Abstract

A full fiber-optic fluorescence correlation spectroscopy (FF-FCS) technique has been developed without the use of objectives and dichroic mirrors. To achieve this, an excitation laser has been focused onto a sample by a lensed optical fiber or a gradient index lens attached on the terminal surface of the optical fiber. The FF-FCS system does not exhibit a higher sensitivity than the conventional FCS system; however, it is much simpler and smaller. This work demonstrates the feasibility of FF-FCS by measuring fluorescent beads. In the future, we expect FF-FCS to be widely used as a laboratory tool and an embedded tool for quality-control systems, such as cytometers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fluorescence correlation spectroscopy (FCS) [1,2] is a powerful tool for studying intermolecular interactions and microenvironments even in living cells. The molecules of interest are fluorescently labeled, and the random fluctuation of the fluorescence intensity caused by the fluorescent molecule is analyzed inside a measured volume element. As a result, FCS determines the speed of translational diffusion and the number of fluorescently labeled molecules. The translational diffusion provides information about intermolecular interactions and the surrounding environment.

FCS is now widely used, especially in biological contexts, to measure the protein concentration, dissociation constant of homodimers, and interactions between proteins and DNA in living cells [3–5]. Fluorescence cross-correlation spectroscopy (FCCS) is more appropriate for measuring the dissociation constant between two specific molecules because of its two-color measurement [6–10]. Advanced techniques, such as polarization-dependent FCS (Pol-FCS) [11,12], fluorescence lifetime correlation spectroscopy (FLCS) [13,14], multipoint FCS [14–16], and STED-FCS [17], have recently been developed for more specific fields in life science. However, most commercial FCS systems are still too expensive for use in all laboratories. One of the reasons for this is the use of high-NA objectives and sophisticated dichroic mirror systems equipped in fluorescence microscopy to generate sub-femtoliter confocal volumes and high-efficiency fluorescence detection. A smaller confocal volume is generally better in FCS systems because the smaller number of molecules in the confocal volume leads to a larger fluorescence intensity fluctuation. In addition, high-NA objectives can effectively correct a weak fluorescence from single fluorescent molecules. Therefore, to this end, the commercial FCS setup is mounted on a high-end fluorescence confocal microscope using high-NA objectives. Accordingly, commercial FCS systems tend to be expensive and large in size.

Meanwhile, some efforts have been made toward achieving compact FCS systems mainly based on optical fiber systems [18–20]. In principal, their design concept is the same as that of the conventional FCS system using an objective, a dichroic mirror, and a pinhole. The pinhole is sometimes replaced by an entry of optical fiber with an appropriate core diameter.

We propose herein a simple and small FCS system based on fiber optics, called full fiber-optic FCS (FF-FCS). The FF-FCS system does not contain any objectives, dichroic mirrors, or pinhole apparatus; instead, it uses lensed optical fiber and an optical fiber coupler with a high coupling ratio. The lensed fiber cannot focus the excitation laser tightly like objectives; however, it is sufficient for dilute and bright particles that contain several fluorophores. The optical fiber coupler plays the role of an optical circulator for visible light, and the fluorescence emitted from samples can be effectively separated without a dichroic mirror.

We discuss the FF-FCS measurements for polystyrene fluorescence beads and demonstrate the feasibility of FF-FCS in this paper.

2. Full fiber-optic fluorescence correlation spectroscopy (FF-FCS)

2.1. Experimental setup

Figure 1 shows the schematic for the FF-FCS setup. A fiber output of the laser diode (LD) with a wavelength of 488 nm (LP488-SF20, Thorlabs, USA) was connected to port A of a 2 × 2 optical fiber coupler with a branching ratio of 99:1 (FC488-99B-FC, Thorlabs, USA). Subsequently, 99% of the excitation laser was outputted from port C, and the laser was absorbed by a fiber-optic light terminator (LT) (FTFC1, Thorlabs, USA). The remaining 1% of the excitation laser was guided to a lensed optical fiber (CL1-FC3, WT&T, Canada) connected to port D. The lensed end was directly dipped into the samples, and 1% of the excitation laser was focused on the sample. Only the fluorescence emitted from the focal region propagated back to the 2 × 2 fiber coupler. After which, 99% of the fluorescence was outputted from port B. In FCS, the excitation laser is usually used with ND filters to avoid photobleaching by an excitation laser that is too strong. In this system, the 2 × 2 fiber coupler plays the role of the dichroic mirror and the ND filter.

