Abstract

For the [0001] oriented AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs), the holes in the p-type electron blocking layer (p-EBL) are depleted due to the polarization induced positive sheet charges at the last quantum barrier (LQB)/p-EBL interface. The hole depletion effect significantly reduces the hole injection capability across the p-EBL. In this work, we propose inserting a thin AlN layer between the LQB and the p-EBL, which can generate the hole accumulation at the AlN/p-EBL interface. Meanwhile, the holes can obtain the energy when traveling from the p-EBL into the multiple quantum wells (MQWs) by intraband tunneling through the thin AlN layer. As a result, the hole injection and the external quantum efficiency (EQE) have been remarkably enhanced. Moreover, we point out that the thick AlN insertion layer can further generate the hole accumulation in the p-EBL and increase the hole energy which helps to increase the hole injection. We also prove that the intraband tunneling for holes across the thick AlN insertion layer is facilitated by using the optimized structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The traditional deep ultraviolet (DUV) mercury lamps are to be gradually replaced by AlGaN-based DUV light-emitting diodes (LEDs). DUV LEDs are featured with no pollution to the environment, low power loss, long lifetime, small size, etc [1]. Therefore, DUV LEDs have found potential applications in the scopes including water and air purification, sterilization, medical therapy, and biochemistry processes, etc [2–4]. However, the external quantum efficiency (EQE) at the current stage is less than 10% [5], which limits the large-scale applications for DUV LEDs. The EQE for DUV LEDs is strongly subject to the dislocation-induced non-radiative recombination [6], the polarization induced quantum confined Stark effect (QCSE) [7], the inefficient carrier injection into the multiple quantum well (MQW) region [8]. Efforts have been made to improve the crystalline quality by growing DUV LEDs on nano-patterned substrates [9]. Si doped quantum barriers, staggered quantum wells and even semi-polar structures have been proposed to reduce the polarization effect in the MQWs for DUV LEDs [10–12]. On the other hand, the Mg doping efficiency for Al-rich p-AlGaN layer becomes low, which significantly inhibits the hole injection [13]. The hole injection is closely associated with the p-type electron blocking layer (p-EBL), which reduces the electron leakage but simultaneously hinders the hole injection [8]. Therefore, the p-EBL for DUV LEDs shall be engineered, and the proposed designs include p-AlxGa1-xN/AlyGa1-yN/p-AlxGa1-xN (x>y) EBL [14,15], AlGaN p-EBL with graded AlN composition [16]. Another design strategy for reducing the hole blocking effect that is caused by the p-EBL is increasing the hole concentration level in the p-type layer, which is doable by using the three-dimensional hole gas (3DHG) [17]. Considering the very high AlN composition in the AlGaN based p-EBL, it is very difficult to increase the hole concentration by improving the Mg doping efficiency if superlattice p-EBL is not adopted [18]. The hole concentration in the p-EBL can also be enhanced by suppressing the hole depletion effect [19]. The hole injection can be further boosted if the holes become “hot” [20]. In this work, we propose to insert a thin AlN layer between the last quantum barrier (LQB) and the p-EBL to increase the injection for both holes and electrons. The increased conduction band offset between the AlN layer and the LQB suppresses the electron leakage reported by Piprek et al. [21]. Besides, the AlN insertion layer can reduce the hole depletion effect in the p-EBL and also produce the “hot” holes, thus enabling the enhanced hole injection. Refs [22–24]. observe the experimental optical power enhancement for the DUV LEDs with the Al-rich AlGaN insertion layer. However, the origin for the enhanced hole injection and the underlying device physics are not clear until now.

