Abstract

Extremely anisotropic media such as anisotropic zero-index media allow wave propagation in extraordinary ways that are absent in isotropic systems. Here, we propose an approach to realize a type of extremely anisotropic effective epsilon-near-zero media by exploiting anisotropic waveguide metamaterials. The metamaterial is composed of two kinds of dielectrics with metal wires in waveguides. Extreme anisotropy is realized by alternating layers of the two kinds of dielectrics, which lead to different cut-off frequencies for transverse electric modes in different directions. Anisotropic effective epsilon-near-zero media with low loss can be obtained around the cutoff frequencies. Based on the extreme anisotropy, the unique phenomena of directive emission, nearly perfect bending waveguides and arbitrary control of energy flux are demonstrated. Interestingly, subwavelength focusing of energy flux with a spotsize <0.2λ is observed (λ is the wavelength in free space). Our work provides a convenient approach for the realization of extremely anisotropic epsilon-near-zero media and unique applications in low-loss waveguide metamaterials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Electromagnetic media with extremely anisotropic parameters and electromagnetic responses, such as hyperbolic media [1–4] and anisotropic zero-index media (ZIM) [5–29], have generated important and rich physics, as well as wide applications in recent years. For example, anisotropic ZIM possess near-zero permittivity/permeability in one direction and finite permittivity/permeability in the other directions. This leads to almost flat equal frequency contours (EFCs), enabling many interesting applications, such as arbitrary flux control [7,8], perfect exotic waveguides [9–12], directive emission [13–15], power combination [16,17], perfect electromagnetic absorption [18–22], strong Purcell effect [24], etc. Most of them are absent in isotropic ZIM.

The realization of anisotropic epsilon-near-zero (ENZ) media usually require metallic components with negative-ε response [30–33] at optical frequencies. This structure, however, suffer from dissipative losses. At lower frequencies such as terahertz and microwave frequencies, metals behave as perfect electric conductors (PECs), which do not support the negative-ε response. One way to achieve negative-ε response at low frequencies is to construct artificial media with metal wires. However, spatial dispersions and mode coupling effects become inevitable [34]. Very recently, another novel route to realize effective negative-ε media with low loss has been proposed by exploiting isotropic waveguide metamaterials (WMMs), which are composed of bounded PEC waveguides filled with positive-ε media (i.e. dielectrics) only [35,36]. Structural dispersion of waveguide modes leads to effective negative-ε response, which inspired a variety of theoretical and experimental investigation of plasmonic phenomena [37–40]. However, we notice that all the proposed WMMs in the previous works are effectively isotropic materials. Thus, one interesting question arises: is it also possible to realize low-loss extremely anisotropic media with unique features and applications by WMMs?

In this work, we demonstrate that lossless extremely anisotropic WMMs can indeed be realized by using parallel-plate waveguides (PPWs) or rectangular waveguides filled with alternating layers of two kinds of dielectrics and metal wires. By adjusting the thicknesses of the two kinds of dielectrics, we can obtain different effective permittivities in different directions. Interestingly, effective anisotropic ENZ media with low loss can be achieved round the cutoff frequency of transverse electric (TE) modes. As the consequences of extreme anisotropy, we demonstrate the unique phenomena of directive emission, nearly perfect exotic waveguides and arbitrary control of energy flux, which are all based on the proposed effective anisotropic ENZ media. Moreover, subwavelength focusing of energy flux with a spotsize <0.2λ (λ is the wavelength in free space), as the unique feature of the anisotropic ENZ media, is also observed.

2. Anisotropic waveguide metamaterials

For the in-plane anisotropic medium characterized by a relative permittivity tensor with orthogonal principle axes (εx,effεy,eff) (Fig. 1(a)), the dispersion relation or EFC for electromagnetic waves with magnetic fields oriented in the z direction is determined by the following equation,

kx2εy,eff+ky2εx,eff=k02,
where kx and ky are the propagation vectors in the x and y directions, respectively. k0=2πf/c is the wave number in free space. f and c are the frequency and light velocity in free space, respectively.

 figure: Fig. 1

Fig. 1 Illustrations of (a) a two-dimensional effective anisotropic medium, (b) an anisotropic WMM composed of a metal-wire-added PPW and two kinds of filling dielectrics A and B. (c) Band structures of the anisotropic WMM when the filling material is a uniform anisotropic dielectric (black lines) or a dielectric multilayer (red dots). The corresponding unit cells of the WMM are illustrated by the insets. (d) Effective permittivities of the anisotropic WMM obtained from Eq. (2).

