Abstract

Magnetic polariton is a significant mode in tailoring thermal radiative properties with micro/nanostructures metamaterials and can be explained by equivalent inductor-capacitor circuit model. However, the equivalent inductor-capacitor circuit model is out of operation when the magnetic polariton resonance frequency is close to the surface plasmon polariton excitation frequency and cases of oblique incidence. In this work, we present a mutual inductor-inductor-capacitor circuit model to describe magnetic polariton resonance conditions. The mechanism of coupling between the surface plasmon polariton and magnetic polariton is explained from the perspective of equivalent circuits. The interaction between the surface plasmon polariton and magnetic polariton is studied and considered as a mutual inductance in the MLC circuit model. This model is still applicable in the case of oblique incidence. Slit arrays with different geometric parameters and incident angles are calculated to verify the rationality of the mutual inductor-inductor-capacitor circuit model. This study may allow us to predict features and parameters and achieve tailoring of the thermal radiative properties of the micro/nano-structures metamaterials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Tailoring thermal radiative properties with micro/nanostructures metamaterials has drawn lots of attention in recent years for its wide applications such as signal detection [1,2], energy harvesting [3–5] and radiation cooling [6,7]. Some mechanisms such as Magnetic polariton [8,9] (MP) and surface plasmon polariton [10–12] (SPP), are used to explain various transmission and absorption phenomena. Surface plasmon polaritons refer to the couplings between the incident electromagnetic waves with the collective oscillation of the surface charges between dissimilar materials whose real parts of permittivity have opposite signs, while magnetic polaritons are the couplings between incident electromagnetic waves with magnetic excitation inside the structures [3,13–15]. Micro/nanostructures with different patterns such us one-dimensional (1D) gratings [9], two-dimensional (2D) gratings [16–18], complex gratings [19,20], nanowires [21] and nanoparticles [22,23], have been investigated and SPPs and MPs are confirmed to exist in these structures.

The equivalent inductor-capacitor (LC) circuit method is an effective way to find the MP resonance conditions in micro/nanostructures [24–27]. Many researchers employed LC circuit model in different structures and confirmed the excitation of the MP resonance. Wang et al. [28] investigated the fundamental MP in slit arrays and LC circuit model can show good agreement with numerical calculation. Zhao et al. [9] employed LC circuit model in deep gratings and the relationship between the capacitance coefficient and the charge-distribution of the gratings’ grooves is studied. Wang et al. [13] studied 2D periodic film-coupled concave grating metamaterial and MP can still be predicted by LC circuit model in multi-layer structures. Chang et al. [21] investigated nanowires and found that LC circuit model is reliable in this case. However, LC model is out of operation when the MP resonance frequency is near to SPP resonance frequency due to fact that the strong interaction between MP and SPP is neglected. In addition, the LC circuit model cannot describe oblique incidence cases in former studies.

In this work, Finite-difference time-domain (FDTD) method is employed to calculate the radiative properties by solving Maxwell's equations numerically. The electromagnetic field distributions confirm the excitation of MP resonance and effects of MP in tailoring the radiative properties are investigated. Taking the interaction between MP and SPP into account, equivalent mutual inductor-inductor-capacitor (MLC) circuit model is proposed to describe magnetic polariton resonance conditions in the case of oblique incidence in slit arrays. The electric currents at the top/bottom surface of the strip caused by SPP will induce a magnetic field, and this magnetic field will generate an additional induced current at the sidewall of the strip. The additional induced current has a significant effect on the equivalent circuit at the slit and will significantly affect the MP resonant conditions. Therefore, the effect of SPP on MP is considered as the mutual inductance in MLC circuit model according to the electromagnetism concept. The mechanism of coupling between SPP and MP is explained from the perspective of equivalent circuits. Slit arrays with different geometric parameters and incident angles are calculated to verify the rationality of the improved model. The findings of this work may contribute to the prediction of thermal radiative properties in nanophotonics, plasmonics, nanolithography, and nanoscale energy devices.

2. Modeling and numerical method

As illustrated in Fig. 1, the 1D periodic sliver slit arrays surrounded by vacuum are considered in this paper. The slit array is described by a period Λ, height h and slit width b (strip width w = Λ-b). A set of base geometric values, such as Λ = 0.5μm, b = 0.05μm and h = 1μm, is considered for the slit array. A transverse magnetic (TM) wave of wavelength λ is incident onto the slit arrays at an incidence angle θ.

 

Fig. 1 Schematic of a slit array in the present study.

Download Full Size | PPT Slide | PDF

The FDTD simulation is implemented using a commercial package (Lumerical Solutions, Inc.). The spectral reflectance ρ and transmittance τ of Ag slit arrays are calculated with the frequency range from 2500cm−1 to 25000cm−1. The spectral absorptance α can be calculated from α = 1-ρ-τ according to energy balance. The frequency-dependent complex dielectric functions of Ag is obtained by using Drude model [14]:

ε(ω)=ε+iε=εωp2ω(ω+iγ)
where ε = 3.4 is the high-frequency constant, ωp = 2.22 × 1015Hz is the plasma frequency and γ = 4.30 × 1012Hz is the scattering rate [29]. Refined meshes with sizes of 1nm in both x and z directions are used to ensure the numerical convergence.