 figure: Fig. 1

Fig. 1 Experimental setup for FF-FCS. (a) Entire setup. (b) Corn-shape lensed fiber.

Download Full Size | PPT Slide | PDF

The fluorescence at port B was filtered by an emission filter (EF) (FF01-530/43-25, Semrock, USA) to eliminate the scattered/reflected light that could act as a possible background noise. The emission filter was mounted on an in-line multimode fiber optic filter mount (FOFMF/M, Thorlabs, USA), where the light outputted from port B was collimated and re-coupled to the multimode fiber (MMF) by two parabolic mirrors. Finally, the fluorescence was guided to a photomultiplier tube (PMT) (Photon counting head, H7421-40, Hamamatsu, Japan) by an MMF. The autocorrelation function (ACF) of the photon counting signal from the PMT was calculated by a laboratory-made software correlator using a laboratory-made hardware counter based on a field-programmable gate array (FPGA) (10M08SAE144C8G, Intel, USA).

In this system, all optical elements are connected by an FC/PC connector of optical fiber, and no parts require position adjustment of the optical axis. Furthermore, the fluorescence from the focal point is inevitably corrected by the lensed fiber without any adjustment, and the shape of confocal volume is hard to change because the optical fiber for illumination and correction of fluorescence is the same. In other words, the FF-FCS is very robust and easy to construct and operate, which is a very big benefit for users and embedded systems.

Unfortunately, the lensed fiber is not a well-designed lens like the objective lens, and the core size of the optical fiber for fluorescence correction cannot independently optimize, thereby degrading the system sensitivity. In the conventional FCS system, the pinhole for excitation and that for fluorescence detection are not usually the same. The general FCS system can collect fluorescence with high sensitivity, but it needs pinhole adjustment before the experiment, and the shape of the confocal volume can be easily deformed.

A control FCS measurement was performed herein with an LSM 510 ConforCor3 (Carl Zeiss)-equipped objective (NA 1.2, 40 × ) acting as the conventional FCS system.

2.2. Data analysis

FF-FCS essentially involves the same analytical procedure as that of a conventional FCS. Therefore, the ACF for a single diffusing species for FF-FCS is expressed as follows [21]:

G(τ)=I(t)I(t+τ)I(t)2=1N(1+ττD)1(1+1s2ττD)1/2+1,
τD=w024D,
where I(t) is the fluorescence intensity signal as a function of time t; N is the average number of particles inside the focal volume of the focused excitation laser, and its inverse corresponds to the amplitude of the ACF; and τD is the translational diffusion time, which refers to the average dwell time of the particles in the focal volume. The diffusion time is inversely proportional to the diffusion coefficient D. s is the structure parameter defined using the lateral radius w0 and the axial radius z0 of the focal volume as s = z0/w0. The background intensity correction was applied as follows to the ACF of FF-FCS in a manner reported earlier [4]:
Gcorrected(τ)=(IIIbg)2G(τ),
where, Gcorrected and Ibg are the corrected autocorrelation function and the background intensity, respectively. In the experiment, the background intensity was measured as an average count rate of pure water as a sample.

The ACF obtained by FF-FCS was analyzed by fitting all obtained values to Eq. (1) using the nonlinear least-squares method. In the following experiments, the structure parameter was fixed at 1.0. Eleven measurements were independently repeated on the fluorescence latex beads (FluoSpheresTM, F13081, Molecular Probes, USA) to determine the structure parameter. The results with the structure parameter were then fitted as a free parameter. The result was 0.9981 ± 0.0011 (average ± standard error). In the conventional FCS system, the structure parameter is usually approximately 5 to 10 using well-designed objective lens. The structure parameter of the lensed fiber might be affected by spherical and chromatic aberration.

