, A.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Padilha, L. A.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Pan, J.

Pan, T.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Park, M.

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

Park, Y. S.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Peng, X.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Pietryga, J. M.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Qian, L.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Qiu, J.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Reiss, P.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Riede, M.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Robel, I.

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

Rochester, C. W.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Roehling, J. D.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Röthel, C.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Salzmann, I.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Sauer, K.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Shao, Y.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Shen, C. H.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Shen, H.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Sher, C. W.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Shewmon, N. T.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Shi, Y. L.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Shieh, J. M.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Shim, M.

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Shin, M. H.

Steckel, J. S.

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

Stroeve, P.

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

Su, Q.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Sun, L.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

Sun, X.

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

Sun, X. W.

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

Tamang, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Tang, A.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Tao, Z.

Teng, F.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Többens, D.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Tsai, C. C.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Tseng, M. R.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Tu, Y.

Vignau, L.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Wang, A.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Wang, B.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Wang, F.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Wang, H.

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Wang, H. C.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Wang, J.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Wang, K.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Wang, L.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

Wang, S.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Wang, X. D.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Wang, Z. K.

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Wantz, G.

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

Wegner, B.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Winkler, S.

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Wong, T. H.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Wu, Q.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Wu, T.

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Wu, T. T.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Xiao, H.

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Xie, W.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Xu, G.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Xu, X.

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

Xue, J.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Yang, C.

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Yang, H.

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, “High-efficiency red electroluminescent device based on multishelled InP quantum dots,” Opt. Lett. 41(17), 3984–3987 (2016).
[Crossref]

Yang, X.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Yao, Z.

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

Yeh, H. C.

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Yin, M.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Yu, Z.

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Zeng, Z.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Zhai, T. S.

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Zhai, Y.

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

Zhang, F.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Zhang, G.

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Zhang, H.

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Zhang, L.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Zhang, X.

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Zhang, Y.

Zhang, Z.

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Zhao, D.

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

Zhao, J.

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

Zheng, Y.

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Zhou, K.

Zhuang, S.

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (7)

Y. Fu, W. Jiang, D. Kim, W. Lee, and H. Chae, “Highly Efficient and Fully Solution-Processed Inverted Light-Emitting Diodes with Charge Control Interlayers,” ACS Appl. Mater. Interfaces 10(20), 17295–17300 (2018).
[Crossref]

M. D. Ho, D. Kim, N. Kim, S. M. Cho, and H. Chae, “Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 5(23), 12369–12374 (2013).
[Crossref]

W. Ji, Y. Lv, P. Jing, H. Zhang, J. Wang, H. Zhang, and J. Zhao, “Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer,” ACS Appl. Mater. Interfaces 7(29), 15955–15960 (2015).
[Crossref]

F. Guillain, J. Endres, L. Bourgeois, A. Kahn, L. Vignau, and G. Wantz, “Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells,” ACS Appl. Mater. Interfaces 8(14), 9262–9267 (2016).
[Crossref]

J. Li, C. W. Rochester, I. E. Jacobs, S. Friedrich, P. Stroeve, M. Riede, and A. J. Moulé, “Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures,” ACS Appl. Mater. Interfaces 7(51), 28420–28428 (2015).
[Crossref]

K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang, S. Zhuang, B. Hu, and L. Wang, “Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted Quantum Dot Light-Emitting Diodes,” ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017).
[Crossref]

J. Li, Z. Liang, Q. Su, H. Jin, K. Wang, G. Xu, and X. Xu, “Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes,” ACS Appl. Mater. Interfaces 10(4), 3865–3873 (2018).
[Crossref]

ACS Nano (4)

J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, “Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots,” ACS Nano 7(10), 9019–9026 (2013).
[Crossref]

D. Kim, Y. Fu, S. Kim, W. Lee, K. H. Lee, H. K. Chung, H. J. Lee, H. Yang, and H. Chae, “Polyethylenimine Ethoxylated-Mediated All Solution-Processed High-Performance Flexible Inverted Quantum Dot-Light-Emitting Device,” ACS Nano 11(2), 1982–1990 (2017).
[Crossref]

S. Nam, N. Oh, Y. Zhai, and M. Shim, “High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes,” ACS Nano 9(1), 878–885 (2015).
[Crossref]