As mentioned before, MLC circuit model consider SPP’s effect on MPs. The dispersion relation of SPP at the Ag-vacuum interface is expressed as [14,30]:

kSPP=ωcεε+1
where c is the speed of light in vacuum. According to the Bloch-Floquet condition, the wavevector can be expressed as kx = (ω/c)sinθ + (2πj)/Λ, where j is an integer accounting for the diffraction order [30]. By solving kx = kSPP, the SPP excitation frequency ωSPP are obtained. Note that, due to fact that the wavevector is related to the incident angle and the period of the slit array, the SPP excitation frequency varies with the incident angle and period.

3. The spectral radiative properties and electromagnetic field distributions

Figure 2 shows spectral normal radiative properties of the slit array with the set of geometric values: Λ = 0.5μm, b = 0.05μm and h = 1μm at TM-wave incidence. The first six resonances, MP1, MP2, MP3, MP4, MP5, MP6, are caused by the excitations of the magnetic polaritons. The next mode is an SPP excited at approximately 20000 cm−1, followed by the MP6 and MP7. Note that, MP6 appears twice and both of them can be confirmed from electromagnetic field distributions which means SPP truncates the MP6 to make it two. This phenomenon confirms the interaction between the SPP and MP. All the MP result in transmittance and absorptance enhanced and as the order of MPn gets higher, the transmittance enhancement is weakened. Fixing Λ = 0.5μm and b = 0.05μm, and setting h to be 400 nm, 200 nm and 100 nm, respectively, the spectral normal radiative properties are also calculated similarly and not repeat here. When h is 1000 nm, 400 nm, 200 nm and 100 nm, the resonant frequencies of MP1 are 3475 cm−1, 7914 cm−1, 13377 cm−1 and 17961 cm−1, respectively.

 

Fig. 2 Reflectance ρ, transmittance τ and absorptance α at normal incidence for TM waves.

Download Full Size | PPT Slide | PDF

The electromagnetic field distributions at the MP1 resonant frequencies with varied slit array heights at normal incidence are plotted in Fig. 3: (a) h = 1000nm at 3475 cm−1; (b) h = 400nm at 7914 cm−1; (c) h = 200nm at 13377 cm−1; (d) h = 100nm at 17961 cm−1. The contour plots indicate the magnitude of magnetic field and the arrows represent the direction of the electric field vectors. The electromagnetic field distributions confirm the excitation of MP resonances and reveal that the magnetic field is strongly localized inside the slit between two neighboring metal strips, and the induced electric current flows along the sidewall surface. Figure 3 shows that as the height decreases, the energy is no longer concentrated only in the slit, while the magnetic field at the top and bottom surfaces of the strip is enhanced. Due to fact that as the slit height decreases, MP1 resonant frequency increases and gradually approaches to SPP excitation frequency 20000 cm−1, the magnetic field enhanced at top/bottom surface can be attributed to the SPP’s impact.

 

Fig. 3 Electromagnetic field distributions at the MP1 resonant frequencies: (a) h = 1000nm at 3475 cm−1; (b) h = 400nm at 7914 cm−1; (c) h = 200nm at 13377 cm−1; (d) h = 100nm at 17961 cm−1. The contour plots indicate the magnitude of magnetic field and the arrows represent the direction of the electric field vectors.

Download Full Size | PPT Slide | PDF

Table 1 demonstrates numerical values of the electric field and current density in Fig. 3. For location 1, the electric field vectors and current density only have z components; while for location 2, they only have x components. For high frequency electromagnetic waves, electromagnetic fields and induced electric currents can mainly exist in a thin layer (within the power penetration depth) on the surface which is called as skin effect. The power penetration depth δ = λ/4πκ is calculated to be 12nm approximately in the frequency range studied in this article so that 10nm is chosen as the distance from top surface and sidewall and locations a1-d1 and a2-d2 are given in Table. 1. According to the microscopic form of Ohm’s law, the current density vector is related to the electric field vector by J = σE, where σ=σ+iσ is the complex conductivity and has a relationship with complex dielectric function, i.e., σ = -iωε0ε. As Table 1 shows that as the slit height decreases (from location a2 to d2), |Ex| dramatically increases, that is, the current density at the top/bottom surfaces |Jx| is dramatically enhanced. This can be attributed to the coupling of SPP because as slit height decreases, the MP resonant frequency is closer to the SPP excitation frequency. The current flowing at the top/bottom surfaces will generate an induced magnetic field and this induced magnetic field will generate an additional induced current flowing at the sidewall. From slit height 1000nm to 400nm, the current density at the sidewall |Jz| increases by 8.0%, while |Jz| increases by 98.6% from slit height 400nm to 100nm, which indicates the enhancement of |Jz| is mainly due to the coupling, not slit height.

Tables Icon

Table 1. Numerical values of the electric field and current density on Fig. 3. For location 1, the electric field vectors and current density only have z components; while for location 2, they only have x components.

