Abstract

We report the standoff (up to ~2 m) and remote (~8.5 m) detection of novel high energy materials/explosive molecules (Nitroimidazoles and Nitropyrazoles) using the technique of femtosecond laser induced breakdown spectroscopy (LIBS). We utilized two different collection systems (a) ME-OCT-0007 (commercially available) and (b) Schmidt-Cassegrain telescope for these experiments. In conjunction with LIBS data, principal component analysis was employed to discriminate/classify the explosives and the obtained results in both configurations are compared. Different aspects influencing the LIBS signal strength at far distances such as fluence at target, efficiency of collection system etc. are discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The development of rapid, reliable and real-time techniques to anticipate/dissolve the threats from nefarious elements by identifying high energy materials (HEMs), improvised explosive devices (IEDs) and special nuclear materials is a top priority for many nations to safeguard their citizens. Though the existing lab-based explosive trace detection techniques (Ion mobility, Mass spectrometry etc.) are sensitive, they are not in situ, time-consuming and could be more helpful in different scenarios (e.g. post incident analysis) [1, 2]. In contrast, laser based spectroscopic techniques such as Raman spectroscopy, laser induced breakdown spectroscopy (LIBS), terahertz spectroscopy and laser induced fluorescence possess high potential for in situ remote/standoff detection of explosives, biological warfare agents and hazardous substances [3–9]. Laser induced breakdown spectroscopy has been extensively used in various fields owing to it’s robust in situ elemental analysis, such as space exploration, pharmaceutical, soil and nutrient analysis and identification/discrimination of explosives [10–18]. To this end, nanosecond (ns) LIBS has been extensively used in analysing aerosols [19], process control and monitoring in metallurgical industry [20], planetary missions and detection of explosive residues [21–24] at standoff distances. Lazic et al. have utilized intensity ratios C/H, C/O, C/N, N/H and correlation between atomic intensities with Al+ intensity to classify explosive traces [25]. Gottfried et al. utilized nanosecond double pulse standoff LIBS system (ST-LIBS) for detecting explosive residues and chemical warfare agents on Aluminum at a distance of 20 m [21]. Further, they have utilized PLS-DA model to discriminate explosive residues on organic and inorganic substrates obtained at 25 m [26] and RDX traces on various metallic substrates in near filed and suggested approaches to improve PLS-DA model as well [27]. Cristina et al. employed a portable ns ST-LIBS system for detection of explosive residues at 30 m [28]. Sustained efforts are in progress to increase sensitivity and selectivity for explosive detection by combining LIBS and Raman spectroscopy onto a single platform. Efforts for the development of portable LIBS systems for field applications have been multiplied by various research communities over the last decade [29–32]. ST-LIBS spectra of a few explosive residues were recorded from 30 m distance, which were kept behind the transparent barriers such as PMMA and colourless glasses [33].

Though the advantages of femtosecond (fs) pulses over ns pulses are well documented, the technique of ST-LIBS with fs pulses has not been explored fully and only petite literature is available [34–37]. Fs pulses are rewarding when compared to ns pulses for LIBS studies since these short laser pulses offer lesser Continuum, smaller heat effected zones, lesser plasma-ambiance interaction and ideally minimal plasma–plume interaction [38, 39]. These pulses are ideal for remote/standoff detection as they can be formed into filaments through the phenomenon of filamentation and capable of delivering high energies over the long distances and has been used in atmospheric sensing [40, 41], cultural heritage monitoring [42], analyzing metals [43, 44], chemical and biological agents [45],organic samples [46], labeling of radioactive isotopes [47] and in detection of explosives [48, 49]. Femtosecond filaments can be generated at distances even hundreds of meters to few kilometers [50] in harsh environments and are barely influenced by turbulence. Fischer et al. recently demonstrated that fs filaments can be controlled to achieve highly stable, repeatable spatial and temporal distributions by use of a vortex phase plate which in turn provided better signal in remote LIBS (R-LIBS) [51]. In contrary, conventional ns pulses suffer from diffraction, beam wandering (severely affected by turbulence) which adversely influences the signal to noise ratio (SNR) and fail to deliver high intensities to remote locations [52]. Small crater depth attained in fs filament ablation compared to tight focused fs/ns pulses, as revealed from the recent studies by Harilal et al. is a certain advantage in minimizing substrate signal [53]. Fuji et al. have demonstrated in situ remote detection of salt water aerosols using fs laser pulses at 16 m [54]. Rohwetter et al. have used terawatt mobile laser system to obtain R-LIBS signal of Cu, Al at 25, 90 m and compared the utility of fs, picosecond and ns pulses towards ST-LIBS applications [55]. Effect of pulse chirp has been examined and demonstrated that detection limit can be improved by the use of chirped fs pulses, which provide better contrast compared to classical LIBS [56, 57]. For standoff applications, collection system plays a vital role as equal to the excitation wavelength and pulse duration of the laser. There have been several modifications executed to improve the efficiency of collection system [58]. Patrick et al. have proposed a spatial heterodyne spectrometer for ST-LIBS measurements up to 20 m which offers a very large field of view [59]. Recently, Li et al. have shown that a multi-collector lens system could outperform the Newtonian telescope of similar dimensions for ST-LIBS measurements [60]. Multivariate techniques such as PCA, PLSDA, SIMCA and ANN algorithms have been used to assist LIBS in identifying and discriminating explosives, soil, bacteria and classification of polymers etc. Gottfried et al. utilized PCA scores of various atomic intensities to distinguish explosives RDX, TNT, and Composition-B [61]. There remain several challenges for explosives detection using LIBS in general, and fs pulses in particular. Detailed studies on diverse molecules (including traces) using various optical configurations is essential to arrive at a field-usable instrument for unambiguous detection. In this work, fs LIBS technique was utilized to carry out ST-LIBS experiments of explosive molecules (nitropyrazoles and nitroimidazoles) and R-LIBS experiments of the explosive molecules as well as metals. Results from both the configurations are compared and complexities in obtaining standoff LIBS spectra are addressed.

2. Experimental details

An ultrafast Ti: Sapphire laser system (LIBRA, ~4 mJ, 1 kHz) delivering ~50 fs laser pulses and operating at 800 nm was employed to perform the fs LIBS experiments in two different configurations and ambient air. Figure 1 depicts the schematic of two configurations used in the present work: (i) fs standoff LIBS setup (fs ST-LIBS, up to 2 m) with D1 (collection optics, ME-OPT-0007, ANDOR) and (ii) fs remote LIBS setup (fs R-LIBS, ~8.5 m) with D2 (Schmidt-Cassegrain telescope) as collection systems.

 

Fig. 1 Femtosecond standoff (up to 2 m, configuration 1) and remote (~8.5 m, configuration 2) LIBS setup. In figure M, A, HWP, BP, L, D, P and T stands for mirror, aperture, half wave plate, Brewster plate, lens, collection system, plasma and target, respectively.

Download Full Size | PPT Slide | PDF

D1(ME-OPT-0007) from M/s Andor is a patented UV-NIR achromatic collecting/collimating lens/mirror system, which is optimized to ensure that all wavelengths in the range 200 - 1100 nm are collected evenly into the entrance fiber. It has one mirror and two lens fixed in an external body which makes it rugged and portable. In ST-LIBS, lenses of five different focal lengths i.e. 10, 30, 50, 100, and 200 cm were used to focus the fs pulses on to the sample and the emissions were collected by D1. The position of D1 was fixed besides the focusing lens and was optimized for each standoff distance by tilting/adjusting such that the collection distance is equal to focusing distance. Beyond the focusing length of 30 cm the point plasma stretched into filament. For example, a short filament of ~10 cm length was observed for the f = 200 cm focal length lens. The typical length of the filament varied from ~2 cm to ~10 cm (observed with naked eye). Due to several optical elements in the elaborate experimental setup we expect broadening of the fs pulses from ~50 fs to ~80 fs (estimated from calculations using dispersion relations). There is also possibility of the pulses being chirped. The present work did not investigate the effect of chirp on the LIBS emission. At each standoff position, an aluminum plate was interrogated in order to estimate spot-size and fluence delivered. In case of R-LIBS, plasma was produced by focusing the fs laser pulses using a 10 cm focal length lens and emissions were detected at 8.5 m away using a (6”, f/10) Schmidt-Cassegrain telescope (D2) whose construction is explained elsewhere [62] where 6” corresponds to the diameter of corrector plate and f/10 is the f-number. The incident pulse energy was ~2 mJ in both the configurations. The optical emissions collected from plasma were coupled to ANDOR Mechelle spectrometer (resolution of 0.05 nm @ 500 nm and the spectral window is 200-880 nm) attached with ICCD via an optical fiber (600 µm).

Fs ST-LIBS spectra of a set of five HEMs (nitroimidazoles) were recorded at five standoff distances of 10, 30, 50, 100 and, 200 cm. The spectra were acquired using a gate delay 50 ns, gate width 2 µs, gain 4000 (3000 at 10 cm was used to avoid ICCD saturation) with 1.5 s exposure time. Each spectrum is the resultant of 6 accumulations (which effectively means that each spectrum recorded is accumulation of the data from 9000 laser pulses). At a given standoff distance, 10-15 spectra per sample were recorded. All the spectrum acquisition conditions for HEMs and metals in R-LIBS case are as same as in ST-LIBS case, except ICCD gain of 1000 in case of metals. In R-LIBS, 10-15 spectra of HEMs and 20-25 spectra of metals were recorded. Pure HEMs powder (~300 mg) was ground and pressed at 3 tonnes pressure using a manual hydraulic press (Carver Co.) for 10 minutes to form a pellet of 12 mm diameter and thickness of ~3 mm. The pellets were translated in the plane transverse to the laser incident direction using Newport ESP 300 motion controller. Table 1 lists the details of all the samples that were investigated in both standoff and remote configurations.