Download Full Size | PPT Slide | PDF

For the anisotropic ENZ media with εy,eff>>|εx,eff|0 or εx,eff>>|εy,eff|0, the EFC becomes almost flat lines. To realize such anisotropic ENZ media, we propose an anisotropic WMM consisting of a PEC PPW filled with an in-plane anisotropic dielectric medium, as sketched in Fig. 1(b). Such an anisotropic dielectric medium possesses a relative permittivity tensor (εxεyεz) with εxεy. In this case, the waveguide modes with electric fields polarized in the x and y directions exhibit different electromagnetic responses. We notice that such an anisotropic medium with εx=εzεy can be easily realized by using a dielectric multilayer structure. Here, we alternately stack dielectrics A and B along the y direction in deep-subwavelength scale (see the inset in Fig. 1(b)) to achieve (εAdA+εBdB)/(dA+dB)=εx=εz and εAεB(dA+dB)/(εBdA+εAdB)=εy [41], where εA (εB) and dA (dB) denote the relative permittivity and thickness of dielectric A (B), respectively.

Normally, a PPW supports a variety number of waveguide modes. In order to guarantee that the anisotropic medium-filled PPW can be regarded as a uniform anisotropic WMM, single-mode condition should be satisfied, i.e., there is only one dominant mode in the PPW [42,43]. Otherwise, the homogenized WMM don’t have single-valued effective parameters, because different modes possess different structural dispersions. Moreover, in order to endow the homogenized WMM with the dispersion of Eq. (1), the fundamental TE mode (with electric fields polarized in the xy plane) should be the dominant mode inside the PPW.

Actually, the anisotropic medium-filled PPW generally does not support pure TE modes [44–46]. Interestingly, inspired by previous works [35–37], we find that waveguide modes can be stirred by using metal wires to connect the PEC plates of the PPW. To investigate the effects of the metal wires, we study band structures and eigenmodes of the anisotropic medium-filled PPW in the existence of metal wires by using software COMSOL Multiphysics. The black lines in Fig. 1(c) show the band structures of the PPW filled with a uniform anisotropic medium with εx=3.5 and εy=2.86. The lengths of the PPW unit cell are set as a, a and (h=5a) in the x, y and z directions, respectively, as illustrated by the left inset in Fig. 1(c). A vertical oriented metal wire (radius 0.1a) connecting PEC plates is placed in the center. For comparison, we also use conventional isotropic dielectrics A and B to realize the anisotropic medium (see the right inset in Fig. 1(c)). The relevant parameters are εA=5, εB=2 and dA=dB=0.5a. It is seen from Fig. 1(c) that the corresponding band structures (red dots) coincide well with those related to the case with a uniform anisotropic medium (black lines).

Owing to the existence of the in-plane anisotropic medium inside the PPW, the band structures show strong anisotropy along the kx and ky directions. Actually, both the first two bands displayed in Fig. 1(c) correspond to the TE1 mode with Ex and Ey having a near π phase difference between two PEC plates. They originate from the split TE1 mode due to the in-plane anisotropy. Flat bands along the kx (ky) direction in the first (second) band are related to the longitudinal modes that cannot be excited directly [47,48]. Consequently, for frequencies above the cutoff frequency of TE1 mode (i.e. the bottom of the first band) and below the cutoff frequency of TE2 mode (i.e. the bottom of the third band, not shown here), the single-mode condition is satisfied. In this case, such a PPW model can be regarded as a homogenous anisotropic WMM.

Interestingly, around the cutoff frequency of the first band fc1a/c=0.0534, we have ky0 (i.e., the propagation constant in the y direction is near zero), indicating that the WMM possesses a near-zero εx,eff. On the other hand, at the cutoff frequency of the second band fc2a/c=0.0589, we obtain kx0 and a near-zero εy,eff of the WMM. Thereby, we see that such a WMM can work as an effective anisotropic ENZ medium around the cutoff frequencies of the first two bands.

For further verification, we approximately derive structural-dispersion-induced effective permittivity of the anisotropic WMM in a similar way of the isotropic case [35] as,

εx,eff=εxc2/4f2h2andεy,eff=εyc2/4f2h2.