H. Zhang, S. Chen, and X. W. Sun, “Efficient Red/Green/Blue Tandem Quantum-Dot Light-Emitting Diodes with External Quantum Efficiency Exceeding 21%,” ACS Nano 12(1), 697–704 (2018).
[Crossref]

Acta Mater. (1)

S. Luo, C. Eisler, T. H. Wong, H. Xiao, C. E. Lin, T. T. Wu, C. H. Shen, J. M. Shieh, C. C. Tsai, C. W. Liu, H. A. Atwater, W. A. Goddard, J. H. Lee, and J. R. Greer, “Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation,” Acta Mater. 106, 171–181 (2016).
[Crossref]

Adv. Funct. Mater. (1)

H. Zhang, X. Sun, and S. Chen, “Over 100 cdA−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure,” Adv. Funct. Mater. 27(21), 1700610 (2017).
[Crossref]

Adv. Mater. (1)

H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, “Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications,” Adv. Mater. 31, 1804294 (2019).
[Crossref]

Adv. Opt. Mater. (1)

H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, “High-Efficiency Green InP Quantum Dot-Based Electroluminescent Device Comprising Thick-Shell Quantum Dots,” Adv. Opt. Mater. 7(7), 1801602 (2019).
[Crossref]

Appl. Sci. (1)

T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H. C. Kuo, and Z. Chen, “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Appl. Sci. 8(9), 1557 (2018).
[Crossref]

Chem. Mater. (2)

F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, “A Layer-by-Layer Growth Strategy for Large-Size InP/ZnSe/ZnS Core-Shell Quantum Dots Enabling High-Efficiency Light-Emitting Diodes,” Chem. Mater. 30(21), 8002–8007 (2018).
[Crossref]

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP Nanocrystal Syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

J. Alloys Compd. (1)

M. Elawad, L. Sun, G. T. Mola, Z. Yu, and E. A. A. Arbab, “Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer,” J. Alloys Compd. 771, 25–32 (2019).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, “Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence,” J. Am. Chem. Soc. 141(16), 6448–6452 (2019).
[Crossref]

J. Mater. Chem. C (3)

I. E. Jacobs, E. W. Aasen, J. L. Oliveira, T. N. Fonseca, J. D. Roehling, J. Li, G. Zhang, M. P. Augustine, M. Mascal, and A. J. Moule, “Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology,” J. Mater. Chem. C 4(16), 3454–3466 (2016).
[Crossref]

Y. L. Shi, F. Liang, Y. Hu, X. D. Wang, Z. K. Wang, and L. S. Liao, “High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinylcarbazole) as a hole-transporting layer,” J. Mater. Chem. C 5(22), 5372–5377 (2017).
[Crossref]

Y. Fu, D. Kim, H. Moon, H. Yang, and H. Chae, “Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes,” J. Mater. Chem. C 5(3), 522–526 (2017).
[Crossref]

MRS Bull. (1)

W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes,” MRS Bull. 38(9), 721–730 (2013).
[Crossref]

Nano Lett. (1)

H. Shen, W. Cao, N. T. Shewmon, C. Yang, L. S. Li, and J. Xue, “High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot based Light-Emitting Diodes,” Nano Lett. 15(2), 1211–1216 (2015).
[Crossref]

Nat. Commun. (2)

W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, “Controlling the Influence of Auger Recombination on the Performance of Quantum-Dot Light-Emitting Diodes,” Nat. Commun. 4(1), 2661 (2013).
[Crossref]

H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, and I. Salzmann, “Charge-transfer crystallites as molecular electrical dopants,” Nat. Commun. 6(1), 8560 (2015).
[Crossref]

Nat. Photonics (1)

L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, “Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures,” Nat. Photonics 5(9), 543–548 (2011).
[Crossref]

Nature (1)

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, “Solution-processed, high-performance light-emitting diodes based quantum dots,” Nature 515(7525), 96–99 (2014).
[Crossref]

Off. J. Eur. Union (1)

The European Parliament and The Council of The European Union, “Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Off. J. Eur. Union L'174, 88–110 (2011).