2. Device structures and parameters

For conventional DUV LEDs with the bulk AlGaN p-EBL [see Fig. 1(a1)], the holes experience the barrier height of ∆ϕ2 that is accompanied by the thermionic emission process of P0. Moreover, the positive polarization induced interface charges are generated at the LQB/p-EBL interface and therefore the holes are severely depleted which leads to the reduced hole concentration on the p-EBL side at the LQB/p-EBL interface [see Fig. 1(a2)]. The interface depletion yields the other valence barrier height of ∆ϕ1 for holes in the p-EBL. The holes are then injected into the MQWs via the thermionic emission process [i.e., process P1 in Fig. 1(a1)]. During the hole transport from the p-AlGaN layer into the LQB, the energy that holes obtain can be defined as ∆ϕ1-∆ϕ2. Figure 1(b1) presents the energy band near the proposed AlN/p-EBL architecture. The polarization induced negative sheet charges at the AlN/p-EBL interface annihilate the interface depletion effect for holes, and instead the hole accumulation at the AlN/p-EBL interface occurs [see Fig. 1(b2)]. The holes are injected into the p-EBL via the thermionic emission of P0, and then travel into the MQWs by the thermionic emission (i.e., P1) and the intraband tunneling process (i.e., P2) [14,15]. The intraband tunneling process of P2 is significant as along as the AlN thickness is properly selected. Besides, when compared to the conventional p-EBL, we can find the vanishment of the ∆ϕ1, and in the meantime, the very strong polarization effect in the LQB/AlN/p-EBL structure significantly bends the energy band, such that the energy level of the valence band for the LQB is lower than the energy valley of the p-EBL, which produces the additional energy of ∆ϕ0 when the holes are injected into the MQWs from the p-EBL. Therefore, the intraband tunneling of P2 and the “hot” holes can enable the improved hole injection efficiency, which will simultaneously enhance the EQE and the optical power for the proposed DUV LEDs. During the hole transport from the p-AlGaN layer into the LQB, the energy that the holes obtain can be calculated by ∆ϕ0 + ∆ϕ3 - ∆ϕ2.

 figure: Fig. 1

Fig. 1 Schematic energy band diagrams for (a1) the conventional bulk AlGaN p-EBL, and (b1) the proposed structure with an AlN insertion layer between the LQB and the p-EBL; (a2) sketched hole concentration profile in the bulk AlGaN based p-EBL and (b2) sketched hole concentration profile in the p-EBL with an AlN insertion layer between the LQB and the p-EBL. Here, Ec, Ev, Efe, and Efh denote the conduction band, the valence band, the quasi-Fermi level for electrons, and the quasi-Fermi level for holes. ∆ϕ0 denotes the energy difference between points B and E in valence bands of the p-EBL and LQB. ∆ϕ1 means the energy difference between points A and B in valence bands of the LQB and the p-EBL. ∆ϕ2 represents the energy difference between points C and D in valence bands of the p-EBL and the p-AlGaN layer. ∆ϕ3 represents the energy difference between points B and C in valence bands of the p-EBL. P0 and P1 denote the thermionic emission processes. P2 represents the intraband tunneling process through the thin AlN insertion layer.

Download Full Size | PPT Slide | PDF

To further probe the effect of the AlN insertion layer on the hole injection for DUV LEDs, different DUV LED structures are designed, which consist of a 1.5 μm thick n-Al0.60Ga0.40N (Si-doped: 5 × 1018 cm−3) layer as the electron injection layer. On the top of n-Al0.60Ga0.40N layer, the active region has five pairs of Al0.47Ga0.53N/Al0.57Ga0.43N MQW stacks with the peak emission wavelength of 280 nm, for which the thicknesses of the quantum wells and quantum barriers are 3 nm and 10 nm, respectively. Then, a 25 nm thick Al0.60Ga0.40N p-EBL is capped on the MQWs for Reference device. Different than Reference device, the AlN layers with various thicknesses (1 nm, 2 nm, and 3 nm) are inserted between the LQB and p-EBL forming the AlN/p-EBL structures for Devices A1, A2 and A3, respectively. Moreover, we also design Device B for which the 1 nm thick Al0.50Ga0.50N thin layer is embedded in the middle of the AlN insertion layer (i.e., 1 nm AlN/1 nm Al0.50Ga0.50N/1 nm AlN structured insertion layer). Next, a 25 nm thick p-Al0.30Ga0.70N layer and a 50 nm thick p-GaN layer are then followed on the p-EBL for all the studied DUV LEDs. The hole concentration for the p-type layers is set to 3 × 1017 cm−3. The mesa size is 350 × 350 μm2.