In Fig. 1(d), we plot the effective parameters according to Eq. (2), showing εx,eff=0 at the frequency fa/c=a/2hεx0.0535 and εy,eff=0 at the frequency fa/c=a/2hεy0.0592. These frequencies coincide well with the cutoff frequencies of the first two bands in Fig. 1(c). This further confirms that the WMM can be homogenized as effective anisotropic ZIM nearby the cutoff frequencies.

Here we note that the dielectrics A and B with εA=5 and εB=2 can be easily realized at microwave frequencies by plastic materials such as FR-4 and PTFE. Actually, almost arbitrary dielectric materials with a relatively large refractive index contrast can be utilized to realize the effective anisotropic ZIM. By controlling the waveguide size h, the effective parameter εx,eff or εy,eff can be tuned to be zero at the desired operating frequency, as indicated in Eq. (2).

3. Phenomena induced by anisotropic ENZ media

It is worth noting that the effective anisotropic ENZ media based on WMMs exhibit very little loss at low frequencies (e.g., terahertz and microwave frequencies). Therefore, the proposed anisotropic ENZ media are suitable for various applications that require low loss, such as high transmission in exotic waveguides [9–12]. Moreover, we find that the homogenization of such effective anisotropic ENZ media is valid even in the deep-subwavelength scale, which is of great advantage for sub-wavelength applications like the arbitrary control of energy flux [7,8]. In the following, we numerically show that such anisotropic ENZ media based on the WMMs can provide an excellent platform for realizing some ZIM phenomena and applications, including directive emission, nearly perfect exotic waveguides and subwavelength focusing of energy flux.

In the first example, we demonstrate the phenomenon of direction emission. We embed a magnetic-current line source oriented in the z direction in the center of the anisotropic WMM designed above, which is surrounded by an isotropic WMM with a filling dielectric medium of εr=4 (see the inset in Fig. 2(b)). The working frequency is chosen as fa/c=0.0590, a bit above the cutoff frequency of the second band. To study emitted waves of the line source, we plot EFCs of the WMMs at the working frequency in Fig. 2(a). The red and gray lines denote the EFCs of the anisotropic and isotropic WMMs, showing a flat ellipse and a circle, respectively. The flat elliptical EFC indicates that the anisotropic WMM behaves as an effective anisotropic ENZ medium with εx,eff>>εy,eff0+. In Fig. 2(b), we construct the propagation directions of emitted waves from the EFCs and conservation of wave-vector component parallel to the anisotropic/isotropic WMM surface. It is seen that emitted waves in the left and right sides are concentrated around the normal of the surface, indicating quite good directivity of the emitted waves. For demonstrations, we perform numerical simulations based on software COMSOL Multiphysics. Figure 2(c) shows the distribution of Hz (i.e. the z-component of magnetic fields) in the middle plane of the waveguide. Apparently, good plane wavefronts of emitted waves and good directional radiation performance in the left and right sides can be observed. Furthermore, we re-simulate the performance of emission in a two-dimensional effective model in Fig. 2(d), in which the anisotropic ENZ medium (or the background isotropic medium) is characterized by εx,eff0.7 and εy,eff0.035 (or εeff1.1). A monopolar point source with magnetic fields polarized in the z direction is embedded in the center of the anisotropic ENZ medium. We can see that the Hz-distribution in Fig. 2(d) is almost the same as that in Fig. 2(c), thus confirming the good directional radiation performance within the effective anisotropic ENZ medium by using anisotropic WMMs.

 figure: Fig. 2

Fig. 2 (a) EFCs of the designed anisotropic WMM (red lines) and background isotropic WMM (gray lines) at the working frequency fa/c=0.0590. (b) Schematic graph of the radiated waves obtained from EFCs based on conservation of surface-parallel wave vector. A source is placed in center of the anisotropic ENZ medium in the background of an isotropic medium. (c) The Hz-distribution in the middle plane of the waveguide for the actual WMM model. A magnetic-current line source oriented in the z direction is placed in the center of the anisotropic WMM. (d) The Hz-distribution in the two-dimensional effective medium model. A monopolar point source is placed in the center of the effective anisotropic ENZ medium.