Hence, the magnetic field induced by the current flowing at top/bottom surface of the strip will generate an additional induced current at the sidewall of the strip. The additional induced current at the sidewall which is caused by SPP has a significant impact on the MP resonant frequency. As the height decreases, the MP1 resonant frequency shifts to high frequency and gradually approaches SPP excitation frequency which causes the induced magnetic field and induced current at the sidewall become stronger. The closer the excitation frequency of SPP and MP are, the stronger additional induced current is, that is, the stronger the interaction between SPP and MP is.

To develop the mechanism of higher-order MP, the electromagnetic field distributions of MP4 at normal incidence are chosen as an example. Figure 4 shows the electromagnetic field distributions at the MP4 resonant frequencies: (a) h = 600nm at 19060 cm−1; (b) h = 1000nm at 13474 cm−1. Four current loops with alternating directions are induced inside the slits between two neighboring metal strips. Similarly, as slit height decreases from 1000nm to 600nm, the MP4 resonant frequency shifts from 13474cm−1 to 19060cm−1. As the excitation frequency of SPP and MP4 approach, the energy density at the top and bottom surfaces of the strip are enhanced and that is similar to the phenomenon of the MP1. Hence, the interaction between SPP and higher-order MPn can be also considered as the impact of the additional induced current on the higher-order MPn resonant frequency.

 

Fig. 4 Electromagnetic field distributions at the MP4 excitation frequencies: (a) h = 600nm at 19060 cm−1; (b) h = 1000nm at 13474 cm−1. The contour plots indicate the magnitude of magnetic field and the arrows represent the direction of the electric field vectors.

Download Full Size | PPT Slide | PDF

4. Development of the MLC circuit model

4.1. MLC circuit model for MP1

The LC circuit model has been successfully used to understand the physical mechanisms and the geometric effect on MPs [28,31,32]. However, the model is limited for prediction of resonant frequency of MPs without considering the interaction between SPP and MP. As the resonant frequency of MP and SPP approach, the agreement gets worse. In order to extend the applicable frequency range of LC circuit model, we develop an MLC circuit model to describe the resonance conditions for multi-order MPn. In addition, MLC circuit model can be used in the case of oblique incidence. As shown in Fig. 5, the slit serves as a dielectric capacitor C and the sidewall of the slit is treated as a conductor with an inductance L. The difference from the previous model is that, the effect of SPP on MP is treated as a mutual inductance M in the MLC circuit model in the present study. The flowing current at the top/bottom surface of the strip will generate an induced magnetic field which will induce an additional current at the side wall. The above process can be treated as a mutual inductance according to the electromagnetism concept [33]. The electromagnetic field and current configurations confirm the existence of inductance at the top and bottom of the strip Lw which will interact with the inductance of the sidewall L and cause a mutual inductance M.

 

Fig. 5 The MLC circuit model for MP1.

Download Full Size | PPT Slide | PDF

The inductance of the strip’s sidewall L consists of the inductance of two parallel strips and kinetic inductance and is model as [9,25]:

L=0.5μ0hblhε0ω2lδεε2+ε2
where μ0 is the permeability of vacuum, εand ε are the real and imaginary parts of the complex dielectric function of Ag, respectively. l is the strip length in the y direction and can be treated as 1. δ = λ/4πκ is the power penetration depth where is κ the extinction coefficient and can be calculated from the complex dielectric function ε=ε+iε=(n+iκ)2.

The capacitance between two strips is expressed as [9,25]:

C=c1εdε0hlb
where εd is the relative permittivity of the vacuum 1, and ε0 is the free-space permittivity. c1 is a numerical factor accounting for the non-uniform charge distribution at the strip sidewall surfaces.

As a result of the excitation of SPP with an excitation frequency ωSPP, the impedance at the top and bottom surfaces of the strip Zw is expressed as Zw=Rwi(ωSPPω)Lw. Zw can be also expressed as: Zw=s/(σA) [9,14,31], where σ = -iωε0ε is the complex conductivity. Eliminate Zw and complex equation Rwi(ωSPPω)Lw=s/(σA) is obtained. The real and imaginary parts of the complex equation can be expressed as: εRwε(ωSPPω)Lw=s/(ωε0A) and i[εRw+ε(ωSPPω)Lw]=0, respectively. s is the total length of current path in the metal and for the situation of the top and bottom surface of the strip, s = w. A is the effective cross-section area and equal to A = . Eliminate Rw, and Lw can be obtained as:

Lw=wε0ω(ωSPPω)lδεε2+ε2

The effect of SPP on MP is treated as a mutual inductance M in the MLC circuit model. M can be expressed as:

M=k1LLw
where k1 is coupling coefficient and numerical factor between 0 and 1. When mutual inductance occurs between two circuits, if there is no loss of magnetic energy, k1 should be 1 and Eq. (6) would degenerate to the tightly coupled situation. The value of k1 depends on the relative position of the two circuits and the winding form of two the inductors and is difficult to obtain under certain circumstances [33].

