Abstract

We investigate experimentally spatiotemporal characteristics of fluorescence emission from fs-laser-induced filaments in air. Emissions accompanying the transitions of N2 (C3ΠuB3Πg) and N 2+ (B2Σu+X2Σg+) are dominant. The decay dynamics of fluorescence from different radial positions and longitudinal sections of a filament column are obtained along with high resolution spectra. A decay curve contains two exponential components: a fast one (with a decay time constant ∼10s ps), and a slow one (∼sub-ns). The lifetime of the N 2 fluorescence is about three orders shorter than its spontaneous emission lifetime, indicating that most of the N 2 molecules in the excited state (C3Πu) are de-excited through collision. Different de-excitation mechanisms of N 2 (C3Πu) molecules contributing to fluorescence decay constants, e.g., the e N2, N 2N2, and O 2N2 collisions, are elucidated. We analyze the variations of decay constants together with corresponding fluorescence intensities, and obtain temperature distributions by fitting band spectra of N 2 molecules and N 2+ ions with a synthetic spectral model. Our results suggest that the fast and slow decay processes originate from the e N2 and O 2N2 collisions, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Intense ultrashort laser pulses propagating in air can create filaments, as a result of dynamic balance between non-linear Kerr self-focusing and defocusing induced by air ionization. Fs-laser filamentation has been of interest because it involves complex nonlinear processes such as nonsequential double ionization of molecules, high order harmonic generation [1], THz generation [2], and superradiance [3, 4]. A variety of potential applications of laser filamentation have been proposed, such as detection of explosives and isotopes at standoff distances [5], remote sensing [6, 7] and remote material processing [8]. Filament luminescence features clear molecular band spectra from excited N 2 molecules and N 2+ ions [9, 10]. Several recent studies showed that population inversion of N 2 and N 2+ can be achieved in filaments, and optical gain can be obtained [11, 12]. Air lasing was demonstrated with filaments by injection of additional seeding fs-laser beam with appropriate wavelengths [11, 13]. Backward lasing was also realized, which advances the potential applications of filaments in remote atmospheric sensing [7, 14, 15]. Lasing duration is related to optical gain, and the duration of optical gain is pressure-dependent [16, 17]. In air, the duration of population inversion is quite short [11]. De-excitation of molecules in the inversely populated energy levels destroys optical gain and lasing becomes unsupported. The de-excitation mechanism of excited molecules and ions in filaments is unclear. However, the population of molecules or ions in excited state can be investigated via time-resolved fluorescent emission [18].

The dynamics of N 2 and N 2+ fluorescence from fs-laser induced plasma in air was studied initially by Martin et al. [19]. A streak camera was used to record the plasma luminescence without spectral resolution. Plasma emission is initially dominated by molecular lines for tens of ps (∼60 ps), followed by continuum emission and atomic lines. Ivanov et al. [20] measured the lifetime of N 2+ and N 2 fluorescence of filaments in air by focusing a fs-laser beam with different numerical apertures (NA), and found that molecular lines only appear at NA below 0.03. For NA < 0.01, the characteristic luminescence decay time is 18 ps for N 2+, and 27 ps for N 2. The decay time of ions and molecules can be extended to sub-ns when gas pressure is several millibars [18]. Wang et al. [21] measured the fluorescence lifetime of N 2+ at different gas pressures by using a photoelectric multiplier with a temporal resolution of 10 ns, and revealed that the fluorescence decay is slower as pressure decreases. At 1.9×105 mbar, the fluorescence lifetime of N 2+ is close to its spontaneous emission lifetime (∼60 ns). Lei et al.[18] proposed that fast fluorescent quenching of N 2+ originates from the collision between free electrons and excited N 2+ molecules in filaments created in a low pressure pure nitrogen gas, which leads to population redistribution in electronic states (B2Σu+). In air, the mechanisms governing the fluorescence dynamics in fs-laser filamentation are more complicated given its higher molecule density and multi-chemical-components involved.

In this work, we experimentally investigate fluorescence decay at different radial and longitudinal sections of fs-laser induced filaments with high temporal resolutions. Band (0,0) spectra of the N 2 C3ΠuB3Πg and N 2+ B2Σu+X2Σg+ systems are recorded, and rotational temperature is calculated via fitting to the molecular spectra with a synthetic spectral model. Through an analysis of fluorescence intensity distribution, fluorescence quenching constants across the longitudinal cross-section of the filaments, the temperature distribution, and the dominant quenching mechanism governing the fluorescence decay, are obtained.

2. Experimental setup

The experimental system is shown in Fig. 1. Experiments are performed with a Ti:sapphire laser amplifier system (Coherent) which delivers linearly polarized laser pulses with a central wavelength of 800 nm and 35 fs pulse duration at 1 kHz and 2.5 mJ/pulse as shown in Fig. 1. A short filament is generated by focusing the fs-laser with a plano-convex lens with a focal length of 25 cm. The fluorescence of excited N 2 and N 2+ molecules is measured with a noncommercial streak camera. The temporal resolution is about 10 ps, as measured via accumulation of 104 laser pulses.

The filament image is magnified by a 10× UV objective lens with a focal depth of 3.5 μm. A fiber with 100 μm diameter is placed at the image plane for fluorescence signal collection, and the collected light is coupled into a spectrometer (Princeton Instruments) and then the temporally resolved spectrum is recorded by a streak camera. The streak camera is triggered by scattered laser light detected by a photo diode placed at the upstream of the laser beam. Laser pulses are allowed to propagate about 10 m before being focused, in order to compensate the inherent delay of the streak camera. Radially and longitudinally resolved measurements of the filament are achieved by varying the position of fiber on the image plane and the focusing lens along the laser beam propagation direction, respectively. The resolution of spectra detected by the streak camera only is about 0.2 nm. A spectrometer (Princeton Instruments) with a grating of 3600 g/mm is added to achieve higher spectral resolution (∼0.05 nm), which enables the identification of the rotational structure of emission spectra from N 2 and N 2+ molecules/ions. The spectra are recorded by an intensified-CCD (Princeton Instruments).