Download Full Size | PPT Slide | PDF

Moreover, we consider the working frequency fa/c=0.0587, a bit below the cutoff frequency of the second band. In this case, there is no solution for kx if ky is small. Thus, the EFC turns to be a flat hyperbola (red lines in Fig. 3(a)), meaning that the WMM works as an effective hyperbolic ENZ medium with εx,eff>>|εy,eff| and εy,eff0 [25,26]. Although the EFC turns to be hyperbolic, it is still quite flat compared with the EFC of the background isotropic WMM (gray lines in Fig. 3(a)). Therefore, emitted waves in the left and right sides will still be concentrated around the normal of the surface, as illustrated in Fig. 3(b). The simulated Hz-distributions in the actual WMM model (Fig. 3(c)) and the two-dimensional effective medium model (Fig. 3(d)) both confirm the good directivity of emitted waves in the left and right sides. Here, the parameters of the hyperbolic ENZ medium in the effective medium model in Fig. 3(d) are εx,eff0.65 and εy,eff(1+0.1i)×103. A little loss is introduced to εy,eff to avoid the influence of infinitely large wave vectors in the effective hyperbolic ENZ medium.

 figure: Fig. 3

Fig. 3 (a) EFCs of the designed anisotropic WMM (red lines) and background isotropic WMM (gray lines) at the operating frequency fa/c=0.0587. (b) Schematic graph of the radiated waves obtained from EFCs based on conservation of surface-parallel wave vector. A source is placed in the center of the anisotropic ENZ medium in the background of an isotropic medium. (c) The Hz-distribution in the middle plane of the waveguide for the actual WMM model. A magnetic-current line source oriented in the z direction is placed in the center of the anisotropic WMM. (d) The Hz-distribution in the two-dimensional effective medium model. A monopolar point source is placed in the center of the effective anisotropic ENZ medium.

Download Full Size | PPT Slide | PDF

In the second example, we demonstrate that the effective anisotropic ENZ medium is capable of realizing nearly perfect wave transmission in exotic waveguides, which is robust to the irregular waveguide walls and bending angles. In Fig. 4(a), we take a wavy bent rectangular waveguide as an example. The cross section with dimensions of 10a in the x direction and 5a in the z direction is illustrated by the inset in Fig. 4(a). A TE01 mode as the dominant mode is excited on the left input port. In this case, the effective parameters in Eq. (2) are still valid for the rectangular waveguide [36]. Thus, the input and output regions filled with a dielectric medium with εr=3.5 serve as isotropic WMMs with εeff0.63 at the working frequency fa/c=0.0590. While the wavy region filled with periodic layers of dielectrics A and B and metal wires works as an anisotropic ENZ medium with εx,eff>>εy,eff0+, which is the same as that in Fig. 2. From the distribution of Hz in the middle plane of the waveguide, we can clearly observe almost perfect transmission (transmittance>0.97) and good plane wavefronts of waves through such a wavy waveguide. For comparison, in Fig. 4(b), we replace the anisotropic WMM in the wavy region by an isotropic WMM (the same as that in the input region). The Hz-distribution clearly show the low transmission (transmittance~0.53) and great distortions in wavefronts caused by the wavy waveguide walls.

 figure: Fig. 4

Fig. 4 The distribution of Hz in the middle part of several rectangular waveguides. (a) A wavy waveguide embedded with an anisotropic WMM with εx,eff>>εy,eff0+. (b) A wavy waveguide embedded with an isotropic WMM with εeff0.63. (c) A 90° waveguide bend, whose bending region is embedded with an anisotropic WMM with a near-zero effective permittivity along the propagation direction. The cross section of the rectangular waveguides is illustrated by the inset in (a). A TE01 mode with working frequency of fa/c=0.0590 is excited on the left port.

Download Full Size | PPT Slide | PDF

Moreover, we show the performance of the effective anisotropic ENZ medium in a 90° waveguide bend, as shown in Fig. 4(c). The waveguide here is the same as that in Fig. 4(a), but the walls are bent at 90°. In this situation, the anisotropic WMM in the bending region serves as an effective anisotropic ENZ medium with a near-zero effective permittivity along the propagation direction. Figure 4(c) presents the Hz-distribution under the excitation of TE01 mode, showing almost perfect transmission (transmittance>0.98) and good plane wavefronts of waves in such a 90° waveguide bend.