Hence, according to the Fig. 5, the total impedance Z of MLC circuit model at the slit can be obtained as follows:

Z=2i[ω(L+M)1ωC]

By setting Z = 0, the MP1 resonance angular frequency can be obtained as:

ωMP1=1(L+M)C

Note that, ε, ε, δ, κ are all frequency dependent, so it is an implicit equation that needs to be solved. It is also worth noting that, in Eq. (5), as the frequency approaches to ωSPP, Lw tends to infinity as well as mutual inductance M which means SPP has an infinite effect on MP. As a result, the interaction between SPP and MP causes the ωSPP and ωMP shifting to each other, i.e., ωMP approaches ωSPP as ω approaches ωSPP. This phenomenon is confirmed by Figs. 7 and 8, i.e., the curves of MP cannot pass through the curve of SPP and shift to the curve of SPP. The difference between the present MLC model and the previous LC models is that the previous LC models do not take the coupling into consider which means M = 0 in the previous LC models.

4.2. MLC circuit model for MPn

As shown in Fig. 6, the MLC circuit model for multi-order MPn can be equivalent to the series of multiple LC circuits of MP1 which can be confirmed by electromagnetic field distributions as shown in Fig. 4. Each circuit should have a same height h/n and c1 and k1 are assumed to be equal of each circuit. For the situation of MPn, Eqs. (3), (4), and (6)-(8) change in the form:

Ln=0.5μ0blhn1ε0ω2lδhnεε2+ε2
Cn=c1εdε0lbhn
M=k1LnLw
Z=2in[ω(Ln+M)1ωCn]
ωMPn=1(Ln+M)Cn
where Ln is the inductance of the strip’s sidewall and Cn is the capacitance between two strips of each circuit. Note that, due to fact that the relative positions between the top/bottom inductance and each sidewall inductance are different, each circuit should have a different k1. In addition, each circuit also should have a different c1 for reason that charge distribution at the sidewall of each circuit is slightly different. In the present study, c1 is treated to be equal of each circuit for simplicity and represents the average value of all the circuits as well as k1.

 

Fig. 6 The MLC circuit model for MPn.

Download Full Size | PPT Slide | PDF

This MLC circuit model can be used to explain the geometric effect and incident angle on the resonances which will be shown in the following section.

5. Results and discussion

5.1. Geometric effect

Figure 7 demonstrates the comparison between the previous LC model and MLC model with the geometric values: (a) Λ = 0.5μm, b = 0.05μm and h varies from 2nm to 1μm; (b) h = 0.4μm, b = 0.05μm and Λ varies from 52nm to 1450nm. The contour plots show 1−ρ at normal incidence. The green lines are the results calculated from the previous LC model [28] and the cyan-blue lines are calculated from the MLC circuit model. Yellow line represents the excitation frequencies of SPP which can be calculated as Section. 2 states. The previous models do not take the coupling into account and cause the MP curves pass through the SPP curve. Due to considering the effect of interaction between SPP and MP, the MLC circuit model shows good agreement with numerical calculation especially when the excitation frequency of SPP and MP are close.

 

Fig. 7 Illustration of the comparison between the previous LC model and MLC model with the geometric values: (a) Λ = 0.5μm, b = 0.05μm and h varies from 2nm to 1μm; (b) h = 0.4μm, b = 0.05μm and Λ varies from 52nm to 1450nm. The green line are the results calculated from the previous LC model [28] and the cyan-blue lines are calculated from the MLC circuit model.

Download Full Size | PPT Slide | PDF

As shown in Fig. 7(a), the curves of MPs are divided into two branches by the curve of SPP which is consistent with two MP6 in the Fig. 2. Besides, as the slit height increases, the MPs resonance frequencies decrease. SPP is excited at 20000cm−1 approximately and is nearly independent of h. Due to the interaction between MP and SPP, the resonance frequencies for both SPP and MP shift near the intersections. Figure 7(b) shows that SPP excitation is related to the period significantly and ωSPP decreases with the period. As period increases, more SPP mode appear and divided MP into branches. Though there is no factor of period Λ in Eqs. (3)-(13), ωSPP varies with Λ so that the resonant frequencies of MPs are related to Λ. The resonant frequencies of MPs remain unchanged until they approach SPP curves. The enhancement of MPs become weaker as the times of being divided increases.

Note that, c1 is an adjustable value in various structures [24,27,28,31,32]. Each curve of MP in Figs. 7 and 8 corresponds to a set of c1 and k1 which means the change rule of radiative properties is same under the similar geometric parameters (fixing h, b and Λ) or incident angles. The mutual inductance generated by the current flowing at the top/bottom of the strip will change the charge distribution of the sidewall, that is, c1 and k1 are interrelated. c1 and k1 will affect the resonant frequency together and that is why for the geometric parameters Λ = 0.5μm, b = 0.05μm and h = 0.4μm, c1 and k1 have slight difference in Fig. 7(a) and 7(b). As shown in Table. 2 and Fig. 7 (a), fixing b and Λ, as the order of MPn increase, the charge distributions of the sidewall are similar at various slit heights and cause c1 unchanged. As the number of the circuit (order of MP) increases, the induced magnetic field impact on several circuits together and it causes the average k1 reduced. Table. 2 and Fig. 7 (b) indicate that as the order of MP increases, k1 decreases slightly and c1 keep unchanged with the same reason above.