 

Fig. 1 Schematic diagram of the experimental setup for measuring fluorescence decay dynamics of a fs-laser induced filament in air (right). For fluorescence intensity decay measurements, a low resolution spectrometer is used, and a streak camera is usedas detector. An intensified-CCD coupled to a high resolution spectrometer is used for measuring spectra with high spectral resolution. The polarization of laser is parallel to the x-axis. The longitudinal position and radial position are along the y-axis and x-axis, respectively.

Download Full Size | PPT Slide | PDF

3. Results and discussion

3.1. Intensity distribution of fluorescence and formation mechanism analysis

A typical temporally and spectrally resolved image recorded by a streak camera is shown in Fig. 2(a). Molecular emissions from N 2 molecules and N 2+ ions dominate the spectrum, and the spectrum background is close to zero, indicating that the Bremsstrahlung emission is negligible. The emission lines located at 337, 357, 375, 380 and 391 nm are assigned to bands (0,0), (0,1), (1,3) and (0,2) of the N 2 (C3ΠuB3Πg) system, and band (0,0) of the N 2+ (B2Σu+X2Σg+) system, respectively.

The fluorescence intensities of N 2 and N 2+ exhibit different distributions across the filament column, as shown in Fig. 2(b). The emission zone of N 2+ is mainly located at the central part of the filament column (about 4 mm in length), whereas the intensity distribution of N 2 emission is more spread out. The reason for the distribution difference of N 2 and N 2+ fluorescence can be attributed to different formation mechanisms of the N 2+ B2u+ and N 2 m¯C3Πu states in the filament. The N 2+ B2Σu+ state is mainly achieved through tunneling ionization and photoelectron recollision excitation. The ground state electronic configuration for N 2 molecule is KK(σg2s)2(σu2s)2(πu2p)4(σg2p)2. In a laser field, electrons in the highest occupied molecular orbital (HOMO) is first removed because ionization rate decays exponentially over the electron binding energy. The bonding energies are 15.58, 17.07 and 18.75 eV for HOMO (σg), HOMO-1 (πu) and HOMO-2(σu), respectively [21]. The removal of one electron from HOMO, HOMO-1 and HOMO-2 of N 2 molecule leaves N 2+ in the electron state of X2g+, A2Πu, and B2Σu+, respectively [22]. N 2+ fluorescence at 391 nm, emitted from N 2+ ions in the B2Σu+ state, only occurs for strong laser fields. In the photoelectron recollision excitation scheme, the correlated photoelectrons collide inelastically with parent ions, and N 2+ is excited from the X2Σg+ state to the B2Σu+ state.

Excited states of N 2 molecules cannot be achieved through multiphoton excitation because the transition from ground state X1Σg+ to C3Πu is forbidden. The formation possibility through collision between N 2 molecules in groundstate and free electrons [N 2(X1Σg+)+eN2(C3Πu)+e] in the filament column is very low, because electrons with very high threshold energy (11 eV) are required for the collision-induced transition of N 2 molecules from ground state X1Σg+ to the C3Πu state [23]. In addition, the average kinetic energy of electrons produced in a linearly polarized laser field is much lower than the electron energy required, according to numerical simulations [24]. Thus, the primary reactions, N2++N2N4+, and N4++eN2(C3Πu)+N2, as reported by Xu et al. [25], are almost fully responsible for populating the excited electronic state C3Πu of N 2 molecules. N 2+ ions act as precursors to N 2 molecules in the C3Πu state. However, Fig. 2(b) shows that the N 2 fluorescence appears first along the propagation direction and its intensity reaches maximum at the filament position (L=2.5 mm) with weak N 2+ emission, implying that N 2+ ions in ground state act as precursors to N 2 (C3Πu). N 2+ (X1Σg+) ions are more easily to form according to the HOMO analysis, and plenty of them exist in the filament column, according to the laser induced fluorescence measurements result reported by Wang et al. [21].

 

Fig. 2 (a) Typical temporally and spectrally resolved fluorescence emission images at position of L = −2 mm and R = 0 m, recorded by the streak camera. (b) Fluorescence images of the filament in terms of N2+ and N2 emission. The bandhead intensities of N2+ and N2 molecular bands are used for image construction. The white dashed line in (b) indicates the focal point of the lens.

Download Full Size | PPT Slide | PDF

3.2. Radially resolved decay dynamics of N2 fluorescence

Figure 3(a) show the temporally and radially resolved fluorescence emission around 337 nm recorded at a longitudinal position L = −1 mm. The fluorescence decays fast at the core position of the filament column, and the fluorescence emission persists longer time at larger radial positions. The fluorescence decay curves can be well fitted with two distinct exponential decays,

I(t)=tIRF(t^)[A1exp (tt^τf)+A2exp (tt^τs)]dt^

Here, I(t) is fluorescence intensity, IRF represents the instrumental response with a Gaussian function, which represents the probability distribution of instantaneous electrons striking at the phosphor screen of the streak camera system. A1 and A2 are the amplitudes of the two decay processes. τf and τs denote fast and slow characteristic decay time constants, respectively. At radial position R = 0 m, τf=26 ps and τs=240 ps, as seen in Fig. 3(b); the latter is about order of magnitude larger than the former. However, τf=73 ps and τs=530 ps at R=75 m. Both τf and τs vary with locations in the filament, and their radial and longitudinal variations will be discussed below. The radiative lifetimes (τrad) of the N 2+ (B2Σu+X2Σg+) and N 2 (C3ΠuB3Πg) transitions are about 60 ns and 40 ns, respectively [21, 26], while the measured fluorescence decay times are very short. For N 2, the fluorescence decays within 1 ns. The decay dynamics of N 2+ fluorescence cannot be resolved and its lifetime is less than the temporal resolution of the streak camera (10 ps). The excited N 2 and N 2+ molecules/ions are most likely to be de-excited through non-radiative process, and collision is the most possible way. The filament column contains electrons, molecules and ions. For this study, the main collision partners of excited N 2 molecules are electrons, oxygen molecules and nitrogen molecules. Nitrogen ions are negligible, given the low degree of ionization in the filament.