We note that the high transmission is robust to the irregular waveguide walls and bending angles. The underlying physics can be explained based on transformation optics. It is found that an arbitrarily shaped waveguide filled the anisotropic ENZ medium in physical space is equivalent to a straight waveguide filled with an inhomogeneous anisotropic ENZ medium in the virtual space [9,10,49]. And in the inhomogeneous anisotropic ENZ medium, robust high transmission can be usually obtained attributing to energy flux redistribution and averaging effect of parameters, as we shall demonstrate in the third example.

In the third example, we demonstrate that robust high transmission and interesting applications like subwavelength focusing of energy flux can be achieved in an inhomogeneous anisotropic ENZ medium with εy,eff0 and εx,eff=f(x,y)>>|εy,eff|, where f(x,y) is an inhomogeneity profile. In such a system, the energy flux is concentrated to low-εx,eff region even in the subwavelength scale when waves propagate along the y direction. This is accomplished by evanescent waves that can efficiently transfer energy flux in the perpendicular direction of propagation and redistribute the energy flux in such an inhomogeneous system [7,49].

Figure 5(a) shows a schematic graph of the proposed model. It is a rectangular waveguide with cross-section dimensions of 15a and 5a in the x and z directions, respectively. A TE01 mode at working frequency fa/c=0.0671 is excited on the left input port. In this case, the input and output regions filled with a dielectric medium (εr=5.63) work as isotropic WMMs with εeff3.4. The middle region (light blue region) is filled with a periodic multilayer composed of two kinds of dielectrics A' and B' (εA'=1.25, εB'=10 and dA'=dB'=0.5a) and metal wires (radius 0.1a), serving as an effective anisotropic ENZ medium with εx,eff3.4 and εy,eff0.001, as shown by the upper inset in Fig. 5(a). The central part (light green region) is also filled with periodic metal wires (radius 0.01a) and a periodic multilayer, but the composite dielectrics are different. Here, dielectrics A'' and B'' with εA''=2, εB''=2.5 and dA''=dB''=0.075a are utilized, so that the center part works as an effective anisotropic ENZ medium with εx,eff0.029 and εy,eff0.001. Thus, an inhomogeneous anisotropic ENZ system is constructed with low-εx,eff region in the center.

 figure: Fig. 5

Fig. 5 (a) Schematic graph of a model for subwavelength focusing of electromagnetic energy flux, which is composed of an anisotropic WMM with εx,eff3.4 and εy,eff0.001 (light blue region), an anisotropic WMM with εx,eff0.029 and εy,eff0.001 (light green region), and an isotropic WMM with εeff3.4 as the background medium (gray region). The unit cells and relevant parameters are shown in the inset graphs. The waveguide is a rectangular waveguide with cross-section dimensions 15a and 5a in the x and z directions, respectively. Snapshots of (b) total energy flux density, (c) Hz, (d) Ex when a TE01 mode with operating frequency of fa/c=0.0671 is excited on the left port.

Download Full Size | PPT Slide | PDF

Then, we simulate total energy flux distribution in Fig. 5(b), showing the robust high transmission (transmittance>0.91) and energy flux concentration in the central low-εx,eff region. It is interesting to point out that the width of the central part is only 1.5a (i.e., 0.18λ with λ being the wavelength in the background isotropic WMM) in the x direction, demonstrating the subwavelength focusing of energy flux. Actually, the width of the central part can be further reduced to obtain sharper focused flux spot. For further study, the distributions of Hz and Ex are also simulated, as shown in Figs. 5(c) and 5(d), respectively. We can see that the uniformity of Hz in the x direction is not largely disturbed by the inhomogeneity due to the near-zero εy,eff. On the other hand, the distribution of Ex is mainly determined by the continuity condition of the x-component of electric displacement. Due to the low-εx,eff in the central part, Ex is greatly enhanced, as shown in Fig. 5(d). Therefore, we obtain focusing of energy flux in the central low-εx,eff region.

4. Conclusions

To conclude, we have proposed a design method for low-loss extremely anisotropic WMMs by exploiting metal-wire-added waveguides embedded with two kinds of dielectrics. The two kinds of dielectrics are periodically stacked in one direction to obtain in-plane anisotropic structural dispersions. Through the energy band analysis, it is found that effective anisotropic ZIM can be obtained at the cutoff frequencies of the first two bands. Owing to the advantages of low loss and simple design, directive emission, nearly perfect exotic waveguides and subwavelength focusing of energy flux are demonstrated. This methodology can also be expected to realize other extremely anisotropic media like hyperbolic media, which may have capabilities for designing advanced electromagnetic devices at both microwave and terahertz frequencies.