 

Fig. 8 Demonstration of incident angle effect on the magnetic resonance conditions with slit height h = 400nm, slit width b = 50nm and period Λ = 0.5μm. The cyan-blue lines are calculated from the MLC circuit model and yellow line is curve of SPP.

Download Full Size | PPT Slide | PDF

5.2. Effect of incident angle

Figure 8 demonstrates of incident angle effect on the magnetic resonance conditions with slit height h = 400nm, slit width b = 50nm and period Λ = 0.5μm. c1 = 0.17 and k1 = 0.05 for both MP1 curve and MP2 curve. The cyan-blue lines are calculated from MLC circuit model and yellow line is SPP curve calculated by the method in Section 2. SPP curve consists of two fold lines and divide MP curves into branches. Though there is no factor of incident angle θ in Eqs. (3)-(13), ωSPP varies with θ so that the resonant frequencies of MPs are related to θ. MPs curves remain unchanged until they approach SPP curve. MPs do not change with incident angle according to the LC model, but it is applicable only when the interaction between SPP and MPs can be neglected. The essence of MPs change with the incident angle and period is that SPP is significantly correlated with the incident angle and period. Figures 7 and 8 show that MLC circuit model can describe the MP resonant conditions of geometric effect and effect of incident angle with reasonable explanation and the rationality of MLC model is verified.

6. Conclusion

In summary, MLC circuit model is proposed to describe MP resonant conditions in the case of oblique incidence. The interaction between SPP and MP can be treated as that, the magnetic field induced by the electric current flowing at the top/bottom surfaces generates an additional induced current at the sidewall of the strip which will significantly affect the MP resonant conditions. The relative value of electric field at the distances of power penetration depth from the sidewall surface increases as slit height reduces which confirms the additional current flowing at the sidewall. The closer the excitation frequency between MP and SPP is, the stronger the additional current is, that is, the stronger coupling effect is. The mechanism of coupling between SPP and MP is explained from the perspective of equivalent circuits and the effect of SPP on MP is considered as the mutual inductance in MLC circuit model. MLC circuit model shows good agreement with numerical calculation results by FDTD. Slit arrays with different geometric parameters and incident angles are calculated to verify the rationality of MLC circuit model. It is expected that our study may contribute to the prediction of thermal radiative properties in nanoscale energy devices especially the frequency-dependent emitters and filters.

Funding

National Natural Science Foundation of China (51876049).

Acknowledgments

Special thanks are given to the reviewers and people who suggest improvements of the manuscript.

References

1. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef]   [PubMed]  

2. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010). [CrossRef]   [PubMed]  

3. Z. M. Zhang and L. P. Wang, “Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials,” Int. J. Thermophys. 34(12), 2209–2242 (2013). [CrossRef]  

4. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009). [CrossRef]  

5. Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transf. 109(1), 63–72 (2017). [CrossRef]  

6. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013). [CrossRef]   [PubMed]  

7. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017). [CrossRef]   [PubMed]  

8. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008). [CrossRef]   [PubMed]  

9. B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 81–89 (2014). [CrossRef]  

10. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998). [CrossRef]  

11. J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]  

12. B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017). [CrossRef]  

13. H. Wang and L. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015). [CrossRef]  

14. Z. M. Zhang, Nano/microscale Heat Transfer (McGraw-Hill Education, 2007).

15. Y. Zhao and C. J. Fu, “Design of multiband selective near-perfect metamaterial absorbers with SiO2 cylinder/rectangle shell horizontally embedded in opaque silver substrate,” Int. J. Heat Mass Transf. 113(1), 281–285 (2017). [CrossRef]  

16. Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 50–57 (2014). [CrossRef]  

17. B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014). [CrossRef]  

18. B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67(1), 637–645 (2013). [CrossRef]  

19. X. L. Liu, B. Zhao, and Z. M. Zhang, “Wide-angle near infrared polarizer with extremely high extinction ratio,” Opt. Express 21(9), 10502–10510 (2013). [CrossRef]   [PubMed]  

20. J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transf. 151(1), 49–57 (2015). [CrossRef]  

21. J. Y. Chang, H. Wang, and L. Wang, “Tungsten nanowire metamaterials as selective solar thermal absorbers by excitation of magnetic polaritons,” J. Heat Transf. 139(5), 052401 (2017). [CrossRef]  

22. Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018). [CrossRef]  

23. Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf. 98(1), 833–844 (2016). [CrossRef]  

24. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006). [CrossRef]   [PubMed]  

25. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007). [CrossRef]   [PubMed]  

26. V. D. Lam, J. B. Kim, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15(25), 16651–16656 (2007). [CrossRef]   [PubMed]  

27. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005). [CrossRef]   [PubMed]  

28. L. Wang and Z. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009). [CrossRef]  

29. M. F. Modest, Radiative Heat Transfer (Academic, 2013).

30. Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007). [CrossRef]  