 

Fig. 3 (a) Time-resolved fluorescence emission around 337 nm recorded at different radial positions (R) for a longitudinal position L = −1 mm. (b-c) Fittings to the fluorescence intensity decay curves at R = 0 and −75 μm. τf and τs denote the fast decay and slow decay, respectively.

Download Full Size | PPT Slide | PDF

For N 2 (C3Πu) molecules at room temperature, the deactivation rate constants with different deactivators, N 2, O 2 and electrons are 1.3×1011,3×1010 and 4×107cm3s1 [27], respectively. Given that the initial electron density at the filament core is 1018cm3 [20], the collision frequency is on the order of 1011 s1, giving rise to a characteristic fluorescence decay time of tens of ps. The lifetime associated with deactivators, N 2 and O 2, can be evaluated with τ1=kO2[O2]+kN2[N2]. Herein [O2] and [N2] donate the densities of the deactivators, and k denotes deactivation rate constants. The corresponding decay constant is calculated as τ430 ps. Here the k-constants used in the calculation are for room temperature. However, laser irradiation heats the deactivators, increases collision probability at elevated temperatures, and hence results in a decrease in τ. Laser irradiation also induces a slight decrease in deactivator density due to minor ionization, and thus a slight increase in lifetime. Actually, the fluorescence decay resulted from deexcitation of N 2 in the N 2 (C3Πu) state through collision with N 2 and O 2 is dominated by O 2, since the decay constants of O 2 (τO2) and N 2 (τN2) are 0.5 and 3.3 ns, respectively. This is consistent with the experimental finding that τs in an air filament is much smaller than that formed in pure nitrogen, as shown in Fig. 4. Yao et al. [28] also reported that oxygen molecules have significant quenching effect. The underlying physical mechanism of collisional deactivation of N 2-O 2 is a collision reaction: N2(C3Πu)+O2N2(X1Σg+)+O+O, which has been considered as a de-excitation mechanism of N 2 molecules in conventional discharge-pumped nitrogen ion laser [26]. The measured fast decay constants (τf) and slow decay constants (τs) are in the range of 20–100 ps and 200–600 ps, respectively (c.f. Fig. 3). Thus, we suggest that the fast and slow decay processes are caused by the e N2 and O 2N2 collisions, respectively.

 

Fig. 4 Comparison of decay dynamics of filaments created in (a) air and (b) pure nitrogen gas. The experimental setup and acquisition parameters are identical.

Download Full Size | PPT Slide | PDF

 

Fig. 5 (a–b) Radial distributions of decay times of slow and fast decay processes at different longitudinal positions. (c–d) Percentages of integrated fluorescence intensities of slow and fast processes.

Download Full Size | PPT Slide | PDF

Both τf and τs increase radially from the filament center, especially for the longitudinal sections at L = 0 and 1 mm, as shown in Figs. 5(a) and 5(b). τf has similar values over radial positions for the filament section at L = −2 mm; the reason is that the fluorescence intensity dominated by the fast decay process is very weak, and the calculated τf values have relatively large uncertainties. In addition, the integrated intensities of the fast and slow decay processes (Iτf and Iτs; i.e., the areas under the deconvoluted exponential curves), vary significantly over radial positions and at different longitudinal sections of the filament column. The fluorescence intensity percentages, PτfIτf/(Iτf+Iτs) and PτsIτs/(Iτf+Iτs), are summarized in Figs. 5(c) and 5(d). A higher percentage of N 2 (C3Πu) molecules is de-excited by electron collision at the core of the filament column, compared to that of the peripheral area, where more N 2 (C3Πu) molecules tend to be de-excited by collision process with oxygen molecules. This is reasonable because electron density is higher at the filament core. The two de-excitation processes compete with each other. The N 2O2 collision process dominates depopulation of N 2 (C3Πu) molecules in the peripheral area. At the early-formed sections (c.f. L = −2 mm in Fig. 2), electron density is supposed to be very low and only a small percentage (<10%) of the N 2 (C3Πu) molecules is de-excited via the e N2 collision.

One possible reason for the asymmetry in the radial distribution of decay times and percentages of integrated fluorescence is that the intensity distribution of the fs-laser beam is not perfectly radially symmetric (non-perfect Gaussian beam). Moreover, the filament tends to bifurcate during its propagation when too high a laser intensity is confined in the filament core. In addition, slight non-coaxial alignment or tilt of lens with respect to the laser beam may also contribute to the filament asymmetry.

3.3. Longitudinally resolved decay dynamics of N 2 fluorescence

Typical decay curves at different longitudinal positions of the filament column (R = 0) are shown in Fig. 6. The fluorescence decays much faster at the filament center, and the fluorescence lifetime increases towards both ends. The fittings for L = 0 mm and L = −2 mm reveal significant difference in the decay constants (τf and τf). At L = 0 mm, the e N2 collision dominates the fast decay process with τf=21 ps, while the O 2N2 collision dominates the slow decay process with τf=202 ps. Moreover, the fast decay process nearly disappears at L = −2 mm, indicating that the e N2 collision probability is very small.

 

Fig. 6 (a) Time-resolved fluorescence emission around 337 nm recorded at different longitudinal sections of the filament. (b–c) Fittings to the fluorescence intensity decay curves at L = 0 and −2 mm.

Download Full Size | PPT Slide | PDF

The fitted decay constants, τf and τs, together with their corresponding percentages of fluorescence intensity, at different longitudinal positions of the filament column are given in Fig. 7. The τf(L) and τs(L) curves are both concave upward, and approximately symmetric about L = 0, where their minima are located, as seen in Fig. 7(a). At the same time, the laser intensity reaches its maximum around the center of the filament and then attenuates along the propagation direction of the filament, due to the focusing effect by lens and the Kerr effect induced self-focusing. The laser beam is defocused after passing the focal point, feff=flensfsf/(flens+fsf) [29]. Herein flens and fsf are the focal length of the lens and self-focusing, respectively.