Tables Icon

Table 1. IUPAC names and molecular formula of HEMs used in ST-LIBS and R-LIBS experiments

3. Results and discussion

3.1 Standoff LIBS studies of nitroimidazoles

Figures 2(a)-2(e) illustrate the stack plots of representative fs ST-LIBS spectra of a set of five nitroimidazoles obtained at five different standoff distances i.e. ~10, ~30, ~50, ~100 and ~200 cm, respectively. Nitroimidazoles and nitropyrazoles are nitro rich energetic molecules, systematically studied and reported by Rao et al. in near fs LIBS configuration [63, 64]. The essential spectral features of these molecules are CN, C2 molecular bands and C, H, N, O atomic emissions. Three CN bands were observed in the spectral region of 358-360 nm, 386-390 nm, 410-422 nm corresponding to Δν values of 1, 0, −1, respectively. The CN violet band (Δν = 0, B2Σ+ → X2Σ+) had the maximum intensity. Three C2 bands (Δν = −1, 0, + 1) were observed in the spectral range of 465-475 nm, 510-518 nm, 555-565 nm with maximum intensity at C2 Swan band (Δν = 0, d3Πg→ a3Πu). In standoff spectra CN, C2, NH (336 nm) molecular emissions were observed along with C, H, N, O atomic emissions though their intensity decreased as the standoff/working distance increased. Figure 2(f) represents the typical fs standoff Aluminum spectra recorded at all working distances.

 

Fig. 2 Typical fs standoff LIBS spectra of nitroimidazoles at (a) 10 cm (b) 30 cm (c) 50 cm (d) 100 cm (e) 200 cm acquired in ST-LIBS (configuration 1) and (f) Stack plot of the fs standoff LIBS spectra of Al at all distances.

Download Full Size | PPT Slide | PDF

Few Fe I impurities were identified (305.79 nm, 305.90 nm, 386.91 nm and 388.71 nm) in aluminum along with Al I transitions at 308.2 nm, 309.27 nm, 394.40 nm and 396.15 nm and AlO molecular bands in the spectral region of 440-550 nm. From Fig. 2 it is evident that the spectral intensity varies in case of each sample at a given position. This can be attributed to their molecular structure and the numerous complex plasma recombination reactions. In laser produced plasmas (LPP), it has been proved that co-existence of several reactions between excited radicles, atomic and molecular fragments from plasma as well as ambience leads to the formation or depletion of species [65, 66]. In our previous works we have discussed and elucidated few plasma reactions and their thermodynamic feasibility through which they conduit in formation and depletion of CN and C2 molecules in a laser induced plasma. Good correlation observed between CN spectral intensity and %C-N, %C = N linkages of samples investigated indicating lesser intrusion of air with fs pulse interrogation in comparison with the ns case [67].

Moreover, in LPP, the input pulse duration [15] as well as the focusing conditions [53] significantly influence the persistence of plasma species. Comparative ns and fs LIBS studies of TNT residue on Al substrate by Dikmelik et al. [68] have again illustrated that lower background signal from substrate is observed in case of fs pulses with CN and C2 being identified as markers for explosives whereas C, H, N, O atomic lines were suggested as markers in case of ns pulses. The change in focal length affects the spot size, filament generation conditions and, hence, has significant influence in the LIBS plume emission properties. Harilal et al. [53] have identified that the filament generation conditions can significantly influence the plasma properties including (a) atomic and molecular emission features (b) persistence and (c) plasma temperature and electron density. For short focal length focusing (say f = 10 cm), the physical conditions of the plasma will be hotter at early times which will obscure the molecular formation. Similarly, cooler plasma will be generated when the plasma is produced using fs laser filaments and thus leading to limited persistence of plasma species. Further, gate delay and gate width are also should be optimized for better spectral intensity.

3.2 Principal Component Analysis (PCA)

LIBS spectral analysis combined with chemometric techniques enhances the accuracy in discrimination of samples compared to the standard ratiometric approaches, where ratios of neutral and ionic species are utilized in the latter case. Principal component analysis (PCA), is a simple though powerful chemometric technique which is capable of grouping or classifying various materials by correlating their spectral features. PCA has been used in various fields such as face recognition and image compression, drug and pharmaceutical, soil analysis and explosive discrimination owing to its capability of finding patterns (the similarities and differences) in high dimensional data sets [69–72]. In this technique, original data set Xmxn [‘m’ observations (no. of spectra) and ‘n’ variables (wavelengths)] is transformed in to a new data set through a mathematical change of basis (e.g. via singular value decomposition) which can be represented in the space of the principal components (PCs), where each PC represents the variance in data set. Wang et al. have used principal component analysis to distinguish an organic explosive (TNT, trinitrotoluene) among plastics [73]. PCA used in conjunction with laser photo acoustic spectroscopy (LPAS) has resulted in classification of explosive traces [74]. De Lucia et al. classified different explosive traces on organic explosives using PLS-DA and obtained high true classification rates (TCR) and low false classification rates (LCR) through selective data input models [75, 76].

Here, the LIBS spectra of nitroimidazoles obtained at five different standoff distances were merged and processed for impurities such as sodium, calcium which are not the spectral signatures of HEMs and analyzed through PCA program written in a MATLAB code. Figures 3(a)-3(e) depict the PC score plots of processed LIBS spectra of nitroimidazoles at different distances. First three principal components together account for 99%, 97%, 91%, 82%, 52% of the total variance associated with in each data set. It is evident that as the standoff distance increases first three PCs could not account for the total variance in the data set. Figure 4 shows the stack plots of first three PCs at 10cm, 100 cm and 200 cm. The important spectral features are C, CN and other atomic and molecular peaks. At farther distances, PCs couldn’t account for the complete variance in the data set. This could be attributed to reduction in signal strength which in turn decreases the signal to noise ratio (SNR). The decrease in SNR with the increase in distance can be attributed to the following factors (a) the solid angle subtended by the collection system at the plasma, (b) intensity of the laser beam (fluence/time) at the sample due to change in spot size and (c) change in filament generation conditions due to different focusing conditions, which are discussed below in detail.

 

Fig. 3 PC scores plot of the processed LIBS spectra of nitroimidazoles obtained at (a) 10 cm (b) 30 cm (c) 50 cm (d) 100 cm (e) 200 cm obtained in ST-LIBS.

Download Full Size | PPT Slide | PDF

 

Fig. 4 First three PCs for the processed LIBS spectra of nitroimidazoles at (a) 10 cm (b) 100 cm and (c) 200 cm.

Download Full Size | PPT Slide | PDF

The amount of plasma emissions (flux) collected can be expressed as dΦ=I dΩ,  where I is the luminous intensity of the plasma and  dΩ=dA/(r2), is the solid angle which varies square inverse with the distance, with collection area (dA) being constant. Thus, for D1 with input aperture of 1.57” (4 cm) diameter, the solid angle subtended by it at plasma source varies from 0.126 sr to 0.00031 sr from 10 cm to 200 cm, with 1/r2 dependence. Thus, the signal entering collection system decreases and evidently results in decrease in signal strength. The average spot sizes at different working distances were estimated by analysing the interacted portions on an Aluminum target using optical microscopic data. It is well-known that the spot size (at focus) increases as the focal length of focusing lens increases and, hence, the fluence/intensity also decreases. The observed spot size (diameter, 2ω0) was estimated to be in the range of 230-330 µm (246 µm at 10 cm and 324 µm at 200 cm) which is apparently different from estimated values of 50-100 µm. This is because the repetition rate of the laser being 1 kHz the number of pulses incident on a particular spot of the sample is more than one leading to cumulative effects and thereby an increase in the observed feature size (from which the beam diameter was calculated). Thus an increase in the spot size leads to decrease in the peak intensity. Moreover, the reduction in spectral intensity could also be due to reduced laser energy coupled to the target because of the interaction of filaments. Filaments carry a small fraction of laser energy and bulk of the laser energy is carried by the energy reservoir [77]. The ablation efficiency is governed by the filaments as well as the energy reservoir around the filaments. For lenses with larger focal lengths, especially with f > 50 cm, the ablation process could be due to filaments and the process can be termed as filament ablation. With increasing focal length, though the filament holds the same energy and diameter (~100 microns), the energy density of the energy reservoir may change and hence the ablation efficiency along with the SNR of the LIBS spectrum is affected.

4. Remote LIBS of explosives and metals

As shown and described in experimental section, R-LIBS experiments of HEMs and metals were carried out by focusing fs pulses with a 10 cm lens and a Schmidt- Cassegrain telescope (D2) was used to collect plasma emissions at a distance of ~8.5 m. The collection capability of any telescope depends on various factors such as size of aperture, optical quality, contrast and alignment. Size of the aperture affects light gathering power of telescope and quality, coatings of the optics decides the reflection and transmission range of light through the telescope. Telescopes with large f-number (f/8 and above) possess high magnification capability, suffer less chromatic aberrations and deliver high power with a narrow field of view. The transmission range of this telescope is entirely in the visible range (400 nm- 700 nm) and quickly falls off towards the UV region, thus prohibiting to capture the emission in UV region (C I 247.8 nm, Al 308 nm doublet, etc.).

Figure 5 depicts typical remote LIBS spectra of HEMs (220-870 nm) and metals (300-700 nm) at a remote distance of ~8.5 m with important peaks identified and labelled. All HEMs exhibited CN violet (B2Σ+–X2Σ+) and C2 swan band. In CN violet band, Δν = 0 band was dominantly visible compared Δν = −1 while Δν = + 1 (358 −359 nm) band is absent in all HEMs. In C2 swan band (d3Πg / a3Πu), Δν = 0 band head at 516.53 nm was observed in all HEMs. Few Fe I impurities were identified at 386.91 nm and 388.71 nm in aluminum along with Al I transitions at 394.40 nm and 396.15 nm. Copper and Zinc peaks were observed in the LIBS spectra of Copper and Brass targets. The lower intensity of Zinc spectral lines in the LIBS spectrum of Copper target suggests that Zn is an impurity. However, quantitative analysis of Zn in brass and copper is beyond the scope of this article.

 

Fig. 5 Stack plots of (a) representative fs R-LIBS spectra of explosive molecules (nitroimidazoles and nitropyrazoles) and (b) metals (Aluminum, copper, brass, and stainless steel) obtained at 8.5 m away.