3. Results and discussion

3.1. Particle size dependence

FF-FCS measurements were performed for the dispersion of fluorescent latex beads with diameters of 20, 40, and 100 nm in water (FluoSpheresTM, F8787, F8795, and F13081, Molecular Probes, USA). The measurement of a monomeric green fluorescent protein by FF-FCS was not successful because of its weak fluorescence compared with that of fluorescent beads (data not shown). The excitation laser power at the focal plane of the lensed fiber was 7.29, 7.29, and 5.20 μW for these beads, respectively.

Figures 2(a) and 2(c) show the ACF and the normalized ACF, respectively. Figure 2(b) shows the residuals of fitting for each ACFs. A shift in the relaxation time of the normalized ACF with an increase in the particle diameter can be clearly observed in Fig. 2(c). The relatively high deviation of the ACF of 20 nm was caused by the low fluorescence brightness. Figure 2(d) shows the relationship between the diffusion time and the diameter of the particles. According to the Einstein–Stokes equation, the diffusion coefficient is inversely proportional to the particle radius; therefore, the diffusion time is linearly proportional to the particle radius. In other words, the linear relationship in Fig. 2(d) is in good agreement with theory, indicating that FF-FCS can quantitatively measure the diameter of fluorescent particles.

 figure: Fig. 2

Fig. 2 Particle size dependence on ACF. (a) Autocorrelation functions with background correction. The circles represent the measured ACF, and the solid lines are the fitted curves according to the model Eq. (1). The error bars show the standard deviations (n = 5). (b) Residual of fitting. (c) Normalized autocorrelation functions of (a). (d) Linearity of diffusion time against diameter of particles. The circles represent average values of the fitted diffusion time, and the blue solid line is the linear regression line. The error bars show the standard error (n = 5).

Download Full Size | PPT Slide | PDF

3.2. Concentration dependence

The concentration dependence on the ACF amplitude in FF-FCS was confirmed using a dilution series of fluorescent latex beads (FluoSpheresTM, F13081, Molecular Probes, USA), an excitation laser power of 5.20 μW, and a measurement duration of 100 s (10 s measurements repeated in 10 loops). Figures 3(a) and 3(b) show the ACFs obtained by FF-FCS and residuals of fitting analysis. The amplitude was observed to increase with the decreasing particle concentration because it was inversely proportional to the average number of particles inside the volume element. Figure 3(c) shows the relationship between the number of particles obtained by FF-FCS and the given concentration. Clear linearity and small standard errors were observed. Figure 3(d) shows that the diffusion time was independent of the concentration. The results indicated that FF-FCS can quantify the concentration of fluorescent particles independent of the diffusion time. Using Eq. (2) and the Einstein–Stokes equation, the lateral radius of the measurement volume was estimated as 1.41 μm for τD = 0.1 s, which is over three times larger than that of a water immersion objective lens with a numerical aperture of 1.2 used in conventional FCS systems (LSM 510 CofoCor3). The estimated measurement volume was 15.4 fL, which is approximately 100 times larger than that of the objective lens.

 figure: Fig. 3

Fig. 3 Particle concentration dependence on ACF. (a) Autocorrelation functions were treated with background correction. The error bars represent the standard deviation (n = 3). The circles and solid lines are the measured ACFs and fitted curves, respectively. (b) Residual of fitting (c) Linearity of number of particles against given concentration. The error bars represent the standard error (n = 3). The blue solid line shows the linear regression. (d) Relationship between diffusion time and given concentration. The error bars represent the standard error (n = 3). The blue solid line shows the linear regression line.