31. A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149(1), 33–40 (2014). [CrossRef]  

32. Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297(1), 169–175 (2013). [CrossRef]  

33. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

References

  • View by:
  • |
  • |
  • |

  1. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  2. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
    [Crossref] [PubMed]
  3. Z. M. Zhang and L. P. Wang, “Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials,” Int. J. Thermophys. 34(12), 2209–2242 (2013).
    [Crossref]
  4. J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
    [Crossref]
  5. Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transf. 109(1), 63–72 (2017).
    [Crossref]
  6. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref] [PubMed]
  7. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref] [PubMed]
  8. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  9. B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 81–89 (2014).
    [Crossref]
  10. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
    [Crossref]
  11. J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [Crossref]
  12. B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
    [Crossref]
  13. H. Wang and L. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
    [Crossref]
  14. Z. M. Zhang, Nano/microscale Heat Transfer (McGraw-Hill Education, 2007).
  15. Y. Zhao and C. J. Fu, “Design of multiband selective near-perfect metamaterial absorbers with SiO2 cylinder/rectangle shell horizontally embedded in opaque silver substrate,” Int. J. Heat Mass Transf. 113(1), 281–285 (2017).
    [Crossref]
  16. Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 50–57 (2014).
    [Crossref]
  17. B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014).
    [Crossref]
  18. B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67(1), 637–645 (2013).
    [Crossref]
  19. X. L. Liu, B. Zhao, and Z. M. Zhang, “Wide-angle near infrared polarizer with extremely high extinction ratio,” Opt. Express 21(9), 10502–10510 (2013).
    [Crossref] [PubMed]
  20. J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transf. 151(1), 49–57 (2015).
    [Crossref]
  21. J. Y. Chang, H. Wang, and L. Wang, “Tungsten nanowire metamaterials as selective solar thermal absorbers by excitation of magnetic polaritons,” J. Heat Transf. 139(5), 052401 (2017).
    [Crossref]
  22. Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018).
    [Crossref]
  23. Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf. 98(1), 833–844 (2016).
    [Crossref]
  24. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [Crossref] [PubMed]
  25. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
    [Crossref] [PubMed]
  26. V. D. Lam, J. B. Kim, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15(25), 16651–16656 (2007).
    [Crossref] [PubMed]
  27. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
    [Crossref] [PubMed]
  28. L. Wang and Z. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
    [Crossref]
  29. M. F. Modest, Radiative Heat Transfer (Academic, 2013).
  30. Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
    [Crossref]
  31. A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149(1), 33–40 (2014).
    [Crossref]
  32. Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297(1), 169–175 (2013).
    [Crossref]
  33. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

2018 (1)

Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018).
[Crossref]

2017 (5)

J. Y. Chang, H. Wang, and L. Wang, “Tungsten nanowire metamaterials as selective solar thermal absorbers by excitation of magnetic polaritons,” J. Heat Transf. 139(5), 052401 (2017).
[Crossref]

Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transf. 109(1), 63–72 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
[Crossref]

Y. Zhao and C. J. Fu, “Design of multiband selective near-perfect metamaterial absorbers with SiO2 cylinder/rectangle shell horizontally embedded in opaque silver substrate,” Int. J. Heat Mass Transf. 113(1), 281–285 (2017).
[Crossref]

2016 (1)

Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf. 98(1), 833–844 (2016).
[Crossref]

2015 (2)

J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transf. 151(1), 49–57 (2015).
[Crossref]

H. Wang and L. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

2014 (4)

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 81–89 (2014).
[Crossref]

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 50–57 (2014).
[Crossref]

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149(1), 33–40 (2014).
[Crossref]

2013 (5)

Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297(1), 169–175 (2013).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67(1), 637–645 (2013).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Wide-angle near infrared polarizer with extremely high extinction ratio,” Opt. Express 21(9), 10502–10510 (2013).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Z. M. Zhang and L. P. Wang, “Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials,” Int. J. Thermophys. 34(12), 2209–2242 (2013).
[Crossref]

2011 (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

2010 (1)

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

2009 (2)

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

L. Wang and Z. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

2008 (1)

2007 (3)

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[Crossref]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

V. D. Lam, J. B. Kim, S. J. Lee, Y. P. Lee, and J. Y. Rhee, “Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium,” Opt. Express 15(25), 16651–16656 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

1999 (1)

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

1998 (1)

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Baxter, J.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Bhatt, G.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
[Crossref]

Bian, Z.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Buddhiraju, S.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
[Crossref]

Chang, J. Y.

J. Y. Chang, H. Wang, and L. Wang, “Tungsten nanowire metamaterials as selective solar thermal absorbers by excitation of magnetic polaritons,” J. Heat Transf. 139(5), 052401 (2017).
[Crossref]

Chen, C. J.

Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297(1), 169–175 (2013).
[Crossref]

Chen, G.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Chen, K.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
[Crossref]

Chen, Y. B.

Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297(1), 169–175 (2013).
[Crossref]

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[Crossref]

Chen, Y.-B.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014).
[Crossref]

Chiu, F.-C.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014).
[Crossref]

Danielson, D.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Dresselhaus, M. S.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Economon, E. N.