The numerical calculations are conducted by using APSYS [10,13,14,18,19], which can manage physical equations and parameters on nitrogen-containing III-V semiconductors [25]. Specifically, the nonradiative recombination parameters in the MQW region including the Auger recombination coefficient and the Shockley-Read-Hall (SRH) recombination lifetime are assumed to be 1.0 × 10−30 cm6/s [26] and 10 ns [10], respectively. The energy band offset ratio between the conduction band offset and the valence band offset for the AlGaN/AlGaN heterojunction is set to 50:50 [27]. For the [0001] orientated DUV LEDs, the polarization effect is induced at each lattice-mismatched heterojunction and the polarization level is set to 40% in our simulations [28]. Moreover, we also take intraband tunneling model of the electron and hole into consideration for the p-EBL with AlN insertion layer [14].

3. Results and discussions

Firstly, we calculate the optical power and the EQE in terms of the injection current level for Reference device, Devices A1, A2, A3 and B, which are shown in Figs. 2(a) and 2(b), respectively. The experimentally measured optical power density can be numerically reproduced for Reference device by setting the light extraction efficiency to 7.5%, and good agreement can be obtained as shown in Fig. 2(a). We can find that the optical power and the EQE for Device A1 are higher than that for Reference device. In the meanwhile, the efficiency droop for Device A1 has also been significantly suppressed when compared to Reference device. The EQE and the optical power remarkably decrease for Devices A2 and A3, which also show the very huge efficiency droop. Device A3 performs even worse than Device A2. However, the EQE and the optical power recover for Device B, which shows the best performance among the investigated devices. The studied devices are identical except that Reference device does not possesses the AlN insertion layer between the LQB and the p-EBL. We believe the observations in Figs. 2(a) and 2(b) are ascribed to the different hole injections.

 figure: Fig. 2

Fig. 2 (a) Optical power, and (b) EQE in terms of the injection current for Reference device, Device A1, Device A2, Device A3 and Device B, respectively. Note, for better observation, the values of the optical power and the EQE for Devices A2 and A3 have been multiplied by 200. The experimental data are extracted from the report of Zhang et al. [29].

Download Full Size | PPT Slide | PDF

To better interpret the underlying mechanism of the hole transport process for the different DUV LEDs, the energy band alignments for Reference device, Devices A1, A3, and B are selectively presented in Figs. 3(a), 3(b), 3(c), and 3(d), respectively. Since the energy band alignments for Devices A2 and A3 are similar, thus we do not show the energy band diagram for Device A2 here. Besides the definitions for ∆ϕ0, ∆ϕ1 and ∆ϕ2 [see Figs. 1(a) and 1(b)], we also denote ϕ1 as the effective conduction band barrier height for the different p-EBLs in Fig. 3.

 figure: Fig. 3

Fig. 3 Calculated energy band diagrams for (a) Reference device with inset showing the hole concentration profile in the p-EBL region, (b) Device A1 with inset showing the hole concentration profile in the p-EBL region, (c) Device A3 with inset showing the hole concentration profile in the p-EBL region, and (d) Device B with inset showing the hole concentration profile in the p-EBL region. ∆ϕ0, ∆ϕ1, ∆ϕ2 and ∆ϕ3 have been defined in Fig. 2. ϕ1 denotes the effective conduction band barrier height for the AlN insertion layer. The values are calculated at the injection current level of 100 mA.