Opt. Express (2)

Opt. Lett. (1)

Org. Electron. (3)

M. Yin, T. Pan, Z. Yu, X. Peng, X. Zhang, W. Xie, S. Liu, and L. Zhang, “Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer,” Org. Electron. 62, 407–411 (2018).
[Crossref]

Y. Y. Ma, X. C. Hua, T. S. Zhai, Y. H. Li, X. Lu, S. Duhm, and M. K. Fung, “Doped copper phthalocyanine via an aqueous solution process for high-performance organic light-emitting diodes,” Org. Electron. 68, 236–241 (2019).
[Crossref]

Q. Lin, H. Shen, H. Wang, A. Wang, J. Niu, L. Qian, F. Guo, and L. S. Li, “Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers,” Org. Electron. 25, 178–183 (2015).
[Crossref]

Photonics Spectra. (1)

J. S. Steckel, J. Ho, and S. Coe-Sullivan, “QDs Generate Light for Next-Generation Display,” Photonics Spectra. 48(9), 55–61 (2014).

Science (1)

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, “Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals,” Science 347(6225), 967–970 (2015).
[Crossref]

Small (1)

H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, “Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10000 cdm−2,” Small 13(13), 1603962 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The absorption and PL spectra of InP/ZnSeS/ZnS QDs with TOP:S treatment. (inset) high-resolution transmission electron microscopy (HRTEM) image of InP/ZnSeS/ZnS QDs after TOP:S treatment for 14 h.
Fig. 2.
Fig. 2. (a) Chemical profiling of PEDOT:PSS/TFB and PEDOT:PSS/F4-TCNQ/TFB with F4-TCNQ interlayer coated with a 3 mg/mL solution using time of flight secondary ion mass spectrometry (TOF-SIMS) to detect fingerprints of the F4-TCNQ molecule (F ions). The sputter times versus F counts reveals diffusion of F4-TCNQ into PEDOT:PSS and TFB layer. (inset) chemical structure of F4-TCNQ. (b) Ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectra of PEDOT:PSS, F4-TCNQ, TFB and PEDOT:PSS/F4-TCNQ/TFB multilayers with F4-TCNQ doping interlayer with 0, 2-4 mg/mL solution.
Fig. 3.
Fig. 3. Ultraviolet photoelectron spectra (UPS) of (a) TFB and (b) F4-TCNQ-doped TFB with F4-TCNQ interlayer (3 mg/mL solution). (c) The optical band gap of TFB, F4-TCNQ-doped TFB from Tauc plots of ${(\alpha hv)^2} - (hv)$ relation.
Fig. 4.
Fig. 4. The current density of hole-only device (HOD) of undoped and doped with F4-TCNQ doping interlayer with 1-4 mg/mL solutions and electron-only device (EOD) of 11 mol% ZnMgO.
Fig. 5.
Fig. 5. Atomic force microscopy (AFM) images of PEDOT:PSS/TFB and PEDOT:PSS/F4-TCNQ/TFB multilayers with F4-TCNQ doping interlayer with 1-4 mg/mL solutions. The root-mean-square (RMS) surface roughness of the multilayer films were (a) 0.477 nm, (b) 0.443 nm, (c) 0.498 nm, (d) 0.501 nm and (e) 0.506 nm
Fig. 6.
Fig. 6. (a) Band energy level of a multilayered QLED structure with an F4-TCNQ doping interlayer. (b) cross-SEM image of the device with an F4-TCNQ interlayer with a 3 mg/mL solution. The electrical properties of undoped QLED (No F4-TCNQ) and QLEDs doped with F4-TCNQ interlayer with 2-4 mg/mL solutions. (c) the current density and the luminance versus the operating voltage curves of QLEDs. (d) the external quantum efficiency (EQE) versus the current density curves of QLEDs. (e) the power efficiency (PE) versus the current density curves of QLEDs
Fig. 7.
Fig. 7. Normalized EL spectra of (a) undoped QLED and (b) QLED doped with F4-TCNQ interlayer with a 3 mg/mL solution at 2 V, 2.5 V of the maximum EQE and 4 V of the maximum luminance. (inset) EL intensity spectra magnified at the 350-600 nm spectral region

Tables (2)

Tables Icon

Table 1. Characteristics of synthesized InP/ZnSeS/ZnS QDs depending on reaction time with trioctylphosphine sulfide (TOP:S) treatment for surface passivation.

Tables Icon

Table 2. Summarized device performances of InP-based QLEDs depending on different concentration of F4-TCNQ doping interlayer.

Metrics