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

Fan, S.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Fedorov, A. G.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Fisher, T. S.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Fu, C. J.

Y. Zhao and C. J. Fu, “Design of multiband selective near-perfect metamaterial absorbers with SiO2 cylinder/rectangle shell horizontally embedded in opaque silver substrate,” Int. J. Heat Mass Transf. 113(1), 281–285 (2017).
[Crossref]

Garci’a-Vidal, F. J.

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Guo, Y.

Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018).
[Crossref]

Han, S.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Jae Lee, B.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014).
[Crossref]

Jeon, K. S.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Jia, Z. X.

Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018).
[Crossref]

Jin, R.

Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf. 98(1), 833–844 (2016).
[Crossref]

Jin Lee, H.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014).
[Crossref]

Jones, C. W.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Kim, H. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Kim, J. B.

Kortshagen, U.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Koschny, T.

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Lam, V. D.

Lee, B. J.

Lee, S. J.

Lee, Y. P.

Li, M.

Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Liang, Y.

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 50–57 (2014).
[Crossref]

Lim, D. K.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Lipson, M.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
[Crossref]

Liu, L. H.

Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf. 98(1), 833–844 (2016).
[Crossref]

Liu, X. L.

Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transf. 109(1), 63–72 (2017).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Wide-angle near infrared polarizer with extremely high extinction ratio,” Opt. Express 21(9), 10502–10510 (2013).
[Crossref] [PubMed]

Liu, Y. B.

Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf. 98(1), 833–844 (2016).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Maginn, E.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Manthiram, A.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (Academic, 2013).

Nam, J. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nozik, A.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Porto, J. A.

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Preist, T. W.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Qiu, J.

Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf. 98(1), 833–844 (2016).
[Crossref]

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Rephaeli, E.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Rhee, J. Y.

Rolison, D. R.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Sakurai, A.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149(1), 33–40 (2014).
[Crossref]

Sambles, J. R.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Sands, T.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Shamonina, E.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, L.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Sholl, D.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Shuai, Y.

Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018).
[Crossref]

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 50–57 (2014).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67(1), 637–645 (2013).
[Crossref]

Sobnack, M. B.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Solymar, L.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

Soukoulis, C. M.

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Suh, Y. D.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Tan, H.

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 50–57 (2014).
[Crossref]

Tan, H. P.

Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018).
[Crossref]

Tan, W. C.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Wang, A.

Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transf. 109(1), 63–72 (2017).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, H.

J. Y. Chang, H. Wang, and L. Wang, “Tungsten nanowire metamaterials as selective solar thermal absorbers by excitation of magnetic polaritons,” J. Heat Transf. 139(5), 052401 (2017).
[Crossref]

H. Wang and L. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

Wang, L.

J. Y. Chang, H. Wang, and L. Wang, “Tungsten nanowire metamaterials as selective solar thermal absorbers by excitation of magnetic polaritons,” J. Heat Transf. 139(5), 052401 (2017).
[Crossref]

H. Wang and L. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

L. Wang and Z. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

Wang, L. P.

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67(1), 637–645 (2013).
[Crossref]

Z. M. Zhang and L. P. Wang, “Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials,” Int. J. Thermophys. 34(12), 2209–2242 (2013).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Wanstall, N. P.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Wu, Y.

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Xuan, Y. M.

Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transf. 109(1), 63–72 (2017).
[Crossref]

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhang, Z.

L. Wang and Z. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

Zhang, Z. M.

J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transf. 151(1), 49–57 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149(1), 33–40 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 81–89 (2014).
[Crossref]

Z. M. Zhang and L. P. Wang, “Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials,” Int. J. Thermophys. 34(12), 2209–2242 (2013).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67(1), 637–645 (2013).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Wide-angle near infrared polarizer with extremely high extinction ratio,” Opt. Express 21(9), 10502–10510 (2013).
[Crossref] [PubMed]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[Crossref]

Zhao, B.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 81–89 (2014).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149(1), 33–40 (2014).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Wide-angle near infrared polarizer with extremely high extinction ratio,” Opt. Express 21(9), 10502–10510 (2013).
[Crossref] [PubMed]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67(1), 637–645 (2013).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhao, J. M.

J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transf. 151(1), 49–57 (2015).
[Crossref]

Zhao, Y.

Y. Zhao and C. J. Fu, “Design of multiband selective near-perfect metamaterial absorbers with SiO2 cylinder/rectangle shell horizontally embedded in opaque silver substrate,” Int. J. Heat Mass Transf. 113(1), 281–285 (2017).
[Crossref]

Zheng, Z. H.

Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transf. 109(1), 63–72 (2017).
[Crossref]

Zhou, J.