The variation of decay constants over the longitudinal positions is negatively correlated to the intensity of N 2+ fluorescence, i.e., both decay constants reach their minimum at L = 0 mm, where the N 2+ fluorescence intensity is the highest, as seen in Fig. 2(b). The reason is that the distribution probability of N 2+ ions in excited states is an exponential function of laser intensity. However, higher laser intensity results in higher free electron density, and deposition of more laser energyon air molecules leads to an increased collision probability. As a result, the fluorescence decays faster where the laser intensity is higher. However, similar observations are not found between N 2 fluorescence distribution and its decay constants, and a possible reason is that the formation of N 2 molecules in the C3Πu state is not directly related to the laser intensity, since two elementary reactions are involved in the formation of N 2 molecules, as discussed above. Here we also note that the fluorescence intensity percentage for τf is concave downward, as seen in Fig. 7(b). At L=±3 mm, the fluorescence decay is mostly caused by the τs process, which indicates that the free electron density at these positions is close to zero.

 

Fig. 7 (a) Decay times of fast and slow decay processes at different longitudinal sections of the filament. (b) Percentages of integrated fluorescence intensities of fast and slow processes.

Download Full Size | PPT Slide | PDF

3.4. Rotational temperatures of N 2 and N 2+

The rotational temperatures of N 2 and N 2+ are determined via fitting to the experimental spectra with a corresponding synthetic spectrum model (Figs. 8(a) and 8(b)). Synthetic spectra of N 2 and N 2+ are computed within the Herzberg’s framework of diatomic molecules [30]. The molecular constants in Ref. [31] are used for band spectrum simulation. The N 2 and N 2+ spectral models contain several fitting parameters, e.g., rotational temperature, line broadening, intensity. Detailed spectrum fitting procedure can be found elsewhere [32–35]. Figure 8 depicts representative high resolution spectra of N 2 and N 2+ and their fittings. The two spectra are obtained at identical experimental conditions but for different wavelengths. The rotational structures of molecular bands and overall intensity are well fitted. The rotation temperature, which represents the distribution of electrons in the excited rotational energy levels of molecules, is obtained through fitting the N 2+ spectrum. The rotation temperature from the N 2+ spectrum is about twice that from the N 2 spectrum. A possible reason is that the N 2+ temperature refers to the very early stage of filamentation because of the short lifetime of the N 2+ fluorescence (below 10 ps, c.f. Fig. 2), whereas the N 2 temperature represents an averaged temperature during the whole lifetime of the filament. The N 2+ spectrum acquired in the time-integrated configuration is equivalent to that acquired with a sub-10 ps gate width and zero gate delay because the persistent time of N 2+ fluorescence is pretty short.

 

Fig. 8 (a–b) Measured spectra of band (0,0) of (a) N2 (C3ΠuB3Πg) and (b) N 2+ (B2Σu+X2Σg+) systems, along with corresponding fittings. (c–d) Rotational temperatures at different longitudinal positions, obtained via fitting to molecular bands of N2 and N2+.

Download Full Size | PPT Slide | PDF

The comparison of temperatures deduced from N 2 and N 2+ implies that the filament temperature drops rapidly within hundreds of ps. The temperature distributions at different radial and longitudinal positions are shown in Figs. 8(c) and 8(d). Temperature is higher at the filament core for the L = 0 and -1 mm cases, and drops significantly at larger radial positions. The temperature at R=±75 m is about 20%25% lower than that at R=0 m. The radial temperature distributions shown in Figs. 8(c) and 8(d) are negatively correlated to the radial distributions of both decay constants, τf and τs, especially at L = 0 and 1 mm. Both rotational temperatures deduced from N 2 and N 2+ peak at the radial position of 0 μm, and decrease with increasing absolute radial distance. However, both decay constants are minimal at R = 0 μm, and increase with increasing absolute radial positions, as shown in Figs. 5(a) and 5(b). The faster decay of fluorescence at central position of filament is attributed to that higher collision possibilities of e–N 2 and O 2-N 2 are expected at higher temperature condition. However, the radial variation of temperature at L = −2 mm is negligible, likely because the fs-laser is not focused. The significant increase in temperature from L = −2 to L = 0 mm indicates sharp focusing of the laser beam due to the strong Kerr effect, which is also the main reason for the distinct increase in N 2+ fluorescence (Fig. 2). Moreover, higher electron density in the tightly focused zone is expected. The increases in electron density and temperature result in shortened fluorescence decay time, consistent with our experimental observations in Fig. 7.

4. Conclusion

We have experimentally investigated the decay dynamics of N 2 and N 2+ fluorescence in fs-laser filaments formed in air. The fluorescence decay contains two exponential decay processes: a fast one (∼10s ps) and a slow one (100s ps). The radially resolved fluorescence decay curves reveal that both the fast and slow decay processes decay faster at the core of the filament column, and a larger portion of the overall fluorescence intensity is governed by the fast decay process at smaller radial positions. The slow decay process dominates the fluorescence dynamics at peripheral parts of the filament, particularly in the early-formed and vanishing sections of a long filament column, where the fast decay process almost disappears. The decay constants resulted from collisions with different particles are calculated. Through analyzing the characteristic decay processes throughout the whole filament column, we conclude that the fast decay process originates from the collision between free electrons and N 2 (C3Πu) molecules, and the slow decay process is resulted from excited N 2 molecules colliding with oxygen and nitrogen molecules, as well as spontaneous radiation, but the N 2O2 collision dominates the lifetime of the slow decay process.

Funding

National Natural Science Foundation of China (Grant Nos. 61605161 and 11627901) and Fundamental Research Funds for the Central Universities (Grant No. 2682017CX074).

Acknowledgments

We have benefitted from valuable discussions with Dr. Jin Yu from Shanghai Jiaotong University.