Download Full Size | PPT Slide | PDF

As shown in Fig. 3(a), there exists the interface depletion region for holes at the LQB/p-EBL interface [i.e., position B] which can be indicated by reading the inset for Fig. 3(a). The depletion effect causes the ∆ϕ1 to be 161.0 meV, which hinders the thermionic emission efficiency [i.e., process P1 in Fig. 1(a1)] for Reference device. The energy that the holes obtain is −141.3 meV according to Fig. 3(a). The effective conduction band barrier height of ϕ1 for p-EBL is ~370.7 meV. Figures 3(b) and 3(c) illustrate that the interface depletion effect at the AlN/p-EBL interface [i.e., position B] does not occur if we read the insets for Figs. 3(b) and 3(c), respectively. Thus, the hole blocking effect at position B for the p-EBL no longer exists for Devices A1 and A3. Meanwhile, the holes can obtain the additional energy of 268.8 meV and 334.5 meV as they travel across the p-EBL for Devices A1 and A3. Moreover, when the holes travel from the p-EBL into the MQWs by tunneling through the AlN insertion layer, they get further energy of 210.2 meV and 1123.9 meV for Devices A1 and A3, respectively, i.e., the values for ∆ϕ0 + ∆ϕ3 - ∆ϕ2 are 177.2 meV and 1156.6 meV according to Figs. 3(b) and 3(c), respectively. Since the AlN insertion layer for Device A1 is as thin as 1 nm, which makes the high-efficiency intraband tunneling possible for holes. As a result, Device A1 shows the improved EQE and the optical power than Reference device according to Figs. 2(a) and 2(b). The enhanced hole injection into the MQWs can generate more electron-hole pairs for the radiative recombination, and the AlN insertion layer further increases the effective conduction band barrier height to 889.3 meV for Device A1. As a result, it can be predicted that the electron leakage for Device A1 can be reduced, and this translates the significantly suppressed efficiency droop when compared to Reference device in Fig. 2(b). However, the thickness of AlN insertion layer for Device A3 is 3 nm, which may substantially reduce the intraband tunneling efficiency even though the holes obtain the net energy of 1156.6 meV. The low hole injection causes a large electron leakage and the polarization induced positive sheet charges at the LQB/AlN interface give rise the electron accumulation, which reduces the effective conduction band barrier height of 308.5 meV [15,19]. Hence the thick AlN insertion layer loses the electron blocking effect. The similar conclusions can be made for Device A2.

Fortunately, the intraband tunneling for thick AlN insertion layer can be improved by using the AlN/Al0.50Ga0.50N/AlN structured insertion layer in Device B. According to the inset for Fig. 3(d), we also find that the interface depletion effect at the AlN/p-EBL interface [i.e., position B] does not occur. Figure 3(d) shows that the holes can obtain the even larger energy of 306.6 meV and 813.6 meV when they travel from the p-EBL into the MQW region and the value for ∆ϕ0 + ∆ϕ3 - ∆ϕ2 is 818.4 meV. Therefore, the hole injection for Device B shall be even better than that for Device A1, yielding the best optical performance according to Figs. 2(a) and 2(b). The effective conduction band barrier height for the AlN/Al0.50Ga0.50N/AlN insertion layer is 469.2 meV, which can also tremendously reduce the electron leakage and suppress the efficiency droop [see Fig. 2(b)]. The analysis for Devices A2, A3 and B also implies that the thermionic emission [i.e., P1 in Fig. 1(b)] for holes to climb over the AlN insertion layer is negligible.

To further support our speculations regarding the hole injection when we discuss Figs. 3(a), 3(b), 3(c) and 3(d), we calculate and show the hole concentration profiles in the MQWs for the investigated DUV LEDs in Fig. 4(a). Thanks to the excellent intraband tunneling and the decent energy that holes obtain for Device B, we can find that the hole concentration in the MQW region is the highest once the AlN/Al0.50Ga0.50N/AlN insertion layer is embedded at the LQB/p-EBL interface. By contrast, the hole concentration level in the MQWs is slightly decreased for Device A1, which is due to the smaller energy that the holes obtain. The hole concentration dramatically drops in the MQW region for Device A3 even when compared with that for Reference device. The very low hole injection capability for Device A3 is attributed to the significant hole blocking effect by the 3 nm thick AlN insertion layer. In the meantime, as shown in Fig. 4(b), we also present the electron concentration profiles in the LQBs, the AlN (or AlN/Al0.50Ga0.50N/AlN) insertion layers, the p-EBLs and the p-AlGaN layers for Reference device, Devices A1, A3 and B. As we have predicted previously, the very low hole injection efficiency causes a significant electron leakage for Reference device and Device A3. The enhanced hole injection and better electron blocking effect for Devices A1 and B can tremendously suppress the electron leakage level. The suppressed electron leakage level also accounts for the reduced efficiency droop for Devices A1 and B, while the very huge electron leakage interprets the efficiency droop for Reference device, Devices A2 and A3 in Fig. 2(b).