Download Full Size | PPT Slide | PDF

Figure 6(a) shows the PCs score plot of R-LIBS spectra of HEMs and Fig. 6(b) shows the corresponding PCs. First three principal components together accounts for 88% of the variance present in the data set, with PC1 being the strongest with 82%, followed by PC2 with 5% and PC3 with 1%. The essential spectral features in classification are C, H, N, O atomic peaks and CN, C2 molecular bands. Major spectral features from PC1 are CN, C2 and hydrogen. CN, O, N, H are prominent features in PC2, whereas CN, O, and N in PC3. Figure 6(c) shows the PC scores plot for R-LIBS spectra of aluminum, copper, brass and stainless steel. From the data presented it is apparent that aluminum and stainless steel are well separated and easily distinguished. Brass and Copper clusters are also clearly grouped though they are slightly together and this could be attributed to the low purity of Copper with Zinc rendering the LIBS spectra being similar with Brass. Figure 6(d) shows the first three PCs, from R-LIBS spectra of metals and alloys, which accounts for most of the variance present in the data set. The PCs thus obtained through the analysis explain the important spectral features from various samples. The first three PCs together accounted for 69% (43%, 21%, 5%) of variance. Out of these PCs, first PC is similar to SS with transitions of Fe and has also Cu and, Zn thus indicating the spectral features of either Cu or brass, or both and SS. However, the data is dominated by SS spectral features. Second PC has lines of Al with maximum magnitude, followed by Cu, Zn and Fe. Therefore, it has spectral features from all the investigated targets. Thus, first and second PCs possess spectral features of all the samples considered. Third PC has Zn lines with maximum magnitude and followed by Cu and Al. Contribution of spectral features from stainless steel are very feeble and thus can be ignored. Other higher PCs (fourth, fifth, etc.) are insignificant as they account for minimal variance (less than the third PC) and thus can be neglected. All the samples demonstrated a long dispersion along PC3 but seem to be adjacent when viewed with first two PCs (2D-plot, not shown here). Minimal (2-3) outliers were observed in PC scores plot of metals, which attributes to replication of metals spectra. These results conduit to these possible conclusions: (i) The R-LIBS spectra can be utilized in identification of constituents of metals and alloys (with impurities) even at large standoff distances and (ii) PCA, though a unsupervised chemometric technique, can potentially be employed to identify the critical spectral signatures to classify or group the samples. In future, various standard samples will be procured and will be analyzed for class classification by using the supervised techniques such as SIMCA, PLS-DA models, which gives improved classification and identification.

 

Fig. 6 (a) PC scores plot and (b) first three PCs for the processed LIBS spectra of explosives (nitroimidazoles and nitropyrazoles) obtained at 8.5 m. (c) PC scores plot and (d) first three PCs for R-LIBS spectra of different metals obtained at 8.5 m.

Download Full Size | PPT Slide | PDF

5. Conclusions

We have investigated the feasibility of fs LIBS technique for explosives detection in two configurations i.e. ST-LIBS (up to 2 m) and R-LIBS (at 8.5 m). Finely ground powders of energy rich nitroimidazoles, nitropyrazoles were pressed into pellets and then used in these studies. Two collection systems i.e. ME-OPT-0007 (ANDOR) and Schmidt-Cassegrain telescope of different sizes, aperture window and transmission capabilities were used in standoff and remote configuration respectively to capture the LIBS emissions. Along with HEMs, metal and alloy targets were recorded in R-LIBS configuration. Prominent spectral features of HEMs i.e. C, H, N, O atomic transitions and CN, C2, NH molecular bands were readily identified. A decrease in the LIBS intensity with increase in standoff distance could be attributed to the different plasma generation conditions with interaction of filaments involved in certain cases. Filaments carry a fraction of incident energy and thus results in reduced laser energy coupling to the target. Filaments produce a cooler plasma as compared to tightly focused fs pulses thus limiting the persistence of plasma species. However, focusing the fs pulses after expanding the beam, could result in narrowing the filament length and minimizing the energy redistribution. Further, the decrease in solid angle subtended by the collection system at the plasma source, decrease in intensity due to increase in spot size also influence the LIBS signal strength. At each standoff distance, explosives were classified using a PCA code in written in MATLAB. 3D PC scores plot exhibited robust clustering in the case of nitroimidazoles. As the standoff distance increased, the contribution of first three PCs has decreased from 99% to 52%, which indicates that half the information from data is unaccounted for. However, when the PCA was performed on R-LIBS spectra of HEMs, the first three PCs accounted for 88% of variance, which is similar to the result obtained at 50 cm standoff distance. The superior result was possible due to the deployment of a Schmidt-Cassegrain telescope which has large aperture (6”) and improved collection arrangement. A combination of two or three lenses can be used to focus fs pulses at desired standoff position and thus the working distance can be changed by adjusting the distance between lenses. However, it is crucial to understand the complex focusing dynamics of fs pulses [78] and optimize the pulse energy as they affect LIBS signal strength. Recently, it has also been demonstrated that either part of the LIBS spectra [79] or part of the echellograms [80] itself can be utilized effectively in discrimination/classification studies implying the reduction in algorithm time, complexity and increase in the sampling rate. Further, Ultra-short pulse fiber lasers can also be used for portable applications owing their compact size, minimized background emission [81]. Thus, in conclusion, fs laser pulses can be potentially deployed in field for standoff detection due to their appealing features such as (i) lesser intrusion of air, stoichiometric ablation with fs pulses (ii) minimized contribution from the substrate (crater depth attained in fs filament ablation is smaller in comparison with those obtained using fs/ns pulses) (iii) formation of filaments and when augmented with telescopes of large f-number, efficient pulse delivery with an easy user interface assisted with superior multivariate analysis algorithm will result in efficient trace detection of hazardous materials of interest.

We strongly believe that the future studies on fs ST- LIBS technique (including ours) should focus on

  • (a) Acquiring the fs ST-LIBS spectra of all common/standard explosives.
  • (b) Utilize superior supervised algorithms such as PLS-DA, ANN, etc. for exemplary and unambiguous detection.
  • (c) Optimize the acquisition parameters (e.g. gate delay, gate width, gain of the ICCD) to enhance the SNR at each standoff position.
  • (d) Investigate some of the hybrid techniques such as LIBS-Raman technique to embrace the advantages of both the methodologies for effective explosives detection.

Our future LIBS work with fs pulses and in standoff configuration will focus on

  • (a) Improving the collection efficiency by studying various optical (focusing and collection) configurations.
  • (b) Extend these studies to trace level detection. For this one also need to explore the single-shot LIBS technique so as to eliminate any detrimental substrate effects.

We believe that with latest developments in the sources (of fs pulses) and the detectors it will not be a difficult task to make compact (portable) LIBS systems for field deployment.

Funding

DRDO, India (ERIP/ER/1501138/M/01/319/D(R&D)); Board of Research in Nuclear Sciences (BRNS), India (34/14/48/2014-BRNS/2084).

Acknowledgments

Authors acknowledge the technical support of Mr. Krishna Kumar and his team at LightMotif (Hyderabad, India) for designing and delivering the standoff optics. Authors also acknowledge Dr. Dibakar Das (and his group), School of Engineering Sciences & Technology (SEST), University of Hyderabad for permitting us to utilize the Carver hydraulic press facility.

References and links

1. K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part I: animal, chemical, ion, and mechanical methods,” Anal. Bioanal. Chem. 408(1), 35–47 (2016). [CrossRef]   [PubMed]  

2. K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part II: photon and neutron methods,” Anal. Bioanal. Chem. 408(1), 49–65 (2016). [CrossRef]   [PubMed]  

3. J. Moros, J. A. Lorenzo, K. Novotný, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44(1), 121–130 (2013). [CrossRef]  

4. J. L. Gottfried, F. C. De Lucia Jr, C. A. Munson, and A. W. Miziolek, “Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008). [CrossRef]   [PubMed]  

5. S. Sreedhar, M. K. Gundawar, and S. V. Rao, “Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios,” Def. Sci. J. 64, 332–338 (2014).

6. D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

7. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18(6), 5399–5406 (2010). [CrossRef]   [PubMed]  

8. T. Arusi-Parpar and I. Levy, “Remote Detection of Explosives by Enhanced Pulsed Laser Photodissociation/Laser-Induced Fluorescence Method,” in Stand-Off Detection of Suicide Bombers and Mobile Subjects, H. Schubert and A. Rimski-Korsakov, eds. (Springer, 2006), pp. 59–68.

9. S. S. Harilal, B. E. Brumfield, and M. C. Phillips, “Standoff analysis of laser-produced plasmas using laser-induced fluorescence,” Opt. Lett. 43(5), 1055–1058 (2018). [CrossRef]   [PubMed]  

10. R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017). [CrossRef]  

11. A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011). [CrossRef]   [PubMed]  

12. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012). [CrossRef]   [PubMed]  

13. J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014). [CrossRef]  

14. F. C. De Lucia Jr, R. S. Harmon, K. L. McNesby, R. J. Winkel Jr, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003). [CrossRef]   [PubMed]  

15. S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013). [CrossRef]  

16. C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017). [CrossRef]   [PubMed]  

17. R. S. Harmon, F. C. DeLucia Jr, A. LaPointe, R. J. Winkel Jr, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006). [CrossRef]   [PubMed]  

18. A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016). [CrossRef]   [PubMed]  

19. L. A. Álvarez-Trujillo, V. Lazic, J. Moros, and J. Javier Laserna, “Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects,” Appl. Opt. 56(13), 3773–3782 (2017). [CrossRef]   [PubMed]  

20. D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018). [CrossRef]  

21. J. L. Gottfried, F. C. De Lucia Jr, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007). [CrossRef]  

22. I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014). [CrossRef]   [PubMed]  

23. J. L. Gottfried, F. C. De Lucia Jr, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009). [CrossRef]   [PubMed]  

24. M. K. Gundawar, R. Junjuri, and A. K. Myakalwar, “Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy,” Def. Sci. J. 67(6), 623–630 (2017). [CrossRef]  

25. V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Standoff Detection of Explosives in traces by Laser Induced Breakdown Spectroscopy: Differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B At. Spectrosc. 66(8), 644–655 (2011). [CrossRef]  