References

1. B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, “High harmonic generation from multiple orbitals in N2+,” Science 322, 1232–1235 (2008). [CrossRef]   [PubMed]  

2. Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018). [CrossRef]  

3. Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015). [CrossRef]   [PubMed]  

4. Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017). [CrossRef]  

5. H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015). [CrossRef]  

6. P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011). [CrossRef]   [PubMed]  

7. P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014). [CrossRef]  

8. Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013). [CrossRef]   [PubMed]  

9. L. Finney, P. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26, 29110–29122 (2018). [CrossRef]   [PubMed]  

10. S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012). [CrossRef]  

11. H. Xu, E. Lötstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nat. Commun. 6, 8347 (2015). [CrossRef]  

12. J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016). [CrossRef]   [PubMed]  

13. M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018). [CrossRef]  

14. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, and A. Mysyrowicz, “Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses,” Opt. Express 22, 12750–12759 (2014). [CrossRef]   [PubMed]  

15. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011). [CrossRef]   [PubMed]  

16. B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014). [CrossRef]  

17. H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014). [CrossRef]  

18. M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017). [CrossRef]  

19. F. Martin, R. Mawassi, F. Vidal, I. Gallimberti, D. Comtois, H. Pepin, J. Kieffer, and H. Mercure, “Spectroscopic study of ultrashort pulse laser-breakdown plasmas in air,” Appl. Spectrosc. 56, 1444–1452 (2002). [CrossRef]  

20. N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019). [CrossRef]  

21. P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014). [CrossRef]  

22. Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013). [CrossRef]  

23. Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989). [CrossRef]  

24. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015). [CrossRef]   [PubMed]  

25. H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009). [CrossRef]  

26. R. Kunabenchi, M. Gorbal, and M. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9, 259–329 (1984). [CrossRef]  

27. S. Pancheshnyi, S. Starikovskaia, and A. Y. Starikovskii, “Collisional deactivation of N 2 (C 3Πu, v= 0, 1, 2, 3) states by N 2, O 2, H 2 and H 2O molecules,” Chem. Phys. 262, 349–357 (2000). [CrossRef]  

28. J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014). [CrossRef]   [PubMed]  

29. S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005). [CrossRef]  

30. G. Herzberg, “Molecular spectra and molecular structure. i. spectra of diatomic molecules,” Chap II , 1950130–140 (1950).

31. Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes, “Net emission coefficient of air thermal plasmas,” J. Phys. D: Appl. Phys. 35, 2925 (2002). [CrossRef]  

32. R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011). [CrossRef]  

33. H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015). [CrossRef]   [PubMed]  

34. H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas,” Anal. Chem. 89, 7750–7757 (2017). [CrossRef]   [PubMed]  

35. M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, “High harmonic generation from multiple orbitals in N2+,” Science 322, 1232–1235 (2008).
    [Crossref] [PubMed]
  2. Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
    [Crossref]
  3. Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
    [Crossref] [PubMed]
  4. Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
    [Crossref]
  5. H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
    [Crossref]
  6. P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
    [Crossref] [PubMed]
  7. P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014).
    [Crossref]
  8. Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
    [Crossref] [PubMed]
  9. L. Finney, P. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26, 29110–29122 (2018).
    [Crossref] [PubMed]
  10. S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
    [Crossref]
  11. H. Xu, E. Lötstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nat. Commun. 6, 8347 (2015).
    [Crossref]
  12. J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
    [Crossref] [PubMed]
  13. M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
    [Crossref]
  14. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, and A. Mysyrowicz, “Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses,” Opt. Express 22, 12750–12759 (2014).
    [Crossref] [PubMed]
  15. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
    [Crossref] [PubMed]
  16. B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
    [Crossref]
  17. H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
    [Crossref]
  18. M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
    [Crossref]
  19. F. Martin, R. Mawassi, F. Vidal, I. Gallimberti, D. Comtois, H. Pepin, J. Kieffer, and H. Mercure, “Spectroscopic study of ultrashort pulse laser-breakdown plasmas in air,” Appl. Spectrosc. 56, 1444–1452 (2002).
    [Crossref]
  20. N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019).
    [Crossref]
  21. P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
    [Crossref]
  22. Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013).
    [Crossref]
  23. Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
    [Crossref]
  24. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
    [Crossref] [PubMed]
  25. H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009).
    [Crossref]
  26. R. Kunabenchi, M. Gorbal, and M. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9, 259–329 (1984).
    [Crossref]
  27. S. Pancheshnyi, S. Starikovskaia, and A. Y. Starikovskii, “Collisional deactivation of N 2 (C 3Πu, v= 0, 1, 2, 3) states by N 2, O 2, H 2 and H 2O molecules,” Chem. Phys. 262, 349–357 (2000).
    [Crossref]
  28. J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
    [Crossref] [PubMed]
  29. S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
    [Crossref]
  30. G. Herzberg, “Molecular spectra and molecular structure. i. spectra of diatomic molecules,” Chap II,  1950130–140 (1950).
  31. Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes, “Net emission coefficient of air thermal plasmas,” J. Phys. D: Appl. Phys. 35, 2925 (2002).
    [Crossref]
  32. R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
    [Crossref]
  33. H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
    [Crossref] [PubMed]
  34. H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas,” Anal. Chem. 89, 7750–7757 (2017).
    [Crossref] [PubMed]
  35. M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013).
    [Crossref]

2019 (1)

N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019).
[Crossref]

2018 (3)

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

L. Finney, P. Skrodzki, M. Burger, X. Xiao, J. Nees, and I. Jovanovic, “Optical emission from ultrafast laser filament-produced air plasmas in the multiple filament regime,” Opt. Express 26, 29110–29122 (2018).
[Crossref] [PubMed]

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

2017 (3)

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas,” Anal. Chem. 89, 7750–7757 (2017).
[Crossref] [PubMed]

2016 (1)

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

2015 (5)

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
[Crossref] [PubMed]

H. Xu, E. Lötstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nat. Commun. 6, 8347 (2015).
[Crossref]

2014 (6)

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, and A. Mysyrowicz, “Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses,” Opt. Express 22, 12750–12759 (2014).
[Crossref] [PubMed]

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

2013 (3)

Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013).
[Crossref]

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013).
[Crossref]

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

2012 (1)

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

2011 (3)

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[Crossref] [PubMed]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
[Crossref]

2009 (1)

H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009).
[Crossref]

2008 (1)

B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, “High harmonic generation from multiple orbitals in N2+,” Science 322, 1232–1235 (2008).
[Crossref] [PubMed]

2005 (1)

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

2002 (2)

2000 (1)

S. Pancheshnyi, S. Starikovskaia, and A. Y. Starikovskii, “Collisional deactivation of N 2 (C 3Πu, v= 0, 1, 2, 3) states by N 2, O 2, H 2 and H 2O molecules,” Chem. Phys. 262, 349–357 (2000).
[Crossref]

1989 (1)

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

1984 (1)

R. Kunabenchi, M. Gorbal, and M. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9, 259–329 (1984).
[Crossref]

1950 (1)

G. Herzberg, “Molecular spectra and molecular structure. i. spectra of diatomic molecules,” Chap II,  1950130–140 (1950).