 figure: Fig. 4

Fig. 4 (a) Hole concentration profiles in the MQWs, and (b) electron concentration profiles in the LQB and the p-region for Reference device, Devices A1, A3 and B, respectively. For the convenience of observation, the hole concentration is intentionally multiplied by 50 for Device A3 and the hole concentration profiles are purposely shifted by 1.5 nm, 2.5 nm, and 4 nm for Device A1, Reference device, and Device A3 with the reference of Device B, respectively. The data are calculated when the injection current level is 100 mA.

Download Full Size | PPT Slide | PDF

4. Conclusions

To summarize, we reveal the impact of the AlN insertion layer that is embedded between the LQB and the p-EBL for DUV LEDs, and we find that the proposed structures form the accumulation region for holes on the p-EBL side at the AlN/p-EBL interface. Meanwhile, the increased energy will be obtained when the holes are injected from the p-EBL to the MQW region, i.e., “hot” holes can be produced. As long as the AlN layer is properly thin (e.g., 1 nm for this work), the high-efficiency intraband tunneling enables the improved hole injection, thus generating the enhanced EQE and the optical output power when compared to Reference device. We also find that when the AlN insertion layer becomes thick, the mitigated intraband tunneling reduces the hole injection efficiency though the more energy for holes can still be obtained. We suggest using the AlN/AlxGa1-xN/AlN (x = 0.5 in this work) structure as the insertion layer to increase the intraband tunneling for holes. Assisted by the AlN/AlxGa1-xN/AlN insertion layer, the holes can obtain even more energy when they travel from the p-EBL into the MQWs, which maximizes the EQE and the optical power when compared with other investigated DUV LEDs. We believe that the findings provide the additional physical understanding for the current device physics on the hole injection for DUV LEDs, and hence this work is very important for achieving high-efficiency DUV LEDs.

Funding

National Natural Science Foundation of China (51502074, 61604051); Natural Science Foundation of Hebei Province (F2017202052); Natural Science Foundation of Tianjin City (16JCYBJC16200); Program for Top 100 Innovative Talents in Colleges and Universities of Hebei Province (SLRC2017032); Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) Research Fund (19ZS02) of Chinese Academy of Science.

References

1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008). [CrossRef]  

2. H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005). [CrossRef]  

3. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014). [CrossRef]  

4. J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017). [CrossRef]  

5. K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017). [CrossRef]  

6. M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014). [CrossRef]  

7. X. Li, S. Sundaram, P. Disseix, G. Le Gac, S. Bouchoule, G. Patriarche, F. Reveret, J. Leymarie, Y. El Gmili, T. Moudakir, F. Genty, J. P. Salvestrini, R. D. Dupuis, P. L. Voss, and A. Ougazzaden, “AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm,” Opt. Mater. Express 5(2), 380–392 (2015). [CrossRef]  

8. T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016). [CrossRef]  

9. P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013). [CrossRef]  

10. K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018). [CrossRef]  

11. M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014). [CrossRef]  

12. R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018). [CrossRef]  

13. J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009). [CrossRef]  

14. Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017). [CrossRef]  

15. C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018). [CrossRef]  

16. Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013). [CrossRef]  

17. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010). [CrossRef]   [PubMed]  

18. S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

19. Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017). [CrossRef]   [PubMed]  

20. Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017). [CrossRef]   [PubMed]  

21. J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013). [CrossRef]  

22. T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013). [CrossRef]  

23. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014). [CrossRef]  

24. Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008). [CrossRef]  

25. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003). [CrossRef]  

26. Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016). [CrossRef]  

27. J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012). [CrossRef]  

28. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002). [CrossRef]  

29. Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
    [Crossref]
  2. H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005).
    [Crossref]
  3. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
    [Crossref]
  4. J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
    [Crossref]
  5. K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
    [Crossref]
  6. M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
    [Crossref]
  7. X. Li, S. Sundaram, P. Disseix, G. Le Gac, S. Bouchoule, G. Patriarche, F. Reveret, J. Leymarie, Y. El Gmili, T. Moudakir, F. Genty, J. P. Salvestrini, R. D. Dupuis, P. L. Voss, and A. Ougazzaden, “AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm,” Opt. Mater. Express 5(2), 380–392 (2015).
    [Crossref]
  8. T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
    [Crossref]
  9. P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
    [Crossref]
  10. K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
    [Crossref]
  11. M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
    [Crossref]
  12. R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
    [Crossref]
  13. J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
    [Crossref]
  14. Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
    [Crossref]
  15. C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
    [Crossref]
  16. Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
    [Crossref]
  17. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
    [Crossref] [PubMed]
  18. S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).
  19. Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017).
    [Crossref] [PubMed]
  20. Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
    [Crossref] [PubMed]
  21. J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
    [Crossref]
  22. T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
    [Crossref]
  23. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
    [Crossref]
  24. Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
    [Crossref]
  25. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
    [Crossref]
  26. Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
    [Crossref]
  27. J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012).
    [Crossref]
  28. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
    [Crossref]
  29. Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018).
    [Crossref] [PubMed]

2018 (4)

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018).
[Crossref] [PubMed]

2017 (5)

Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

2016 (3)

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

2015 (1)

2014 (4)

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

2013 (4)

J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

2012 (1)

J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012).
[Crossref]

2010 (1)

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

2009 (1)

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

2008 (2)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

2005 (1)

H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005).
[Crossref]

2003 (1)

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

2002 (1)

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Akaike, R.

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Ambacher, O.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Avrutin, V.

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

Balakrishnan, K.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Bernardini, F.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Bi, W.

Bi, W. G.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Bilenko, Y.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Bouchoule, S.

Cai, X. F.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Chang, H. T.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Chang, J. Y.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Chen, C. Q.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Chen, F. M.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Chen, H. Y.

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Chen, Q.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Chen, S. C.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Chen, S. W. H.

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Chiu, C. H.

Cho, J.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Chu, C.

Chu, C. S.

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Cong, P.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Dai, J. N.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Ding, K.

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

Disseix, P.

Dobrinsky, A.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Dong, P.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Dupuis, R. D.

Egawa, T.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Einfeldt, S.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

El Gmili, Y.

Fan, S.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Fang, M.

Fang, M. Q.

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Fang, Y. Y.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Fiorentini, V.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Fujikawa, S.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Funato, M.

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Garrett, G. A.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Gaska, R.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Geng, C.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Genty, F.

Guttmann, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Hirayama, H.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005).
[Crossref]

Hu, X. H.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Ichikawa, S.

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Jain, R.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Jena, D.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Kamata, N.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Kang, J. Y.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Katona, T.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Kawakami, Y.

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Khan, A.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Kim, J. K.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Knauer, A.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kneiss, M.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

Kneissl, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Kolbe, T.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Kosaka, K.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Kueller, V.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kuhn, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Kuo, H. C.

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Kuo, H.-C.

Kuo, Y. K.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Lapeyrade, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Le Gac, G.

Leymarie, J.

Li, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Li, J. C.

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Li, L.

Li, L. P.

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Li, S. P.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Li, X.

Li, X. Y.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Li, Y.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Li, Z. M. S.

J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
[Crossref]

Lian, C.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Lin, W.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Liu, D. Y.

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Liu, S. Q.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Lu, T. C.

Lunev, A.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Maeda, N.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Mehnke, F.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

Miyoshi, M.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Morkoc, H.

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

Moudakir, T.

Ougazzaden, A.

Ozgur, U.

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

Park, J. S.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Patriarche, G.

Piprek, J.

J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
[Crossref]

J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012).
[Crossref]

Protasenko, V.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Qin, Z.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Rass, J.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Reich, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Reveret, F.

Rodak, L. E.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Rothe, M.-A.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

Salvestrini, J. P.

Seong, T. Y.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Shatalov, M.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Shen, B.

Shi, Q.