26. J. L. Gottfried, F. C. De Lucia Jr, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 24(3), 288–296 (2009). [CrossRef]  

27. J. L. Gottfried, “Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy,” Appl. Opt. 52(4), B10–B19 (2013). [CrossRef]   [PubMed]  

28. C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia Jr, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006). [CrossRef]  

29. J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010). [CrossRef]   [PubMed]  

30. J. Moros, J. A. Lorenzo, and J. J. Laserna, “Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion,” Anal. Bioanal. Chem. 400(10), 3353–3365 (2011). [CrossRef]   [PubMed]  

31. R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005). [CrossRef]   [PubMed]  

32. J. Moros and J. J. Laserna, “New Raman-Laser-Induced Breakdown Spectroscopy Identity of Explosives using Parametric Data Fusion on an Integrated Sensing Platform,” Anal. Chem. 83(16), 6275–6285 (2011). [CrossRef]   [PubMed]  

33. R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier‎,” J. Anal. At. Spectrom. 24(8), 1123–1126 (2009). [CrossRef]  

34. F. C. De Lucia Jr, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009). [CrossRef]   [PubMed]  

35. C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006). [CrossRef]  

36. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 31(1), 90–118 (2016). [CrossRef]  

37. S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013). [CrossRef]  

38. S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016). [CrossRef]   [PubMed]  

39. S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015). [CrossRef]   [PubMed]  

40. H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012). [CrossRef]  

41. H. L. Xu and S. L. Chin, “Femtosecond Laser Filamentation for Atmospheric Sensing,” Sensors (Basel) 11(1), 32–53 (2011). [CrossRef]   [PubMed]  

42. S. Tzortzakis, D. Anglos, and D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006). [CrossRef]   [PubMed]  

43. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004). [CrossRef]  

44. W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007). [CrossRef]  

45. S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009). [CrossRef]  

46. E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009). [CrossRef]   [PubMed]  

47. K. C. Hartig, I. Ghebregziabher, and I. Jovanovic, “Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry,” Sci. Rep. 7, 43852 (2017). [CrossRef]   [PubMed]  

48. M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in Proceedings of IEEE Conference on Conference on Technologies for Homeland Security(IEEE,2009), pp. 472–476. [CrossRef]  

49. D. Mirell, O. Chalus, K. Peterson, and J.-C. Diels, “Remote sensing of explosives using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25(7), B108–B111 (2008). [CrossRef]  

50. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004). [CrossRef]   [PubMed]  

51. M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006). [CrossRef]  

52. J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009). [CrossRef]   [PubMed]  

53. S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016). [CrossRef]  

54. T. Fujii, N. Goto, M. Miki, T. Nayuki, and K. Nemoto, “Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses,” Opt. Lett. 31(23), 3456–3458 (2006). [CrossRef]   [PubMed]  

55. P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004). [CrossRef]  

56. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004). [CrossRef]  

57. J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009). [CrossRef]  

58. K. Bhavsar, K. E. Eseller, and R. Prabhu, “Design optimization of Cassegrain telescope for remote explosive trace detection,” Proc. SPIE 10441, 1044103 (2017).

59. P. D. Barnett, N. Lamsal, and S. M. Angel, “Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics,” Appl. Spectrosc. 71(4), 583–590 (2017). [CrossRef]   [PubMed]  

60. W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017). [CrossRef]  

61. J. L. Gottfried, J. F. C. De Lucia Jr, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 23(2), 205–216 (2008). [CrossRef]  

62. S. A. Kalam, E. N. Rao, and S. V. Rao, “Standoff LIBS for explosives detection: Challenges and status,” Laser Focus World 53, 24–28 (2017).

63. E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015). [CrossRef]   [PubMed]  

64. E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016). [CrossRef]  

65. S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013). [CrossRef]  

66. J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids‎,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015). [CrossRef]  

67. S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017). [CrossRef]  

68. Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16(8), 5332–5337 (2008). [CrossRef]   [PubMed]  

69. K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018). [CrossRef]  

70. T. Zhang, H. Tang, and H. Li, “Chemometrics in laser-induced breakdown spectroscopy,” J. Chemometr.in press.

71. J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012). [CrossRef]  

72. A. H. Farhadian, M. K. Tehrani, M. H. Keshavarz, and S. M. R. Darbani, “Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network,” Appl. Opt. 56(12), 3372–3377 (2017). [CrossRef]   [PubMed]  

73. Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012). [CrossRef]  

74. G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012). [CrossRef]  

75. F. C. De Lucia Jr and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51(7), B83–B92 (2012). [CrossRef]   [PubMed]  

76. F. C. De Lucia Jr, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47(31), G112–G121 (2008). [CrossRef]   [PubMed]  

77. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999). [CrossRef]  

78. C. A. Zuhlke, J. Bruce 3rd, T. P. Anderson, D. R. Alexander, and C. G. Parigger, “A Fundamental Understanding of the Dependence of the Laser-Induced Breakdown Spectroscopy (LIBS) Signal Strength on the Complex Focusing Dynamics of Femtosecond Laser Pulses on Either Side of the Focus,” Appl. Spectrosc. 68(9), 1021–1029 (2014). [CrossRef]   [PubMed]  

79. A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015). [CrossRef]   [PubMed]  

80. P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017). [CrossRef]   [PubMed]  

81. A. W. Schill, D. A. Heaps, D. N. Stratis-Cullum, B. R. Arnold, and P. M. Pellegrino, “Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy,” Opt. Express 15(21), 14044–14056 (2007). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part I: animal, chemical, ion, and mechanical methods,” Anal. Bioanal. Chem. 408(1), 35–47 (2016).
    [Crossref] [PubMed]
  2. K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part II: photon and neutron methods,” Anal. Bioanal. Chem. 408(1), 49–65 (2016).
    [Crossref] [PubMed]
  3. J. Moros, J. A. Lorenzo, K. Novotný, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44(1), 121–130 (2013).
    [Crossref]
  4. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
    [Crossref] [PubMed]
  5. S. Sreedhar, M. K. Gundawar, and S. V. Rao, “Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios,” Def. Sci. J. 64, 332–338 (2014).
  6. D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.
  7. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18(6), 5399–5406 (2010).
    [Crossref] [PubMed]
  8. T. Arusi-Parpar and I. Levy, “Remote Detection of Explosives by Enhanced Pulsed Laser Photodissociation/Laser-Induced Fluorescence Method,” in Stand-Off Detection of Suicide Bombers and Mobile Subjects, H. Schubert and A. Rimski-Korsakov, eds. (Springer, 2006), pp. 59–68.
  9. S. S. Harilal, B. E. Brumfield, and M. C. Phillips, “Standoff analysis of laser-produced plasmas using laser-induced fluorescence,” Opt. Lett. 43(5), 1055–1058 (2018).
    [Crossref] [PubMed]
  10. R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
    [Crossref]
  11. A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
    [Crossref] [PubMed]
  12. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  13. J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
    [Crossref]
  14. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
    [Crossref] [PubMed]
  15. S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
    [Crossref]
  16. C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
    [Crossref] [PubMed]
  17. R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006).
    [Crossref] [PubMed]
  18. A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016).
    [Crossref] [PubMed]
  19. L. A. Álvarez-Trujillo, V. Lazic, J. Moros, and J. Javier Laserna, “Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects,” Appl. Opt. 56(13), 3773–3782 (2017).
    [Crossref] [PubMed]
  20. D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
    [Crossref]
  21. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
    [Crossref]
  22. I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
    [Crossref] [PubMed]
  23. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
    [Crossref] [PubMed]
  24. M. K. Gundawar, R. Junjuri, and A. K. Myakalwar, “Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy,” Def. Sci. J. 67(6), 623–630 (2017).
    [Crossref]
  25. V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Standoff Detection of Explosives in traces by Laser Induced Breakdown Spectroscopy: Differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B At. Spectrosc. 66(8), 644–655 (2011).
    [Crossref]
  26. J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 24(3), 288–296 (2009).
    [Crossref]
  27. J. L. Gottfried, “Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy,” Appl. Opt. 52(4), B10–B19 (2013).
    [Crossref] [PubMed]
  28. C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
    [Crossref]
  29. J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010).
    [Crossref] [PubMed]
  30. J. Moros, J. A. Lorenzo, and J. J. Laserna, “Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion,” Anal. Bioanal. Chem. 400(10), 3353–3365 (2011).
    [Crossref] [PubMed]
  31. R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005).
    [Crossref] [PubMed]
  32. J. Moros and J. J. Laserna, “New Raman-Laser-Induced Breakdown Spectroscopy Identity of Explosives using Parametric Data Fusion on an Integrated Sensing Platform,” Anal. Chem. 83(16), 6275–6285 (2011).
    [Crossref] [PubMed]
  33. R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier‎,” J. Anal. At. Spectrom. 24(8), 1123–1126 (2009).
    [Crossref]
  34. F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
    [Crossref] [PubMed]
  35. C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
    [Crossref]
  36. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
    [Crossref]
  37. S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013).
    [Crossref]
  38. S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
    [Crossref] [PubMed]
  39. S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
    [Crossref] [PubMed]
  40. H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
    [Crossref]
  41. H. L. Xu and S. L. Chin, “Femtosecond Laser Filamentation for Atmospheric Sensing,” Sensors (Basel) 11(1), 32–53 (2011).
    [Crossref] [PubMed]
  42. S. Tzortzakis, D. Anglos, and D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006).
    [Crossref] [PubMed]
  43. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
    [Crossref]
  44. W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
    [Crossref]
  45. S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
    [Crossref]
  46. E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
    [Crossref] [PubMed]
  47. K. C. Hartig, I. Ghebregziabher, and I. Jovanovic, “Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry,” Sci. Rep. 7, 43852 (2017).
    [Crossref] [PubMed]
  48. M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in Proceedings of IEEE Conference on Conference on Technologies for Homeland Security(IEEE,2009), pp. 472–476.
    [Crossref]
  49. D. Mirell, O. Chalus, K. Peterson, and J.-C. Diels, “Remote sensing of explosives using infrared and ultraviolet filaments,” J. Opt. Soc. Am. B 25(7), B108–B111 (2008).
    [Crossref]
  50. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
    [Crossref] [PubMed]
  51. M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
    [Crossref]
  52. J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
    [Crossref] [PubMed]
  53. S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
    [Crossref]
  54. T. Fujii, N. Goto, M. Miki, T. Nayuki, and K. Nemoto, “Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses,” Opt. Lett. 31(23), 3456–3458 (2006).
    [Crossref] [PubMed]
  55. P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
    [Crossref]
  56. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
    [Crossref]
  57. J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
    [Crossref]
  58. K. Bhavsar, K. E. Eseller, and R. Prabhu, “Design optimization of Cassegrain telescope for remote explosive trace detection,” Proc. SPIE 10441, 1044103 (2017).
  59. P. D. Barnett, N. Lamsal, and S. M. Angel, “Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics,” Appl. Spectrosc. 71(4), 583–590 (2017).
    [Crossref] [PubMed]
  60. W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
    [Crossref]
  61. J. L. Gottfried, J. F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 23(2), 205–216 (2008).
    [Crossref]
  62. S. A. Kalam, E. N. Rao, and S. V. Rao, “Standoff LIBS for explosives detection: Challenges and status,” Laser Focus World 53, 24–28 (2017).
  63. E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015).
    [Crossref] [PubMed]
  64. E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
    [Crossref]
  65. S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
    [Crossref]
  66. J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids‎,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
    [Crossref]
  67. S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
    [Crossref]
  68. Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16(8), 5332–5337 (2008).
    [Crossref] [PubMed]
  69. K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
    [Crossref]
  70. T. Zhang, H. Tang, and H. Li, “Chemometrics in laser-induced breakdown spectroscopy,” J. Chemometr.in press.
  71. J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012).
    [Crossref]
  72. A. H. Farhadian, M. K. Tehrani, M. H. Keshavarz, and S. M. R. Darbani, “Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network,” Appl. Opt. 56(12), 3372–3377 (2017).
    [Crossref] [PubMed]
  73. Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012).
    [Crossref]
  74. G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
    [Crossref]
  75. F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51(7), B83–B92 (2012).
    [Crossref] [PubMed]
  76. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47(31), G112–G121 (2008).
    [Crossref] [PubMed]
  77. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
    [Crossref]
  78. C. A. Zuhlke, J. Bruce, T. P. Anderson, D. R. Alexander, and C. G. Parigger, “A Fundamental Understanding of the Dependence of the Laser-Induced Breakdown Spectroscopy (LIBS) Signal Strength on the Complex Focusing Dynamics of Femtosecond Laser Pulses on Either Side of the Focus,” Appl. Spectrosc. 68(9), 1021–1029 (2014).
    [Crossref] [PubMed]
  79. A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
    [Crossref] [PubMed]
  80. P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
    [Crossref] [PubMed]
  81. A. W. Schill, D. A. Heaps, D. N. Stratis-Cullum, B. R. Arnold, and P. M. Pellegrino, “Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy,” Opt. Express 15(21), 14044–14056 (2007).
    [Crossref] [PubMed]