Aközbek, N.

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Arissian, L.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Arnold, C. L.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Azarm, A.

H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009).
[Crossref]

Azarma, A.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Becker, A.

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Bengtsson, S.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Bernhardt, J.

H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009).
[Crossref]

Bol’shakov, A. A.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
[Crossref]

Brelet, Y.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Britton, M.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Brown, G.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Bucksbaum, P. H.

B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, “High harmonic generation from multiple orbitals in N2+,” Science 322, 1232–1235 (2008).
[Crossref] [PubMed]

Burger, M.

Chan, G. C.

H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Chan, G. C.-Y.

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
[Crossref] [PubMed]

Chen, L.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Chen, M.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Chen, S.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Chen, Y.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Cheng, Q.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

Cheng, Y.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

Chin, S.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009).
[Crossref]

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Chu, W.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

Comtois, D.

Corkum, P.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Couairon, A.

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
[Crossref] [PubMed]

P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014).
[Crossref]

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Cressault, Y.

Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes, “Net emission coefficient of air thermal plasmas,” J. Phys. D: Appl. Phys. 35, 2925 (2002).
[Crossref]

Cui, S.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Daigle, J.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Danylo, R.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Ding, P.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
[Crossref] [PubMed]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
[Crossref] [PubMed]

P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014).
[Crossref]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, and A. Mysyrowicz, “Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses,” Opt. Express 22, 12750–12759 (2014).
[Crossref] [PubMed]

Dogariu, A.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[Crossref] [PubMed]

Dong, M.

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013).
[Crossref]

Fan, Z.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Farrell, J. P.

B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, “High harmonic generation from multiple orbitals in N2+,” Science 322, 1232–1235 (2008).
[Crossref] [PubMed]

Finney, L.

Forestier, B.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Gallimberti, I.

Gleizes, A.

Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes, “Net emission coefficient of air thermal plasmas,” J. Phys. D: Appl. Phys. 35, 2925 (2002).
[Crossref]

Gong, Q.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

Gong, Q.-H.

Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013).
[Crossref]

Gonzalez, J. J.

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013).
[Crossref]

Gorbal, M.

R. Kunabenchi, M. Gorbal, and M. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9, 259–329 (1984).
[Crossref]

Gühr, M.

B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, “High harmonic generation from multiple orbitals in N2+,” Science 322, 1232–1235 (2008).
[Crossref] [PubMed]

Hatano, Y.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

Hayashi, M.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

He, F.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

He, Z.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Hemmer, P. R.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

Herzberg, G.

G. Herzberg, “Molecular spectra and molecular structure. i. spectra of diatomic molecules,” Chap II,  1950130–140 (1950).

Hosseini, S.

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Hou, H.

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas,” Anal. Chem. 89, 7750–7757 (2017).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Houard, A.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
[Crossref] [PubMed]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
[Crossref] [PubMed]

P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014).
[Crossref]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, and A. Mysyrowicz, “Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses,” Opt. Express 22, 12750–12759 (2014).
[Crossref] [PubMed]

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Ibrakovic, N.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Ichimura, A.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

Itikawa, Y.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

Ivanov, N.

N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019).
[Crossref]

Iwasaki, A.

H. Xu, E. Lötstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nat. Commun. 6, 8347 (2015).
[Crossref]

Jiang, H.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

Jiang, S.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

Jing, C.

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

Jovanovic, I.

Kamali, Y.

H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009).
[Crossref]

Kandidov, V.

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Kieffer, J.

Ko, D. H.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Kong, F.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Kosareva, O.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Kunabenchi, R.

R. Kunabenchi, M. Gorbal, and M. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9, 259–329 (1984).
[Crossref]

L’Huillier, A.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Laferrière, P.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Lambert, G.

Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
[Crossref] [PubMed]

Larsen, E. W.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Lei, M.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

Li, D.

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

Li, G.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

Li, R.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Li, Y.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

Li, Z.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

Liang, Q.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

Liu, J.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Liu, W.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Liu, Y.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
[Crossref] [PubMed]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
[Crossref] [PubMed]

P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014).
[Crossref]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, and A. Mysyrowicz, “Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses,” Opt. Express 22, 12750–12759 (2014).
[Crossref] [PubMed]

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Liu, Y.-X.

Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013).
[Crossref]

Losev, V.

N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019).
[Crossref]

Lötstedt, E.

H. Xu, E. Lötstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nat. Commun. 6, 8347 (2015).
[Crossref]

Lu, J.

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013).
[Crossref]

Lu, R.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

Luo, Q.

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Mao, X.

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas,” Anal. Chem. 89, 7750–7757 (2017).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
[Crossref]

Marceau, C.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Martin, F.

Mauritsson, J.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Mawassi, R.

McFarland, B. K.

B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, “High harmonic generation from multiple orbitals in N2+,” Science 322, 1232–1235 (2008).
[Crossref] [PubMed]

McKay, C. P.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
[Crossref]

Mercure, H.

Michael, J. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[Crossref] [PubMed]

Miles, R. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[Crossref] [PubMed]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

Mitryukovskiy, S.

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
[Crossref] [PubMed]

P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014).
[Crossref]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, and A. Mysyrowicz, “Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses,” Opt. Express 22, 12750–12759 (2014).
[Crossref] [PubMed]

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Mysyrowicz, A.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
[Crossref] [PubMed]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
[Crossref] [PubMed]

P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, and Y. Liu, “Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the sake of remote sensing (black),” Opt. Express 22, 29964–29977 (2014).
[Crossref]

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, and A. Mysyrowicz, “Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses,” Opt. Express 22, 12750–12759 (2014).
[Crossref] [PubMed]

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Naghizadeh-Kashani, Y.

Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes, “Net emission coefficient of air thermal plasmas,” J. Phys. D: Appl. Phys. 35, 2925 (2002).
[Crossref]

Naumov, A.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Nees, J.

Ni, J.

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

Nishimura, H.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

Oliva, E.

Onda, K.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

Pancheshnyi, S.

S. Pancheshnyi, S. Starikovskaia, and A. Y. Starikovskii, “Collisional deactivation of N 2 (C 3Πu, v= 0, 1, 2, 3) states by N 2, O 2, H 2 and H 2O molecules,” Chem. Phys. 262, 349–357 (2000).
[Crossref]

Panov, N.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Pepin, H.

Perry, D. L.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
[Crossref]

Polynkin, P.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

Prokop’ev, V.

N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019).
[Crossref]

Richardson, M.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Russo, R. E.

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas,” Anal. Chem. 89, 7750–7757 (2017).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
[Crossref]

Sakimoto, K.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

Savadatti, M.

R. Kunabenchi, M. Gorbal, and M. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9, 259–329 (1984).
[Crossref]

Schröder, H.

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Scully, M. O.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[Crossref] [PubMed]

Seideman, T.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Sheng, Z.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Siebert, T.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

Simpson, E. R.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Sitnik, K.

N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019).
[Crossref]

Skrodzki, P.

Sokolov, A. V.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

Sorkhabi, O.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
[Crossref]

Sprangle, P.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

Starikovskaia, S.

S. Pancheshnyi, S. Starikovskaia, and A. Y. Starikovskii, “Collisional deactivation of N 2 (C 3Πu, v= 0, 1, 2, 3) states by N 2, O 2, H 2 and H 2O molecules,” Chem. Phys. 262, 349–357 (2000).
[Crossref]

Starikovskii, A. Y.

S. Pancheshnyi, S. Starikovskaia, and A. Y. Starikovskii, “Collisional deactivation of N 2 (C 3Πu, v= 0, 1, 2, 3) states by N 2, O 2, H 2 and H 2O molecules,” Chem. Phys. 262, 349–357 (2000).
[Crossref]

Takayanagi, K.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

Théberge, F.

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Tikhonchuk, V.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
[Crossref] [PubMed]

Tsurubuchi, S.

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

Vidal, F.

Wang, P.

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

Wang, S.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

Wang, T.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Wang, Y.-C.

Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013).
[Crossref]

Wang, Z.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

Wu, C.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

Wu, C.-Y.

Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013).
[Crossref]

Wu, J.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Xiao, X.

Xie, H.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

Xu, H.

H. Xu, E. Lötstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nat. Commun. 6, 8347 (2015).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009).
[Crossref]

Xu, S.

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

Xu, S.-H.

Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013).
[Crossref]

Xu, Z.

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Yamanouchi, K.

H. Xu, E. Lötstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nat. Commun. 6, 8347 (2015).
[Crossref]

Yang, H.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

Yao, J.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

Yu, C.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

Yu, J.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Yu, L.

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Yuan, S.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Zeng, B.

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

Zeng, H.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Zhang, A.

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

Zhang, C.

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

Zhang, H.

J. Yao, H. Xie, B. Zeng, W. Chu, G. Li, J. Ni, H. Zhang, C. Jing, C. Zhang, H. Xu, Y. Cheng, and Z. Xu, “Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses,” Opt. Express 22, 19005–19013 (2014).
[Crossref] [PubMed]

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

Zhang, J.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Zhang, X.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Zheng, R.

H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
[Crossref] [PubMed]

Zhuang, S.

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Zorba, V.

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas,” Anal. Chem. 89, 7750–7757 (2017).
[Crossref] [PubMed]

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Zyatikov, I.

N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019).
[Crossref]

Anal. Chem. (3)

H. Hou, G. C.-Y. Chan, X. Mao, V. Zorba, R. Zheng, and R. E. Russo, “Femtosecond laser ablation molecular isotopic spectrometry for zirconium isotope analysis,” Anal. Chem. 87, 4788–4796 (2015).
[Crossref] [PubMed]

H. Hou, X. Mao, V. Zorba, and R. E. Russo, “Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas,” Anal. Chem. 89, 7750–7757 (2017).
[Crossref] [PubMed]

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry,” Anal. Chem. 85, 2899–2906 (2013).
[Crossref]

Appl. Spectrosc. (1)

Can. J. Phys. (1)

S. Chin, S. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. Kandidov, O. Kosareva, and H. Schröder, “The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges,” Can. J. Phys. 83, 863–905 (2005).
[Crossref]

Chap II (1)

G. Herzberg, “Molecular spectra and molecular structure. i. spectra of diatomic molecules,” Chap II,  1950130–140 (1950).

Chem. Phys. (2)

S. Pancheshnyi, S. Starikovskaia, and A. Y. Starikovskii, “Collisional deactivation of N 2 (C 3Πu, v= 0, 1, 2, 3) states by N 2, O 2, H 2 and H 2O molecules,” Chem. Phys. 262, 349–357 (2000).
[Crossref]

H. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009).
[Crossref]

Front. Phys. (1)

Y.-C. Wang, C.-Y. Wu, Y.-X. Liu, S.-H. Xu, and Q.-H. Gong, “Fluorescence emission from excited molecular ions in intense femtosecond laser fields,” Front. Phys. 8, 34–38 (2013).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

M. Lei, C. Wu, Q. Liang, A. Zhang, Y. Li, Q. Cheng, S. Wang, H. Yang, Q. Gong, and H. Jiang, “The fast decay of ionized nitrogen molecules in laser filamentation investigated by a picosecond streak camera,” J. Phys. B: At. Mol. Opt. Phys. 50, 145101 (2017).
[Crossref]

J. Phys. Chem. Ref. Data (1)

Y. Itikawa, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, Y. Hatano, M. Hayashi, H. Nishimura, and S. Tsurubuchi, “Cross sections for collisions of electrons and photons with oxygen molecules,” J. Phys. Chem. Ref. Data 18, 23–42 (1989).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes, “Net emission coefficient of air thermal plasmas,” J. Phys. D: Appl. Phys. 35, 2925 (2002).
[Crossref]