Funding

National Key R&D Program of China (2017YFA0303702), National Natural Science Foundation of China (61671314, 11574226, 11634005, 11704271), Natural Science Foundation of Jiangsu Province (BK20170326), Natural Science Foundation for Colleges and Universities in Jiangsu Province of China (17KJB140019), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

References

1. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003). [CrossRef]   [PubMed]  

2. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013). [CrossRef]  

3. W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018). [CrossRef]   [PubMed]  

4. P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018). [CrossRef]   [PubMed]  

5. M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009). [CrossRef]   [PubMed]  

6. M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013). [CrossRef]  

7. J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014). [CrossRef]   [PubMed]  

8. Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016). [CrossRef]  

9. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012). [CrossRef]  

10. J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014). [CrossRef]   [PubMed]  

11. H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012). [CrossRef]  

12. H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013). [CrossRef]  

13. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002). [CrossRef]   [PubMed]  

14. J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012). [CrossRef]  

15. Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008). [CrossRef]  

16. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012). [CrossRef]   [PubMed]  

17. Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012). [CrossRef]  

18. J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014). [CrossRef]  

19. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012). [CrossRef]  

20. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017). [CrossRef]  

21. S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014). [CrossRef]  

22. H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015). [CrossRef]  

23. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017). [CrossRef]  

24. A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015). [CrossRef]  

25. J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013). [CrossRef]  

26. X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017). [CrossRef]   [PubMed]  

27. J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018). [CrossRef]  

28. X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015). [CrossRef]   [PubMed]  

29. X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018). [CrossRef]  

30. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013). [CrossRef]  

31. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010). [CrossRef]  

32. G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012). [CrossRef]  

33. J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013). [CrossRef]  

34. S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009). [CrossRef]  

35. C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016). [CrossRef]  

36. Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017). [CrossRef]  

37. F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017). [CrossRef]  

38. Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018). [CrossRef]   [PubMed]  

39. Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018). [CrossRef]  

40. Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016). [CrossRef]   [PubMed]  

41. W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and applications (Springer, 2009).

42. W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008). [CrossRef]  

43. J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016). [CrossRef]   [PubMed]  

44. F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970). [CrossRef]  

45. Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004). [CrossRef]  

46. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

47. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011). [CrossRef]   [PubMed]  

48. C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015). [CrossRef]   [PubMed]  

49. J. Luo, Y. Lai, and C. T. Chan, “Control of electromagnetic flux in inhomogeneous anisotropic media,” in Transformation Wave Physics - Electromagnetics, Elastodynamics, and Thermodynamics, M. Farhat, P. Chen, S. Guenneau and S. Enoch, ed. (Pan Stanford Publishing, 2016).

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  2. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  3. W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
    [Crossref] [PubMed]
  4. P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
    [Crossref] [PubMed]
  5. M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
    [Crossref] [PubMed]
  6. M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
    [Crossref]
  7. J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
    [Crossref] [PubMed]
  8. Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
    [Crossref]
  9. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
    [Crossref]
  10. J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
    [Crossref] [PubMed]
  11. H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
    [Crossref]
  12. H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
    [Crossref]
  13. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  14. J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
    [Crossref]
  15. Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
    [Crossref]
  16. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
    [Crossref] [PubMed]
  17. Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
    [Crossref]
  18. J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
    [Crossref]
  19. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
    [Crossref]
  20. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
    [Crossref]
  21. S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
    [Crossref]
  22. H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
    [Crossref]
  23. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]
  24. A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
    [Crossref]
  25. J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
    [Crossref]
  26. X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
    [Crossref] [PubMed]
  27. J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
    [Crossref]
  28. X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
    [Crossref] [PubMed]
  29. X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
    [Crossref]
  30. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  31. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
    [Crossref]
  32. G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
    [Crossref]
  33. J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
    [Crossref]
  34. S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
    [Crossref]
  35. C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
    [Crossref]
  36. Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
    [Crossref]
  37. F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
    [Crossref]
  38. Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
    [Crossref] [PubMed]
  39. Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
    [Crossref]
  40. Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
    [Crossref] [PubMed]
  41. W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and applications (Springer, 2009).
  42. W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
    [Crossref]
  43. J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
    [Crossref] [PubMed]
  44. F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970).
    [Crossref]
  45. Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004).
    [Crossref]
  46. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).
  47. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref] [PubMed]
  48. C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
    [Crossref] [PubMed]
  49. J. Luo, Y. Lai, and C. T. Chan, “Control of electromagnetic flux in inhomogeneous anisotropic media,” in Transformation Wave Physics - Electromagnetics, Elastodynamics, and Thermodynamics, M. Farhat, P. Chen, S. Guenneau and S. Enoch, ed. (Pan Stanford Publishing, 2016).