2018 (3)

S. S. Harilal, B. E. Brumfield, and M. C. Phillips, “Standoff analysis of laser-produced plasmas using laser-induced fluorescence,” Opt. Lett. 43(5), 1055–1058 (2018).
[Crossref] [PubMed]

D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

2017 (12)

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

M. K. Gundawar, R. Junjuri, and A. K. Myakalwar, “Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy,” Def. Sci. J. 67(6), 623–630 (2017).
[Crossref]

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

L. A. Álvarez-Trujillo, V. Lazic, J. Moros, and J. Javier Laserna, “Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects,” Appl. Opt. 56(13), 3773–3782 (2017).
[Crossref] [PubMed]

K. C. Hartig, I. Ghebregziabher, and I. Jovanovic, “Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry,” Sci. Rep. 7, 43852 (2017).
[Crossref] [PubMed]

K. Bhavsar, K. E. Eseller, and R. Prabhu, “Design optimization of Cassegrain telescope for remote explosive trace detection,” Proc. SPIE 10441, 1044103 (2017).

P. D. Barnett, N. Lamsal, and S. M. Angel, “Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics,” Appl. Spectrosc. 71(4), 583–590 (2017).
[Crossref] [PubMed]

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

S. A. Kalam, E. N. Rao, and S. V. Rao, “Standoff LIBS for explosives detection: Challenges and status,” Laser Focus World 53, 24–28 (2017).

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

A. H. Farhadian, M. K. Tehrani, M. H. Keshavarz, and S. M. R. Darbani, “Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network,” Appl. Opt. 56(12), 3372–3377 (2017).
[Crossref] [PubMed]

2016 (7)

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref] [PubMed]

A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016).
[Crossref] [PubMed]

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part I: animal, chemical, ion, and mechanical methods,” Anal. Bioanal. Chem. 408(1), 35–47 (2016).
[Crossref] [PubMed]

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part II: photon and neutron methods,” Anal. Bioanal. Chem. 408(1), 49–65 (2016).
[Crossref] [PubMed]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

2015 (4)

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
[Crossref] [PubMed]

E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015).
[Crossref] [PubMed]

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids‎,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

2014 (4)

C. A. Zuhlke, J. Bruce, T. P. Anderson, D. R. Alexander, and C. G. Parigger, “A Fundamental Understanding of the Dependence of the Laser-Induced Breakdown Spectroscopy (LIBS) Signal Strength on the Complex Focusing Dynamics of Femtosecond Laser Pulses on Either Side of the Focus,” Appl. Spectrosc. 68(9), 1021–1029 (2014).
[Crossref] [PubMed]

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref] [PubMed]

S. Sreedhar, M. K. Gundawar, and S. V. Rao, “Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios,” Def. Sci. J. 64, 332–338 (2014).

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

2013 (5)

S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
[Crossref]

J. Moros, J. A. Lorenzo, K. Novotný, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44(1), 121–130 (2013).
[Crossref]

J. L. Gottfried, “Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy,” Appl. Opt. 52(4), B10–B19 (2013).
[Crossref] [PubMed]

S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013).
[Crossref]

S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

2012 (6)

Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012).
[Crossref]

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51(7), B83–B92 (2012).
[Crossref] [PubMed]

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012).
[Crossref]

2011 (5)

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, and J. J. Laserna, “Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion,” Anal. Bioanal. Chem. 400(10), 3353–3365 (2011).
[Crossref] [PubMed]

J. Moros and J. J. Laserna, “New Raman-Laser-Induced Breakdown Spectroscopy Identity of Explosives using Parametric Data Fusion on an Integrated Sensing Platform,” Anal. Chem. 83(16), 6275–6285 (2011).
[Crossref] [PubMed]

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Standoff Detection of Explosives in traces by Laser Induced Breakdown Spectroscopy: Differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B At. Spectrosc. 66(8), 644–655 (2011).
[Crossref]

H. L. Xu and S. L. Chin, “Femtosecond Laser Filamentation for Atmospheric Sensing,” Sensors (Basel) 11(1), 32–53 (2011).
[Crossref] [PubMed]

2010 (2)

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010).
[Crossref] [PubMed]

C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18(6), 5399–5406 (2010).
[Crossref] [PubMed]

2009 (8)

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 24(3), 288–296 (2009).
[Crossref]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier‎,” J. Anal. At. Spectrom. 24(8), 1123–1126 (2009).
[Crossref]

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
[Crossref] [PubMed]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
[Crossref] [PubMed]

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

2008 (5)

2007 (3)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

A. W. Schill, D. A. Heaps, D. N. Stratis-Cullum, B. R. Arnold, and P. M. Pellegrino, “Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy,” Opt. Express 15(21), 14044–14056 (2007).
[Crossref] [PubMed]

2006 (6)

S. Tzortzakis, D. Anglos, and D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006).
[Crossref] [PubMed]

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
[Crossref]

T. Fujii, N. Goto, M. Miki, T. Nayuki, and K. Nemoto, “Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses,” Opt. Lett. 31(23), 3456–3458 (2006).
[Crossref] [PubMed]

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006).
[Crossref] [PubMed]

2005 (1)

R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005).
[Crossref] [PubMed]

2004 (4)

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

2003 (1)

1999 (1)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Ackermann, R.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Aközbek, N.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Alexander, D. R.

Álvarez-Trujillo, L. A.

Anderson, T. P.

Andrusyak, O.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
[Crossref]

Angel, S. M.

Anglos, D.

Anubham, S. K.

A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016).
[Crossref] [PubMed]

Arnold, B. R.

Azarm, A.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

Barman, I.

A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016).
[Crossref] [PubMed]

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Barnett, P. D.

Baudelet, M.

M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in Proceedings of IEEE Conference on Conference on Technologies for Homeland Security(IEEE,2009), pp. 472–476.
[Crossref]

Becker, A.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Bereket, H.

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

Bernath, R.

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

Bernhardt, J.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Bhavsar, K.

K. Bhavsar, K. E. Eseller, and R. Prabhu, “Design optimization of Cassegrain telescope for remote explosive trace detection,” Proc. SPIE 10441, 1044103 (2017).

Blaney, D.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Börner, F.

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

Bornstein, B.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Bourayou, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Bousquet, B.

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Brown, C.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
[Crossref]

Brown, C. G.

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

Brown, E. E.

Brown, E. R.

D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

Brown, K. E.

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part I: animal, chemical, ion, and mechanical methods,” Anal. Bioanal. Chem. 408(1), 35–47 (2016).
[Crossref] [PubMed]

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part II: photon and neutron methods,” Anal. Bioanal. Chem. 408(1), 49–65 (2016).
[Crossref] [PubMed]

Bruce, J.

Brumfield, B. E.

Burget, R.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Burl, M.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Cabalín, L. M.

D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Canioni, L.

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Carpanese, M.

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Standoff Detection of Explosives in traces by Laser Induced Breakdown Spectroscopy: Differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B At. Spectrosc. 66(8), 644–655 (2011).
[Crossref]

Cerkez, E. B.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Chalus, O.