Laser Phys. (1)

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarma, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 22, 1–53 (2012).
[Crossref]

Nat. Commun. (1)

H. Xu, E. Lötstedt, A. Iwasaki, and K. Yamanouchi, “Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling,” Nat. Commun. 6, 8347 (2015).
[Crossref]

Nat. Photonics (1)

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554 (2018).
[Crossref]

Opt. Commun. (1)

N. Ivanov, V. Losev, V. Prokop’ev, K. Sitnik, and I. Zyatikov, “High time-resolved spectroscopy of filament plasma in air,” Opt. Commun. 431, 120–125 (2019).
[Crossref]

Opt. Express (4)

Phys. Rev. A (3)

B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, and Y. Cheng, “Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy,” Phys. Rev. A 89, 042508 (2014).
[Crossref]

H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, and Y. Cheng, “Coupling of N2+ rotational states in an air laser from tunnel-ionized nitrogen molecules,” Phys. Rev. A 90, 042504 (2014).
[Crossref]

P. Wang, S. Xu, D. Li, H. Yang, H. Jiang, Q. Gong, and C. Wu, “Spectroscopic study of laser-induced tunneling ionization of nitrogen molecules,” Phys. Rev. A 90, 033407 (2014).
[Crossref]

Phys. Rev. Lett. (6)

S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, and A. Mysyrowicz, “Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses,” Phys. Rev. Lett. 114, 063003 (2015).
[Crossref] [PubMed]

J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, and Y. Cheng, “Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields,” Phys. Rev. Lett. 116, 143007 (2016).
[Crossref] [PubMed]

M. Britton, P. Laferrière, D. H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, and P. Corkum, “Testing the role of recollision in N2+ Air lasing,” Phys. Rev. Lett. 120, 133208 (2018).
[Crossref]

Y. Liu, Y. Brelet, Z. He, L. Yu, S. Mitryukovskiy, A. Houard, B. Forestier, A. Couairon, and A. Mysyrowicz, “Ciliary white light: optical aspect of ultrashort laser ablation on transparent dielectrics,” Phys. Rev. Lett. 110, 097601 (2013).
[Crossref] [PubMed]

Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, and A. Mysyrowicz, “Recollision-induced superradiance of ionized nitrogen molecules,” Phys. Rev. Lett. 115, 133203 (2015).
[Crossref] [PubMed]

Y. Liu, P. Ding, N. Ibrakovic, S. Bengtsson, S. Chen, R. Danylo, E. R. Simpson, E. W. Larsen, X. Zhang, Z. Fan, A. Houard, J. Mauritsson, A. L’Huillier, C. L. Arnold, S. Zhuang, V. Tikhonchuk, and A. Mysyrowicz, “Unexpected sensitivity of nitrogenions superradiant emission on pump laser wavelength and duration,” Phys. Rev. Lett. 119, 203205 (2017).
[Crossref]

Proc. Natl. Acad. Sci. (1)

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. 108, 3130–3134 (2011).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

R. Kunabenchi, M. Gorbal, and M. Savadatti, “Nitrogen lasers,” Prog. Quantum Electron. 9, 259–329 (1984).
[Crossref]

Science (2)

B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, “High harmonic generation from multiple orbitals in N2+,” Science 322, 1232–1235 (2008).
[Crossref] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science 331, 442–445 (2011).
[Crossref] [PubMed]

Spectrochim. Acta Part B At. Spectrosc. (2)

H. Hou, G. C. Chan, X. Mao, R. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta Part B At. Spectrosc. 66, 99–104 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup for measuring fluorescence decay dynamics of a fs-laser induced filament in air (right). For fluorescence intensity decay measurements, a low resolution spectrometer is used, and a streak camera is usedas detector. An intensified-CCD coupled to a high resolution spectrometer is used for measuring spectra with high spectral resolution. The polarization of laser is parallel to the x-axis. The longitudinal position and radial position are along the y-axis and x-axis, respectively.
Fig. 2
Fig. 2 (a) Typical temporally and spectrally resolved fluorescence emission images at position of L = −2 mm and R = 0 m, recorded by the streak camera. (b) Fluorescence images of the filament in terms of N 2 + and N2 emission. The bandhead intensities of N 2 + and N2 molecular bands are used for image construction. The white dashed line in (b) indicates the focal point of the lens.
Fig. 3
Fig. 3 (a) Time-resolved fluorescence emission around 337 nm recorded at different radial positions (R) for a longitudinal position L = −1 mm. (b-c) Fittings to the fluorescence intensity decay curves at R = 0 and −75 μm. τf and τs denote the fast decay and slow decay, respectively.
Fig. 4
Fig. 4 Comparison of decay dynamics of filaments created in (a) air and (b) pure nitrogen gas. The experimental setup and acquisition parameters are identical.
Fig. 5
Fig. 5 (a–b) Radial distributions of decay times of slow and fast decay processes at different longitudinal positions. (c–d) Percentages of integrated fluorescence intensities of slow and fast processes.
Fig. 6
Fig. 6 (a) Time-resolved fluorescence emission around 337 nm recorded at different longitudinal sections of the filament. (b–c) Fittings to the fluorescence intensity decay curves at L = 0 and −2 mm.
Fig. 7
Fig. 7 (a) Decay times of fast and slow decay processes at different longitudinal sections of the filament. (b) Percentages of integrated fluorescence intensities of fast and slow processes.
Fig. 8
Fig. 8 (a–b) Measured spectra of band (0,0) of (a) N2 ( C 3 Π u B 3 Π g) and (b) N   2 + ( B 2 Σ u + X 2 Σ g +) systems, along with corresponding fittings. (c–d) Rotational temperatures at different longitudinal positions, obtained via fitting to molecular bands of N2 and N 2 +.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = t IRF ( t ^ ) [ A 1 exp  ( t t ^ τ f ) + A 2 exp  ( t t ^ τ s ) ] d t ^

Metrics