Download Full Size | PPT Slide | PDF

The lensed fiber diameter is smaller than 1 mm, implying that the FF-FCS system can be combined into endoscopes/laparoscopes, making FF-FCS measurements in living animals possible in the future. The lensed fiber is much cheaper than the objective lens, and is disposable; therefore, FF-FCS can be applied to extreme environments, such as those with very low temperatures or very low/high pressures, and medical diagnosis as a disposable medical equipment. FF-FCS used an emission filter (EF in Fig. 1) to eliminate scattered light and background noise at long wavelengths, which will be replaced by the wavelength division multiplexer or fiber Bragg grating in the near future to complete the fiber system.

4. Conclusion

In this work, we developed and demonstrated FF-FCS, which does not need an objective lens, a dichroic mirror, or a fluorescence microscope. FF-FCS uses a much simpler and smaller system than a conventional confocal FCS system. Furthermore, it can be realized by connecting all the fiber components, thereby making laborious pinhole adjustment unnecessary.

The fluorescence detection efficiency of FF-FCS is much lower than that of the conventional FCS. FF-FCS is not so sensitive that the large size of a structural object, such as cells, cell debris, or particle of exosome, would be the target in the deal for applications. GRIN lens-attached optical fiber can also be used instead of the lensed fiber. A suitably designed GRIN lens would improve the FF-FCS sensitivity.

The FF-FCS system is cheap, compact, and robust; hence, the technique can be widely used in many laboratories and measurement systems, such as in cytometers, production lines, and garage laboratories.

Funding

Canon Foundation; Uehara Memorial Foundation; JSPS KAKENHI (JP16K07312).

References

1. S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976). [CrossRef]  

2. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993). [CrossRef]  

3. S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007). [CrossRef]   [PubMed]  

4. S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015). [CrossRef]   [PubMed]  

5. V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010). [CrossRef]   [PubMed]  

6. S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018). [CrossRef]   [PubMed]  

7. M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017). [CrossRef]   [PubMed]  

8. P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997). [CrossRef]   [PubMed]  

9. K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003). [CrossRef]   [PubMed]  

10. J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010). [CrossRef]  

11. M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974). [CrossRef]  

12. M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016). [CrossRef]   [PubMed]  

13. M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002). [CrossRef]  

14. A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018). [CrossRef]   [PubMed]  

15. D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015). [CrossRef]   [PubMed]  

16. J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018). [CrossRef]  

17. G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015). [CrossRef]   [PubMed]  

18. K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007). [CrossRef]   [PubMed]  

19. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17(21), 19085–19092 (2009). [CrossRef]   [PubMed]  

20. K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45(28), 7538–7542 (2006). [CrossRef]   [PubMed]  

21. J. R. Lakowicz, ed., Principles of Fluorescence Spectroscopy (Springer US, 2006).

References

  • View by:
  • |
  • |
  • |

  1. S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
    [Crossref]
  2. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
    [Crossref]
  3. S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
    [Crossref] [PubMed]
  4. S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
    [Crossref] [PubMed]
  5. V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
    [Crossref] [PubMed]
  6. S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
    [Crossref] [PubMed]
  7. M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
    [Crossref] [PubMed]
  8. P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
    [Crossref] [PubMed]
  9. K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
    [Crossref] [PubMed]
  10. J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
    [Crossref]
  11. M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
    [Crossref]
  12. M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
    [Crossref] [PubMed]
  13. M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
    [Crossref]
  14. A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
    [Crossref] [PubMed]
  15. D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
    [Crossref] [PubMed]
  16. J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
    [Crossref]
  17. G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
    [Crossref] [PubMed]
  18. K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
    [Crossref] [PubMed]
  19. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17(21), 19085–19092 (2009).
    [Crossref] [PubMed]
  20. K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45(28), 7538–7542 (2006).
    [Crossref] [PubMed]
  21. J. R. Lakowicz, ed., Principles of Fluorescence Spectroscopy (Springer US, 2006).