Châteauneuf, M.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

Chin, S. L.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

H. L. Xu and S. L. Chin, “Femtosecond Laser Filamentation for Atmospheric Sensing,” Sensors (Basel) 11(1), 32–53 (2011).
[Crossref] [PubMed]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

Colao, F.

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

Daigle, J. F.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

Daigle, J.-F.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

Darbani, S. M. R.

Dasari, R. R.

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

De Lucia, F. C.

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51(7), B83–B92 (2012).
[Crossref] [PubMed]

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 24(3), 288–296 (2009).
[Crossref]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
[Crossref] [PubMed]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47(31), G112–G121 (2008).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

De Lucia, J. F. C.

J. L. Gottfried, J. F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 23(2), 205–216 (2008).
[Crossref]

DeFlores, L.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Delgado, T.

D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

DeLucia, F.

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

DeLucia, F. C.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006).
[Crossref] [PubMed]

Diels, J.-C.

Dikmelik, Y.

Dingari, N. C.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Doran, G.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Dubois, J.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

Eislöffel, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

El Haddad, J.

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

Eseller, K. E.

K. Bhavsar, K. E. Eseller, and R. Prabhu, “Design optimization of Cassegrain telescope for remote explosive trace detection,” Proc. SPIE 10441, 1044103 (2017).

Estlin, T.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Farhadian, A. H.

Fischer, T.

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

Fisher, M.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
[Crossref]

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

Francis, R.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Frydenvang, J.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Fujii, T.

Gaines, D.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Gaona, I.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref] [PubMed]

Gasnault, O.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Ge, C.-H.

Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012).
[Crossref]

Gelmont, B.

D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

Ghebregziabher, I.

K. C. Hartig, I. Ghebregziabher, and I. Jovanovic, “Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry,” Sci. Rep. 7, 43852 (2017).
[Crossref] [PubMed]

Girón, D.

D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Giubileo, G.

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

Globus, T.

D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

Gonzalez, R.

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier‎,” J. Anal. At. Spectrom. 24(8), 1123–1126 (2009).
[Crossref]

González, R.

Goto, N.

Gottfried, J. L.

J. L. Gottfried, “Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy,” Appl. Opt. 52(4), B10–B19 (2013).
[Crossref] [PubMed]

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51(7), B83–B92 (2012).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 24(3), 288–296 (2009).
[Crossref]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
[Crossref] [PubMed]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47(31), G112–G121 (2008).
[Crossref] [PubMed]

J. L. Gottfried, J. F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 23(2), 205–216 (2008).
[Crossref]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

Gray, D.

Greenfield, M. T.

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part II: photon and neutron methods,” Anal. Bioanal. Chem. 408(1), 49–65 (2016).
[Crossref] [PubMed]

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part I: animal, chemical, ion, and mechanical methods,” Anal. Bioanal. Chem. 408(1), 35–47 (2016).
[Crossref] [PubMed]

Gundawar, M. K.

M. K. Gundawar, R. Junjuri, and A. K. Myakalwar, “Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy,” Def. Sci. J. 67(6), 623–630 (2017).
[Crossref]

A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016).
[Crossref] [PubMed]

S. Sreedhar, M. K. Gundawar, and S. V. Rao, “Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios,” Def. Sci. J. 64, 332–338 (2014).

S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
[Crossref]

Guo, L. B.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Hahn, D. W.

Hao, Z. Q.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Harilal, S. S.

Harmon, R. S.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006).
[Crossref] [PubMed]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Hartig, K. C.

K. C. Hartig, I. Ghebregziabher, and I. Jovanovic, “Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry,” Sci. Rep. 7, 43852 (2017).
[Crossref] [PubMed]

Hatzes, A. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Heaps, D. A.

Heck, G.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Holl, G.

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

Hommerich, U.

Hosseini, S. A.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Huang, Z.-W.

Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012).
[Crossref]

Ilyin, A. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Jagatap, B. N.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

Javier Laserna, J.

L. A. Álvarez-Trujillo, V. Lazic, J. Moros, and J. Javier Laserna, “Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects,” Appl. Opt. 56(13), 3773–3782 (2017).
[Crossref] [PubMed]

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

Jensen, J. O.

D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

Jin, F.

Johnson, E.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
[Crossref]

Johnson, L. E.

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

Johnstone, S.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Jovanovic, I.

K. C. Hartig, I. Ghebregziabher, and I. Jovanovic, “Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry,” Sci. Rep. 7, 43852 (2017).
[Crossref] [PubMed]

Jovicevic, S.

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Standoff Detection of Explosives in traces by Laser Induced Breakdown Spectroscopy: Differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B At. Spectrosc. 66(8), 644–655 (2011).
[Crossref]

Judge, E. J.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Junjuri, R.

M. K. Gundawar, R. Junjuri, and A. K. Myakalwar, “Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy,” Def. Sci. J. 67(6), 623–630 (2017).
[Crossref]

Kaiser, J.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Kalam, S. A.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

S. A. Kalam, E. N. Rao, and S. V. Rao, “Standoff LIBS for explosives detection: Challenges and status,” Laser Focus World 53, 24–28 (2017).

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

Kamali, Y.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

Kandidov, V. P.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Kasparian, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Keshavarz, M. H.

Kiran, P. P.

S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
[Crossref]

Klus, J.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Kolesik, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Kommu, N.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

Konstantynovski, K.

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

Kosareva, O.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Kumar, G. M.

S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013).
[Crossref]

Kumar Anubham, S.

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

Kumar Gundawar, M.

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

Kumar Myakalwar, A.

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

Kunz, R. R.

Labutin, T. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Lamsal, N.

LaPointe, A.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006).
[Crossref] [PubMed]

Laserna, J. J.

D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids‎,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, K. Novotný, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44(1), 121–130 (2013).
[Crossref]

J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012).
[Crossref]

J. Moros, J. A. Lorenzo, and J. J. Laserna, “Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion,” Anal. Bioanal. Chem. 400(10), 3353–3365 (2011).
[Crossref] [PubMed]

J. Moros and J. J. Laserna, “New Raman-Laser-Induced Breakdown Spectroscopy Identity of Explosives using Parametric Data Fusion on an Integrated Sensing Platform,” Anal. Chem. 83(16), 6275–6285 (2011).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010).
[Crossref] [PubMed]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier‎,” J. Anal. At. Spectrom. 24(8), 1123–1126 (2009).
[Crossref]

J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
[Crossref] [PubMed]

Laux, U.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Lazic, V.

L. A. Álvarez-Trujillo, V. Lazic, J. Moros, and J. Javier Laserna, “Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects,” Appl. Opt. 56(13), 3773–3782 (2017).
[Crossref] [PubMed]

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Standoff Detection of Explosives in traces by Laser Induced Breakdown Spectroscopy: Differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B At. Spectrosc. 66(8), 644–655 (2011).
[Crossref]

Lednev, V. N.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Lepcha, A.

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

Levis, R. J.

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Li, H.

T. Zhang, H. Tang, and H. Li, “Chemometrics in laser-induced breakdown spectroscopy,” J. Chemometr.in press.

Li, J. M.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Li, W. T.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Li, X.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Li, X. Y.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Liu, K.

Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012).
[Crossref]

Liu, W.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

López-Moreno, C.

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

Lorenzo, J. A.

J. Moros, J. A. Lorenzo, K. Novotný, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44(1), 121–130 (2013).
[Crossref]

J. Moros, J. A. Lorenzo, and J. J. Laserna, “Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion,” Anal. Bioanal. Chem. 400(10), 3353–3365 (2011).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010).
[Crossref] [PubMed]

Lu, Y. F.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Lucena, P.

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010).
[Crossref] [PubMed]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier‎,” J. Anal. At. Spectrom. 24(8), 1123–1126 (2009).
[Crossref]

J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
[Crossref] [PubMed]

Lucey, P. G.

R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005).
[Crossref] [PubMed]

Luo, Q.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Macias, J.

J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012).
[Crossref]

Manoj Kumar, G.

S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Marceau, C.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Mašek, J.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Mathi, P.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

Mathieu, P.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

Mathur, S.

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

McEnnis, C.

McGrane, S. D.

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part I: animal, chemical, ion, and mechanical methods,” Anal. Bioanal. Chem. 408(1), 35–47 (2016).
[Crossref] [PubMed]

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part II: photon and neutron methods,” Anal. Bioanal. Chem. 408(1), 49–65 (2016).
[Crossref] [PubMed]

McNesby, K. L.

Mejean, G.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Méjean, G.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Miki, M.

Mirell, D.

Misra, A.

R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005).
[Crossref] [PubMed]

Miziolek, A.

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

Miziolek, A. W.

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 24(3), 288–296 (2009).
[Crossref]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
[Crossref] [PubMed]

J. L. Gottfried, J. F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 23(2), 205–216 (2008).
[Crossref]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47(31), G112–G121 (2008).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006).
[Crossref] [PubMed]

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Mlejnek, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Modlitbová, P.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Moloney, J. V.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Montaño, S.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Moore, D. S.

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part II: photon and neutron methods,” Anal. Bioanal. Chem. 408(1), 49–65 (2016).
[Crossref] [PubMed]

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part I: animal, chemical, ion, and mechanical methods,” Anal. Bioanal. Chem. 408(1), 35–47 (2016).
[Crossref] [PubMed]

Moros, J.

L. A. Álvarez-Trujillo, V. Lazic, J. Moros, and J. Javier Laserna, “Standoff monitoring of aqueous aerosols using nanosecond laser-induced breakdown spectroscopy: droplet size and matrix effects,” Appl. Opt. 56(13), 3773–3782 (2017).
[Crossref] [PubMed]

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids‎,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, K. Novotný, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44(1), 121–130 (2013).
[Crossref]

J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012).
[Crossref]

J. Moros, J. A. Lorenzo, and J. J. Laserna, “Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion,” Anal. Bioanal. Chem. 400(10), 3353–3365 (2011).
[Crossref] [PubMed]

J. Moros and J. J. Laserna, “New Raman-Laser-Induced Breakdown Spectroscopy Identity of Explosives using Parametric Data Fusion on an Integrated Sensing Platform,” Anal. Chem. 83(16), 6275–6285 (2011).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010).
[Crossref] [PubMed]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
[Crossref] [PubMed]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47(31), G112–G121 (2008).
[Crossref] [PubMed]

J. L. Gottfried, J. F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 23(2), 205–216 (2008).
[Crossref]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

Murthy, N. L.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

Myakalwar, A. K.