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

L. Wang and Z. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009).
[Crossref]

Energy Environ. Sci. (1)

J. Baxter, Z. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, T. S. Fisher, C. W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D. R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, “Nanoscale design to enable the revolution in renewable energy,” Energy Environ. Sci. 2(6), 559–588 (2009).
[Crossref]

Int. J. Heat Mass Transf. (4)

Z. H. Zheng, X. L. Liu, A. Wang, and Y. M. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transf. 109(1), 63–72 (2017).
[Crossref]

Y. Zhao and C. J. Fu, “Design of multiband selective near-perfect metamaterial absorbers with SiO2 cylinder/rectangle shell horizontally embedded in opaque silver substrate,” Int. J. Heat Mass Transf. 113(1), 281–285 (2017).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67(1), 637–645 (2013).
[Crossref]

Y. B. Liu, R. Jin, J. Qiu, and L. H. Liu, “Spectral radiative properties of a nickel porous microstructure and magnetic polariton resonance for light trapping,” Int. J. Heat Mass Transf. 98(1), 833–844 (2016).
[Crossref]

Int. J. Thermophys. (1)

Z. M. Zhang and L. P. Wang, “Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials,” Int. J. Thermophys. 34(12), 2209–2242 (2013).
[Crossref]

J. Heat Transf. (2)

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transf. 136(7), 072702 (2014).
[Crossref]

J. Y. Chang, H. Wang, and L. Wang, “Tungsten nanowire metamaterials as selective solar thermal absorbers by excitation of magnetic polaritons,” J. Heat Transf. 139(5), 052401 (2017).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (6)

Z. X. Jia, Y. Shuai, M. Li, Y. Guo, and H. P. Tan, “Enhancement radiative cooling performance of nanoparticle crystal via oxidation,” J. Quant. Spectrosc. Radiat. Transf. 207(1), 23–31 (2018).
[Crossref]

J. M. Zhao and Z. M. Zhang, “Electromagnetic energy storage and power dissipation in nanostructures,” J. Quant. Spectrosc. Radiat. Transf. 151(1), 49–57 (2015).
[Crossref]

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149(1), 33–40 (2014).
[Crossref]

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 50–57 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135(1), 81–89 (2014).
[Crossref]

H. Wang and L. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

Nano Energy (1)

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41(1), 344–350 (2017).
[Crossref]

Nano Lett. (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Opt. Commun. (2)

Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297(1), 169–175 (2013).
[Crossref]

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref] [PubMed]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

J. A. Porto, F. J. Garcı’a-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Science (2)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007).
[Crossref] [PubMed]

Other (3)

M. F. Modest, Radiative Heat Transfer (Academic, 2013).

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University, 2009).

Z. M. Zhang, Nano/microscale Heat Transfer (McGraw-Hill Education, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of a slit array in the present study.
Fig. 2
Fig. 2 Reflectance ρ, transmittance τ and absorptance α at normal incidence for TM waves.
Fig. 3
Fig. 3 Electromagnetic field distributions at the MP1 resonant frequencies: (a) h = 1000nm at 3475 cm−1; (b) h = 400nm at 7914 cm−1; (c) h = 200nm at 13377 cm−1; (d) h = 100nm at 17961 cm−1. The contour plots indicate the magnitude of magnetic field and the arrows represent the direction of the electric field vectors.
Fig. 4
Fig. 4 Electromagnetic field distributions at the MP4 excitation frequencies: (a) h = 600nm at 19060 cm−1; (b) h = 1000nm at 13474 cm−1. The contour plots indicate the magnitude of magnetic field and the arrows represent the direction of the electric field vectors.
Fig. 5
Fig. 5 The MLC circuit model for MP1.
Fig. 6
Fig. 6 The MLC circuit model for MPn.
Fig. 7
Fig. 7 Illustration of the comparison between the previous LC model and MLC model with the geometric values: (a) Λ = 0.5μm, b = 0.05μm and h varies from 2nm to 1μm; (b) h = 0.4μm, b = 0.05μm and Λ varies from 52nm to 1450nm. The green line are the results calculated from the previous LC model [28] and the cyan-blue lines are calculated from the MLC circuit model.
Fig. 8
Fig. 8 Demonstration of incident angle effect on the magnetic resonance conditions with slit height h = 400nm, slit width b = 50nm and period Λ = 0.5μm. The cyan-blue lines are calculated from the MLC circuit model and yellow line is curve of SPP.

Tables (2)

Tables Icon

Table 1 Numerical values of the electric field and current density on Fig. 3. For location 1, the electric field vectors and current density only have z components; while for location 2, they only have x components.

Tables Icon

Table 2 MPn paramters of Fig. 7.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε +i ε = ε ω p 2 ω(ω+iγ)
k SPP = ω c ε ε+1
L= 0.5 μ 0 hb l h ε 0 ω 2 lδ ε ε 2 + ε 2
C= c 1 ε d ε 0 hl b
L w = w ε 0 ω( ω SPP ω )lδ ε ε 2 + ε 2
M= k 1 L L w
Z=2i[ ω(L+M) 1 ωC ]
ω MP1 = 1 (L+M)C
L n = 0.5 μ 0 b l h n 1 ε 0 ω 2 lδ h n ε ε 2 + ε 2
C n = c 1 ε d ε 0 l b h n
M= k 1 L n L w
Z=2in[ ω( L n +M ) 1 ω C n ]
ω MPn = 1 ( L n +M ) C n

Metrics