2018 (6)

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
[Crossref]

2017 (5)

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

2016 (4)

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

2015 (4)

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref] [PubMed]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

2014 (4)

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
[Crossref] [PubMed]

2013 (6)

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

2012 (7)

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
[Crossref]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

2011 (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

2010 (1)

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

2009 (2)

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
[Crossref]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

2005 (1)

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

2004 (1)

Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004).
[Crossref]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

1970 (1)

F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970).
[Crossref]

Alekseyev, L. V.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Alfaro-Mozaz, F. J.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Alonso-González, P.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Amenabar, I.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Bao, Q.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Barnakov, Y. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Capasso, F.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Casanova, F.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Chan, C. T.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Chebykin, A. V.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Chen, H.

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Chen, X.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Cheng, Q.

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Chu, S.

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Costa, J. R.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Cui, T. J.

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Dai, Z.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Deng, H.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Dolado, I.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Edgar, J. H.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Eleftheriades, G. V.

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
[Crossref]

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Fang, K.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Feng, S.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Feng Ma, H.

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Fernandes, C. A.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Fischer, A. J.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Gangopadhyay, S.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Gao, J.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Gao, L.

J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Gardiol, F. E.

F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970).
[Crossref]

Geng Cai, B.

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Gong, Q.

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Gralak, B.

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

Gu, C.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Guo, L. J.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Halterman, K.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Hang, Z.

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

Hang, Z. H.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

He, S.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Hillenbrand, R.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Hou, B.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Hu, X.

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Huangfu, J.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Hueso, L. E.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jiang, H.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Jiang, H. T.

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

Jiang, T.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Jiang, W. X.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

Jun Cui, T.

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Kalantar-Zadeh, K.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Kats, M. A.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kong, J.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Lai, Y.

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Lee, S. T.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Li, H.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Li, J.

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

Li, P.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Li, Q.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Li, S.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

Li, Y.

Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Li, Z.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Liang, G.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Liu, L.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Liu, S.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Liu, W.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Liu, W. W.

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

Liu, Y.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Lu, W.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

Luk, T. S.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Luo, J.

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
[Crossref] [PubMed]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Luo, Y.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Ma, H. F.

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

Ma, W.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Ma, Y.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Martín-Sánchez, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Maslovski, S. I.

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
[Crossref]

Mathai, C. J.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Memarian, M.

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
[Crossref]

Narimanov, E. E.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

Nikitin, A. Y.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Niu, X.

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Noginov, M. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Orlov, A. A.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Poddubny, A. N.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Podolskiy, V. A.

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Prudêncio, F. R.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Ramanathan, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Ran, J.

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

Ran, L.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Rensberg, J.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Richter, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Ronning, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Schmidt-Grund, R.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Schöppe, P.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Shalin, A. S.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Shen, L.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Shi, J.

Shi, J. H.

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

Silveirinha, M. G.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
[Crossref]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

Smigaj, W.

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Song, J.

Sriram, S.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Subramania, G.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Sun, H.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Sun, L.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Sun, Y.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Taboada-Gutiérrez, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Tollan, C.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Tumkur, T.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Vélez, S.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Wan, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Wang, G.

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

Wang, K.

Wu, Y.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref] [PubMed]

Xiang Jiang, W.

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Xu, C.

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

Xu, P.

J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Xu, Y.

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004).
[Crossref]

Yang, F.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Yang, X.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Yang, Y.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Yao, Z.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Yu, K.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Yuan, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Yuan, Y.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Zhang, C.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Zhang, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Zhang, X.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref] [PubMed]

Zhang, Y.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Zhang, Z.

Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
[Crossref]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Zhong, S.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Zhou, Y.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

ACS Nano (1)

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Appl. Phys. Lett. (8)

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

EPL (2)

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

IEEE T. Microw. Theory (1)

F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004).
[Crossref]

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Nature (1)

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

New J. Phys. (1)

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Phys. Rev. Appl. (3)

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
[Crossref]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Phys. Rev. B (2)

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (6)

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Phys. Rev. Lett. (6)

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Phys. Rev. X (1)

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

Sci. Adv. (1)

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Sci. Rep. (3)

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref] [PubMed]

J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

Science (1)

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Other (2)

W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and applications (Springer, 2009).

J. Luo, Y. Lai, and C. T. Chan, “Control of electromagnetic flux in inhomogeneous anisotropic media,” in Transformation Wave Physics - Electromagnetics, Elastodynamics, and Thermodynamics, M. Farhat, P. Chen, S. Guenneau and S. Enoch, ed. (Pan Stanford Publishing, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustrations of (a) a two-dimensional effective anisotropic medium, (b) an anisotropic WMM composed of a metal-wire-added PPW and two kinds of filling dielectrics A and B. (c) Band structures of the anisotropic WMM when the filling material is a uniform anisotropic dielectric (black lines) or a dielectric multilayer (red dots). The corresponding unit cells of the WMM are illustrated by the insets. (d) Effective permittivities of the anisotropic WMM obtained from Eq. (2).
Fig. 2
Fig. 2 (a) EFCs of the designed anisotropic WMM (red lines) and background isotropic WMM (gray lines) at the working frequency f a / c = 0.0590 . (b) Schematic graph of the radiated waves obtained from EFCs based on conservation of surface-parallel wave vector. A source is placed in center of the anisotropic ENZ medium in the background of an isotropic medium. (c) The H z -distribution in the middle plane of the waveguide for the actual WMM model. A magnetic-current line source oriented in the z direction is placed in the center of the anisotropic WMM. (d) The H z -distribution in the two-dimensional effective medium model. A monopolar point source is placed in the center of the effective anisotropic ENZ medium.
Fig. 3
Fig. 3 (a) EFCs of the designed anisotropic WMM (red lines) and background isotropic WMM (gray lines) at the operating frequency f a / c = 0.0587 . (b) Schematic graph of the radiated waves obtained from EFCs based on conservation of surface-parallel wave vector. A source is placed in the center of the anisotropic ENZ medium in the background of an isotropic medium. (c) The H z -distribution in the middle plane of the waveguide for the actual WMM model. A magnetic-current line source oriented in the z direction is placed in the center of the anisotropic WMM. (d) The H z -distribution in the two-dimensional effective medium model. A monopolar point source is placed in the center of the effective anisotropic ENZ medium.
Fig. 4
Fig. 4 The distribution of H z in the middle part of several rectangular waveguides. (a) A wavy waveguide embedded with an anisotropic WMM with ε x , e f f > > ε y , e f f 0 + . (b) A wavy waveguide embedded with an isotropic WMM with ε e f f 0.63 . (c) A 90° waveguide bend, whose bending region is embedded with an anisotropic WMM with a near-zero effective permittivity along the propagation direction. The cross section of the rectangular waveguides is illustrated by the inset in (a). A TE01 mode with working frequency of f a / c = 0.0590 is excited on the left port.
Fig. 5
Fig. 5 (a) Schematic graph of a model for subwavelength focusing of electromagnetic energy flux, which is composed of an anisotropic WMM with ε x , e f f 3.4 and ε y , e f f 0.001 (light blue region), an anisotropic WMM with ε x , e f f 0.029 and ε y , e f f 0.001 (light green region), and an isotropic WMM with ε e f f 3.4 as the background medium (gray region). The unit cells and relevant parameters are shown in the inset graphs. The waveguide is a rectangular waveguide with cross-section dimensions 15 a and 5 a in the x and z directions, respectively. Snapshots of (b) total energy flux density, (c) H z , (d) E x when a TE01 mode with operating frequency of f a / c = 0.0671 is excited on the left port.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k x 2 ε y , e f f + k y 2 ε x , e f f = k 0 2 ,
ε x , e f f = ε x c 2 / 4 f 2 h 2 and ε y , e f f = ε y c 2 / 4 f 2 h 2 .

Metrics