M. K. Gundawar, R. Junjuri, and A. K. Myakalwar, “Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy,” Def. Sci. J. 67(6), 623–630 (2017).
[Crossref]

A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016).
[Crossref] [PubMed]

S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
[Crossref]

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Nageswara Rao, E.

S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

Nayuki, T.

Nemoto, K.

Njio, G.

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

Novotný, J.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Novotný, K.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, K. Novotný, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44(1), 121–130 (2013).
[Crossref]

Omenetto, N.

Paidi, S. K.

A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016).
[Crossref] [PubMed]

Palanco, S.

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

Palmacci, S.

Palucci, A.

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Standoff Detection of Explosives in traces by Laser Induced Breakdown Spectroscopy: Differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B At. Spectrosc. 66(8), 644–655 (2011).
[Crossref]

Parigger, C. G.

Pellegrino, P. M.

Peterson, K.

Phillips, M. C.

Popov, A. M.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Porízka, P.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Prabhu, R.

K. Bhavsar, K. E. Eseller, and R. Prabhu, “Design optimization of Cassegrain telescope for remote explosive trace detection,” Proc. SPIE 10441, 1044103 (2017).

Prem Kiran, P.

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Prochazka, D.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Puiu, A.

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

Rajnoha, M.

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Rao, E. N.

S. A. Kalam, E. N. Rao, and S. V. Rao, “Standoff LIBS for explosives detection: Challenges and status,” Laser Focus World 53, 24–28 (2017).

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015).
[Crossref] [PubMed]

S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013).
[Crossref]

Rao, S. V.

S. A. Kalam, E. N. Rao, and S. V. Rao, “Standoff LIBS for explosives detection: Challenges and status,” Laser Focus World 53, 24–28 (2017).

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015).
[Crossref] [PubMed]

S. Sreedhar, M. K. Gundawar, and S. V. Rao, “Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios,” Def. Sci. J. 64, 332–338 (2014).

S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
[Crossref]

S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013).
[Crossref]

Reyes, R. F.

Richardson, M.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
[Crossref]

M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in Proceedings of IEEE Conference on Conference on Technologies for Homeland Security(IEEE,2009), pp. 472–476.
[Crossref]

Richardson, M. C.

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

Rodriguez, M.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Rohwetter, P.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Rose, J.

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

Rothschild, M.

Roy, G.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

Ruiz, J.

D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Salmon, E.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Samuels, A. C.

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

Sanchez, C.

J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012).
[Crossref]

Sauerbrey, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Schaffer, S.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Schill, A. W.

Scholz, A.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Serrano, J.

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids‎,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref] [PubMed]

J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012).
[Crossref]

Sharifi, M.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Sharma, S. K.

R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005).
[Crossref] [PubMed]

Siders, C.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
[Crossref]

Sigman, M.

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in Proceedings of IEEE Conference on Conference on Technologies for Homeland Security(IEEE,2009), pp. 472–476.
[Crossref]

Simard, J. R.

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Simard, P. T.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

Singh, A. K.

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

Spegazzini, N.

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

Spicer, J. B.

Sreedhar, S.

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

S. Sreedhar, M. K. Gundawar, and S. V. Rao, “Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios,” Def. Sci. J. 64, 332–338 (2014).

S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Stecklum, B.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Stelmaszczyk, K.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Stratis-Cullum, D. N.

Sunku, S.

E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015).
[Crossref] [PubMed]

S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013).
[Crossref]

S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
[Crossref]

Suter, J. D.

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Tang, H.

T. Zhang, H. Tang, and H. Li, “Chemometrics in laser-induced breakdown spectroscopy,” J. Chemometr.in press.

Tang, S. S.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Tehrani, M. K.

Tewari, S. P.

S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013).
[Crossref]

S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
[Crossref]

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Théberge, F.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

Thompson, J.

R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005).
[Crossref] [PubMed]

Tobaria, L.

Tobaria, L. M.

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010).
[Crossref] [PubMed]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier‎,” J. Anal. At. Spectrom. 24(8), 1123–1126 (2009).
[Crossref]

Tremblay, G.

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

Tripathi, A.

Trivedi, S. B.

Tzortzakis, S.

Venugopal Rao, S.

S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Verma, V.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Walters, R. A.

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

Wang, Q.-Q.

Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012).
[Crossref]

Whitehouse, A. I.

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

Wiens, R. C.

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005).
[Crossref] [PubMed]

Winkel, R. J.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006).
[Crossref] [PubMed]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Wolf, J. P.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Wolf, J.-P.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Wolski, M.

D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

Woolard, D. L.

D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

Woste, L.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

Wöste, L.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Wright, E. M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Wynn, C. M.

Xu, H. L.

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

H. L. Xu and S. L. Chin, “Femtosecond Laser Filamentation for Atmospheric Sensing,” Sensors (Basel) 11(1), 32–53 (2011).
[Crossref] [PubMed]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

Yang, C. S.-C.

Yang, P.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Yang, X. Y.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Yeak, J.

Yi, R. X.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Yu, J.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Zeng, X. Y.

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

Zhang, C.

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, H. Tang, and H. Li, “Chemometrics in laser-induced breakdown spectroscopy,” J. Chemometr.in press.

Zhao, H.

Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012).
[Crossref]

Zuhlke, C. A.

Anal. Bioanal. Chem. (5)

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part I: animal, chemical, ion, and mechanical methods,” Anal. Bioanal. Chem. 408(1), 35–47 (2016).
[Crossref] [PubMed]

K. E. Brown, M. T. Greenfield, S. D. McGrane, and D. S. Moore, “Advances in explosives analysis-part II: photon and neutron methods,” Anal. Bioanal. Chem. 408(1), 49–65 (2016).
[Crossref] [PubMed]

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385(6), 1140–1148 (2006).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, and J. J. Laserna, “Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusion,” Anal. Bioanal. Chem. 400(10), 3353–3365 (2011).
[Crossref] [PubMed]

Anal. Chem. (4)

J. Moros and J. J. Laserna, “New Raman-Laser-Induced Breakdown Spectroscopy Identity of Explosives using Parametric Data Fusion on an Integrated Sensing Platform,” Anal. Chem. 83(16), 6275–6285 (2011).
[Crossref] [PubMed]

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy,” Anal. Chem. 86(10), 5045–5052 (2014).
[Crossref] [PubMed]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform,” Anal. Chem. 82(4), 1389–1400 (2010).
[Crossref] [PubMed]

E. J. Judge, G. Heck, E. B. Cerkez, and R. J. Levis, “Discrimination of Composite Graphite Samples Using Remote Filament-Induced Breakdown Spectroscopy,” Anal. Chem. 81(7), 2658–2663 (2009).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. K. Myakalwar, S. K. Anubham, S. K. Paidi, I. Barman, and M. K. Gundawar, “Real-time fingerprinting of structural isomers using laser induced breakdown spectroscopy,” Analyst (Lond.) 141(10), 3077–3083 (2016).
[Crossref] [PubMed]

Appl. Opt. (6)

Appl. Phys. B (2)

J.-F. Daigle, Y. Kamali, M. Châteauneuf, G. Tremblay, F. Théberge, J. Dubois, G. Roy, and S. L. Chin, “Remote sensing with intense filaments enhanced by adaptive optics,” Appl. Phys. B 97(3), 701–713 (2009).
[Crossref]

S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Châteauneuf, and J. Dubois, “Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source,” Appl. Phys. B 95(1), 1–12 (2009).
[Crossref]

Appl. Phys. Lett. (2)

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Appl. Spectrosc. (6)

E. N. Rao, S. Sunku, and S. V. Rao, “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups,” Appl. Spectrosc. 69(11), 1342–1354 (2015).
[Crossref] [PubMed]

P. D. Barnett, N. Lamsal, and S. M. Angel, “Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics,” Appl. Spectrosc. 71(4), 583–590 (2017).
[Crossref] [PubMed]

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).
[Crossref] [PubMed]

C. A. Zuhlke, J. Bruce, T. P. Anderson, D. R. Alexander, and C. G. Parigger, “A Fundamental Understanding of the Dependence of the Laser-Induced Breakdown Spectroscopy (LIBS) Signal Strength on the Complex Focusing Dynamics of Femtosecond Laser Pulses on Either Side of the Focus,” Appl. Spectrosc. 68(9), 1021–1029 (2014).
[Crossref] [PubMed]

Def. Sci. J. (2)

S. Sreedhar, M. K. Gundawar, and S. V. Rao, “Laser Induced Breakdown Spectroscopy for Classification of High Energy Materials using Elemental Intensity Ratios,” Def. Sci. J. 64, 332–338 (2014).