2018 (3)

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
[Crossref]

2017 (1)

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

2016 (1)

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

2015 (3)

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

2010 (2)

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

2009 (1)

2007 (2)

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
[Crossref] [PubMed]

2002 (1)

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

1997 (1)

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

1993 (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

1976 (1)

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[Crossref]

1974 (1)

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Aouani, H.

Aragón, S. R.

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[Crossref]

Bacia, K.

K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
[Crossref] [PubMed]

Böhmer, M.

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Clausen, M. P.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Deiss, F.

Diaspro, A.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Eggeling, C.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Ehrenberg, M.

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Enderlein, J.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Erdmann, R.

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Ferrand, P.

Fukushima, R.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Galiani, S.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Garai, K.

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45(28), 7538–7542 (2006).
[Crossref] [PubMed]

García-Sáez, A. J.

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

Gehring, W. J.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Ghosh, A.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

Gregor, I.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

Hell, S. W.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Honigmann, A.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Ishikawa, H.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Karedla, N.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

Kask, P.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Kinjo, M.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
[Crossref]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Krautz, R.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Krmpot, A. J.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Kurosaki, T.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

Maiti, S.

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45(28), 7538–7542 (2006).
[Crossref] [PubMed]

Mets, Ü.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Meyer-Almes, F. J.

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

Mikuni, S.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
[Crossref]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Mueller, V.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Muralidhar, M.

Nikolic, S. N.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Oasa, S.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Oura, M.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Papadopoulos, D. K.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Pecora, R.

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[Crossref]

Petrášek, Z.

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

Rahn, H.-J.

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Ries, J.

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

Rigler, R.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Rigneault, H.

Sasaki, A.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Schwille, P.

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
[Crossref] [PubMed]

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

Sezgin, E.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Sojic, N.

Sureka, R.

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

Ta, H.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Tamura, M.

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Terenius, L.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Thiele, J. C.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

Tiwari, M.

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

Tomancak, P.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Vicidomini, G.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Vukojevic, V.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Wahl, M.

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Waithe, D.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Wenger, J.

Widengren, J.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Yamamoto, J.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
[Crossref]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Yamashita, D.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biophys. J. (2)

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

Chem. Phys. (1)

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Chem. Phys. Lett. (1)

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Eur. Biophys. J. (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

FEBS Lett. (2)

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[Crossref]

Mech. Dev. (1)

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Methods (2)

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
[Crossref] [PubMed]

Nano Lett. (1)

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Sci. Rep. (3)

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Other (1)

J. R. Lakowicz, ed., Principles of Fluorescence Spectroscopy (Springer US, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup for FF-FCS. (a) Entire setup. (b) Corn-shape lensed fiber.
Fig. 2
Fig. 2 Particle size dependence on ACF. (a) Autocorrelation functions with background correction. The circles represent the measured ACF, and the solid lines are the fitted curves according to the model Eq. (1). The error bars show the standard deviations (n = 5). (b) Residual of fitting. (c) Normalized autocorrelation functions of (a). (d) Linearity of diffusion time against diameter of particles. The circles represent average values of the fitted diffusion time, and the blue solid line is the linear regression line. The error bars show the standard error (n = 5).
Fig. 3
Fig. 3 Particle concentration dependence on ACF. (a) Autocorrelation functions were treated with background correction. The error bars represent the standard deviation (n = 3). The circles and solid lines are the measured ACFs and fitted curves, respectively. (b) Residual of fitting (c) Linearity of number of particles against given concentration. The error bars represent the standard error (n = 3). The blue solid line shows the linear regression. (d) Relationship between diffusion time and given concentration. The error bars represent the standard error (n = 3). The blue solid line shows the linear regression line.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G(τ)= I(t)I(t+τ) I(t) 2 = 1 N ( 1+ τ τ D ) 1 ( 1+ 1 s 2 τ τ D ) 1/2 +1,
τ D = w 0 2 4D ,
G corrected (τ)= ( I I I bg ) 2 G(τ),

Metrics