Shibata, T.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Shih, Y. H.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Shur, M.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Simon, J.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Stellmach, J.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

Sumiya, S.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Sun, L.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Sun, Q.

Sun, W. H.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Sundaram, S.

Tanaka, M.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Tian, K.

Tian, K. K.

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Tian, W.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Tian, Y.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Toyoda, S.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Voss, P. L.

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

Wang, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Wang, S. W.

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Wei, T.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Wernicke, T.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Weyers, M.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Wraback, M.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Wu, Z. H.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Xing, H.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Xu, F.

Xu, J. T.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Yan, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Yan, Q.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Yang, J. W.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Yang, W. H.

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Ye, C. Y.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Zeng, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Zhang, J. C.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Zhang, M.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Zhang, Y.

Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018).
[Crossref] [PubMed]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017).
[Crossref] [PubMed]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Zhang, Y. H.

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Zhang, Z. H.

Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018).
[Crossref] [PubMed]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Zhang, Z.-H.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Zhu, Y. H.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

ACS Photonics (1)

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Appl. Phys. Adv. Mater. (1)

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Appl. Phys. Express (1)

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Appl. Phys. Lett. (6)

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Crystals (Basel) (1)

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

ECS J. Solid State Sc. (1)

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Electron. Lett. (1)

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

IEEE Photonics J. (1)

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

J. Appl. Phys. (2)

H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Nat. Photonics (1)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012).
[Crossref]

Phys. Status Solidi Rapid Res. Lett. (1)

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Phys. Status Solidi. – A Appl. Mater. Sci. (1)

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

Science (1)

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Superlattices Microstruct. (2)

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic energy band diagrams for (a1) the conventional bulk AlGaN p-EBL, and (b1) the proposed structure with an AlN insertion layer between the LQB and the p-EBL; (a2) sketched hole concentration profile in the bulk AlGaN based p-EBL and (b2) sketched hole concentration profile in the p-EBL with an AlN insertion layer between the LQB and the p-EBL. Here, Ec, Ev, Efe, and Efh denote the conduction band, the valence band, the quasi-Fermi level for electrons, and the quasi-Fermi level for holes. ∆ϕ0 denotes the energy difference between points B and E in valence bands of the p-EBL and LQB. ∆ϕ1 means the energy difference between points A and B in valence bands of the LQB and the p-EBL. ∆ϕ2 represents the energy difference between points C and D in valence bands of the p-EBL and the p-AlGaN layer. ∆ϕ3 represents the energy difference between points B and C in valence bands of the p-EBL. P0 and P1 denote the thermionic emission processes. P2 represents the intraband tunneling process through the thin AlN insertion layer.
Fig. 2
Fig. 2 (a) Optical power, and (b) EQE in terms of the injection current for Reference device, Device A1, Device A2, Device A3 and Device B, respectively. Note, for better observation, the values of the optical power and the EQE for Devices A2 and A3 have been multiplied by 200. The experimental data are extracted from the report of Zhang et al. [29].
Fig. 3
Fig. 3 Calculated energy band diagrams for (a) Reference device with inset showing the hole concentration profile in the p-EBL region, (b) Device A1 with inset showing the hole concentration profile in the p-EBL region, (c) Device A3 with inset showing the hole concentration profile in the p-EBL region, and (d) Device B with inset showing the hole concentration profile in the p-EBL region. ∆ϕ0, ∆ϕ1, ∆ϕ2 and ∆ϕ3 have been defined in Fig. 2. ϕ1 denotes the effective conduction band barrier height for the AlN insertion layer. The values are calculated at the injection current level of 100 mA.
Fig. 4
Fig. 4 (a) Hole concentration profiles in the MQWs, and (b) electron concentration profiles in the LQB and the p-region for Reference device, Devices A1, A3 and B, respectively. For the convenience of observation, the hole concentration is intentionally multiplied by 50 for Device A3 and the hole concentration profiles are purposely shifted by 1.5 nm, 2.5 nm, and 4 nm for Device A1, Reference device, and Device A3 with the reference of Device B, respectively. The data are calculated when the injection current level is 100 mA.

Metrics