M. K. Gundawar, R. Junjuri, and A. K. Myakalwar, “Standoff Detection of Explosives at 1 m using Laser Induced Breakdown Spectroscopy,” Def. Sci. J. 67(6), 623–630 (2017).
[Crossref]

Front. Phys. (1)

Q.-Q. Wang, K. Liu, H. Zhao, C.-H. Ge, and Z.-W. Huang, “Detection of explosives with laser-induced breakdown spectroscopy,” Front. Phys. 7(6), 701–707 (2012).
[Crossref]

J. Anal. At. Spectrom. (12)

J. Moros, J. Serrano, C. Sanchez, J. Macias, and J. J. Laserna, “New chemometrics in laser-induced breakdown spectroscopy for recognizing explosive residues‎,” J. Anal. At. Spectrom. 27(12), 2111–2122 (2012).
[Crossref]

J. Serrano, J. Moros, and J. J. Laserna, “Exploring the formation routes of diatomic hydrogenated radicals using femtosecond laser-induced breakdown spectroscopy of deuterated molecular solids‎,” J. Anal. At. Spectrom. 30(11), 2343–2352 (2015).
[Crossref]

S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, “Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials‎,” J. Anal. At. Spectrom. 32(8), 1535–1546 (2017).
[Crossref]

W. T. Li, X. Y. Yang, X. Li, S. S. Tang, J. M. Li, R. X. Yi, P. Yang, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “A portable multi-collector system based on an artificial optical compound eye for stand-off laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(10), 1975–1979 (2017).
[Crossref]

J. L. Gottfried, J. F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Strategies for residue explosives detection using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 23(2), 205–216 (2008).
[Crossref]

E. N. Rao, P. Mathi, S. A. Kalam, S. Sreedhar, A. K. Singh, B. N. Jagatap, and S. V. Rao, “Femtosecond and nanosecond LIBS studies of nitroimidazoles: correlation between molecular structure and LIBS data‎,” J. Anal. At. Spectrom. 31(3), 737–750 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. E. Brumfield, J. D. Suter, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wolf, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19(4), 437–444 (2004).
[Crossref]

C. López-Moreno, S. Palanco, J. Javier Laserna, F. DeLucia, A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, “Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces‎,” J. Anal. At. Spectrom. 21(1), 55–60 (2006).
[Crossref]

J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “Discrimination of explosive residues on organic and inorganic substrates using laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 24(3), 288–296 (2009).
[Crossref]

R. Gonzalez, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Standoff LIBS detection of explosive residues behind a barrier‎,” J. Anal. At. Spectrom. 24(8), 1123–1126 (2009).
[Crossref]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy‎,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

J. Moros, J. A. Lorenzo, K. Novotný, and J. J. Laserna, “Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting,” J. Raman Spectrosc. 44(1), 121–130 (2013).
[Crossref]

Laser Focus World (1)

S. A. Kalam, E. N. Rao, and S. V. Rao, “Standoff LIBS for explosives detection: Challenges and status,” Laser Focus World 53, 24–28 (2017).

Laser Phys. (2)

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

H. L. Xu, P. T. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Châteauneuf, F. Théberge, G. Roy, and S. L. Chin, “Filament-induced breakdown remote spectroscopy in a polar environment,” Laser Phys. 22(12), 1767–1770 (2012).
[Crossref]

Measurement (1)

D. Girón, T. Delgado, J. Ruiz, L. M. Cabalín, and J. J. Laserna, “In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS,” Measurement 115, 1–10 (2018).
[Crossref]

Opt. Express (7)

C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18(6), 5399–5406 (2010).
[Crossref] [PubMed]

F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17(2), 419–425 (2009).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, B. E. Brumfield, and M. C. Phillips, “Consequences of femtosecond laser filament generation conditions in standoff laser induced breakdown spectroscopy,” Opt. Express 24(16), 17941–17949 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
[Crossref] [PubMed]

J. J. Laserna, R. F. Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17(12), 10265–10276 (2009).
[Crossref] [PubMed]

Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16(8), 5332–5337 (2008).
[Crossref] [PubMed]

A. W. Schill, D. A. Heaps, D. N. Stratis-Cullum, B. R. Arnold, and P. M. Pellegrino, “Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy,” Opt. Express 15(21), 14044–14056 (2007).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically Turbulent Femtosecond Light Guide in Air,” Phys. Rev. Lett. 83(15), 2938–2941 (1999).
[Crossref]

Proc. SPIE (4)

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907 (2006).
[Crossref]

K. Bhavsar, K. E. Eseller, and R. Prabhu, “Design optimization of Cassegrain telescope for remote explosive trace detection,” Proc. SPIE 10441, 1044103 (2017).

C. G. Brown, R. Bernath, M. Fisher, M. C. Richardson, M. Sigman, R. A. Walters, A. Miziolek, H. Bereket, and L. E. Johnson, “Remote femtosecond laser induced breakdown spectroscopy (LIBS) in a standoff detection regime,” Proc. SPIE 6219, 62190B (2006).
[Crossref]

S. Sunku, E. N. Rao, G. M. Kumar, S. P. Tewari, and S. V. Rao, “Discrimination methodologies using femtosecond LIBS and correlation techniques,” Proc. SPIE 8726, 87260H (2013).
[Crossref]

Sci. Rep. (3)

K. C. Hartig, I. Ghebregziabher, and I. Jovanovic, “Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry,” Sci. Rep. 7, 43852 (2017).
[Crossref] [PubMed]

A. Kumar Myakalwar, N. Spegazzini, C. Zhang, S. Kumar Anubham, R. R. Dasari, I. Barman, and M. Kumar Gundawar, “Less is more: Avoiding the LIBS dimensionality curse through judicious feature selection for explosive detection,” Sci. Rep. 5(1), 13169 (2015).
[Crossref] [PubMed]

P. Pořízka, J. Klus, J. Mašek, M. Rajnoha, D. Prochazka, P. Modlitbová, J. Novotný, R. Burget, K. Novotný, and J. Kaiser, “Multivariate classification of echellograms: a new perspective in Laser-Induced Breakdown Spectroscopy analysis,” Sci. Rep. 7(1), 3160 (2017).
[Crossref] [PubMed]

Sci. Robot. (1)

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R. C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney, and B. Bornstein, “AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use,” Sci. Robot. 2(7), eaan4582 (2017).
[Crossref]

Sens. Actuators B Chem. (1)

K. Konstantynovski, G. Njio, F. Börner, A. Lepcha, T. Fischer, G. Holl, and S. Mathur, “Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials,” Sens. Actuators B Chem. 258, 1252–1266 (2018).
[Crossref]

Sensors (Basel) (1)

H. L. Xu and S. L. Chin, “Femtosecond Laser Filamentation for Atmospheric Sensing,” Sensors (Basel) 11(1), 32–53 (2011).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

R. C. Wiens, S. K. Sharma, J. Thompson, A. Misra, and P. G. Lucey, “Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2324–2334 (2005).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (6)

V. Lazic, A. Palucci, S. Jovicevic, and M. Carpanese, “Standoff Detection of Explosives in traces by Laser Induced Breakdown Spectroscopy: Differences from organic interferents and conditions for a correct classification,” Spectrochim. Acta B At. Spectrosc. 66(8), 644–655 (2011).
[Crossref]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

J. El Haddad, L. Canioni, and B. Bousquet, “Good practices in LIBS analysis: Review and advices,” Spectrochim. Acta B At. Spectrosc. 101, 171–182 (2014).
[Crossref]

S. Sunku, M. K. Gundawar, A. K. Myakalwar, P. P. Kiran, S. P. Tewari, and S. V. Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX,” Spectrochim. Acta B At. Spectrosc. 79–80, 31–38 (2013).
[Crossref]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B At. Spectrosc. 62(1), 76–81 (2007).
[Crossref]

S. Sreedhar, E. Nageswara Rao, G. Manoj Kumar, S. P. Tewari, and S. Venugopal Rao, “Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 121–129 (2013).
[Crossref]

Talanta (1)

A. K. Myakalwar, S. Sreedhar, I. Barman, N. C. Dingari, S. Venugopal Rao, P. Prem Kiran, S. P. Tewari, and G. Manoj Kumar, “Laser-induced breakdown spectroscopy-based investigation and classification of pharmaceutical tablets using multivariate chemometric analysis,” Talanta 87, 53–59 (2011).
[Crossref] [PubMed]

Other (4)

T. Arusi-Parpar and I. Levy, “Remote Detection of Explosives by Enhanced Pulsed Laser Photodissociation/Laser-Induced Fluorescence Method,” in Stand-Off Detection of Suicide Bombers and Mobile Subjects, H. Schubert and A. Rimski-Korsakov, eds. (Springer, 2006), pp. 59–68.

D. L. Woolard, E. R. Brown, A. C. Samuels, J. O. Jensen, T. Globus, B. Gelmont, and M. Wolski, “Terahertz-frequency remote-sensing of biological warfare agents,” in Proceedings of IEEE Conference on MTT-S International Microwave Symposium Digest(IEEE,2003), pp. 763–766.

T. Zhang, H. Tang, and H. Li, “Chemometrics in laser-induced breakdown spectroscopy,” J. Chemometr.in press.

M. Baudelet, M. Richardson, and M. Sigman, “Self-channeling of femtosecond laser pulses for rapid and efficient standoff detection of energetic materials,” in Proceedings of IEEE Conference on Conference on Technologies for Homeland Security(IEEE,2009), pp. 472–476.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Femtosecond standoff (up to 2 m, configuration 1) and remote (~8.5 m, configuration 2) LIBS setup. In figure M, A, HWP, BP, L, D, P and T stands for mirror, aperture, half wave plate, Brewster plate, lens, collection system, plasma and target, respectively.
Fig. 2
Fig. 2 Typical fs standoff LIBS spectra of nitroimidazoles at (a) 10 cm (b) 30 cm (c) 50 cm (d) 100 cm (e) 200 cm acquired in ST-LIBS (configuration 1) and (f) Stack plot of the fs standoff LIBS spectra of Al at all distances.
Fig. 3
Fig. 3 PC scores plot of the processed LIBS spectra of nitroimidazoles obtained at (a) 10 cm (b) 30 cm (c) 50 cm (d) 100 cm (e) 200 cm obtained in ST-LIBS.
Fig. 4
Fig. 4 First three PCs for the processed LIBS spectra of nitroimidazoles at (a) 10 cm (b) 100 cm and (c) 200 cm.
Fig. 5
Fig. 5 Stack plots of (a) representative fs R-LIBS spectra of explosive molecules (nitroimidazoles and nitropyrazoles) and (b) metals (Aluminum, copper, brass, and stainless steel) obtained at 8.5 m away.
Fig. 6
Fig. 6 (a) PC scores plot and (b) first three PCs for the processed LIBS spectra of explosives (nitroimidazoles and nitropyrazoles) obtained at 8.5 m. (c) PC scores plot and (d) first three PCs for R-LIBS spectra of different metals obtained at 8.5 m.

Tables (1)

Tables Icon

Table 1 IUPAC names and molecular formula of HEMs used in ST-LIBS and R-LIBS experiments

Metrics