Abstract

As a new member of transition metal dichalcogenides (TMDs), rhenium disulfide (ReS2), with a nearly unchanged direct bandgap from bulk to monolayer form, is attractive in physics and material fields. By using the optically driving deposition method, the ReS2 saturable absorber (SA) has been fabricated with a modulation depth and saturation fluence of 6.9% and 27.5 μJ/cm2, respectively. Based on the ReS2-SA, a multi-wavelength bright-dark pulse pair from a mode-locked fiber laser has been observed experimentally for the first time, to the best of our knowledge. The saturable absorbing ability of the ReS2 is attributed to the formation of the bright pulses and the dark pulses. The cross-phase modulation (XPM) caused by different wavebands of bright pulse and dark pulse support the coexisting of the bright-dark pulse pair.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Soliton can be generated from many physical systems. In the field of optics, solitons formed in the single mode fiber (SMF) are attractive for its important applications in optical communication, optical continuum generation and optical processing system [1]. To date, various pulse types have been experimentally discovered from passively mode-locked fiber lasers, such as multi-wavelength pulses, femtosecond pulses, high-order soliton and dissipative soliton. Contrary to the bright pulses above, dark pulse has an intensity dip in continuous-wave (CW) background and possesses some advantages, such as more stability in the presence of noise and more slow spreading in the presence of fiber loss [2]. According to the soliton interaction, there are some pulse pairs in optical fiber system, such as bright-bright, dark-dark, and bright-dark pulse pair. The pulse pairs have been investigated theoretically through nonlinear Schrodinger equation (NLSE) [3]. The bright and dark pulse pairs have been realized in fiber laser through mode-locking technique [4, 5]. Based on the previous reports, the XPM effect or polarization effect may attribute to the generation of bright-dark pulse pair [6, 7].

Recently, a newly emerging member of TMDs, rhenium disulfide (ReS2) has shown an intrinsic feature of direct bandgap semiconductor, which is independent on the crystallographic structure. The value of bandgap is in the range of 1.35 - 1.43 eV from bulk to monolayer form, which shows an almost unchanged electronic energy structure [8, 9]. Very recently, the first ReS2 mode-locked fiber laser in the infrared band has been reported [10]. Shortly, D. Mao et al. and F. F. Lu et al. studied the Q-switching and harmonic mode-locking characteristics of ReS2 in fiber lasers, respectively [11, 12]. These works exhibit excellent properties of ReS2 for ultrafast fiber lasers. However, only bright pulses have been obtained. Therefore, it is very interesting to explore the possibility of generating other soliton types by using ReS2 in fiber lasers.

In this paper, a multi-wavelength bright-dark soliton pair in an erbium doped fiber (EDF) laser has been successfully generated based on ReS2. The ReS2-SA was fabricated by using liquid exfoliation and optically driving deposition methods, with modulation depth and saturation fluence of 6.9% and 27.5 μJ/cm2, respectively. The generation of dark pulses is probably in virtue of nonlinear effect of ReS2. The bright pulse and the dark pulse at different wavelengths have been obtained by adjusting an external cavity polarization controller (PC), which may cause the XPM effect supporting the co-exiting of the bright-dark pulse pair. Our work provides the first result that bright-dark pulses could co-exit simultaneously in the passively mode-locked fiber laser with ReS2.

2. Preparation and characterization of ReS2-SA

The layered nanomaterials are easily delaminate due to the strong in-plane chemical bonds but weak out-of-plane van der Waals bonds. In this work, the ReS2 nanomaterial was prepared using the liquid exfoliation method for its low cost and simple operation as described in [13]. Firstly, the ReS2 powder was dissolved in the solvent of a mixture of alcohol and deionized water with a volume ratio of 7:3. A high-power-ultrasonic cleaner was used for sufficiently dissolving ReS2 powder. After the sonication for 12 h, the ReS2 solution was centrifuged at 2000 rpm with 20 min for separation of the ReS2 nanosheets with large agglomeration. By decanting the upper supernatant, the homogeneously dispersed ReS2 nanosheets solution was fabricated. For testing the characterization of ReS2 nanosheets, the as-prepared dispersion was dropped onto a sapphire substrate to form a ReS2 sample. The Raman spectrum was characterized with an excitation source at the wavelength of 532 nm. The results are shown in Fig. 1(a) with six peaks locating at 138.1, 143.5, 450.9, 160.8, 211.8, and 234.6 cm−1, which shows a negligible shift from previously report [10]. Because the Raman spectrum is insensitivity to the layer number of ReS2, the Raman shift may be caused by the different polarization of probe laser [11, 14]. The morphology of ReS2 observed by atomic force microscope (AFM) is shown in Fig. 1(b). From Fig. 1(d), it can be seen the thickness was about 5 nm, corresponding to 7 layer ReS2 [15]. The linear transmittance of the ReS2-sample was also investigated by a spectrophotometer (U-3500) in comparison with the bare sapphire. The ReS2 sample transmittance shows an ultra-broad absorption band beyond its bandgap.

 figure: Fig. 1

Fig. 1 (a) Raman spectrum of ReS2-sample. (b) AFM image of ReS2-sample. (c) Linear transmittance of ReS2-sample in comparison with bare sapphire. (d) The corresponding height profiles of ReS2-sample.

Download Full Size | PPT Slide | PDF

Besides, the nonlinear optical property of ReS2 was also investigated. The measurement setup is shown in Fig. 2(a). The probe laser with an average power of 20 mW was a home-made passively mode-locked fiber laser. The repetition rate and the pulse width were 41.5 MHz and 1 ps, respectively. The measured results are shown in Fig. 2(b). According to the fitting formula [16], the modulation depth and saturation fluence were estimated to be 6.9% and 27.5 μJ/cm2, respectively, confirming the possibility of the ReS2 as a SA for ultrashort pulse generation.

 figure: Fig. 2

Fig. 2 (a) Schematic diagram of I-scanning measurement. (b) Corresponding nonlinear saturable absorption of ReS2. The inset is the open-aperture data of I-scan.

Download Full Size | PPT Slide | PDF

3. Experimental setup

For being used in fiber laser the ReS2-SA was fabricated by optically driven deposition method. In details, light from a 974 nm laser diode (LD) with an output power of 50 mW was injected into the fiber, and the fiber ferrule was dipped into the ReS2 dispersion for 15 min. After drying at the room temperature for 24 h, it was connected with a clean ferrule by an optical adaptor to form ReS2-SA, which was incorporated into the fiber laser cavity.

The experimental schematic setup of the mode-locked fiber laser is presented in Fig. 3. A simple ring cavity with all fiber structure was configured. A fiber-pigtailed 976 nm LD was used as the pump source with a maximum pump power of 500 mW. A piece of 95-cm EDF was pumped via a wavelength division multiplexer (WDM) with dispersion parameter of −12 ps/nm/km. A PC device and a polarization-insensitive isolator (ISO) were employed to match the polarization state and force the unidirectional light propagation. An output coupler (OC) with a coupling rate of 20% was used for outputting laser signal. The rest of fibers in the cavity were all standard SMF with dispersion parameter of 18 ps/nm/km. The net cavity dispersion was −0.317 ps2 for the total cavity length of 15.4 m. The laser performance was detected by a 1 GHz digital oscilloscope (Tektronix DPO 7104), a 3 GHz RF spectrum analyzer (Agilent N900A) coupled with a 1 GHz photodetector and an optical spectrum analyzer (Yokogawa AQ6370C).

 figure: Fig. 3

Fig. 3 The experimental setup of mode-locked fiber laser.

Download Full Size | PPT Slide | PDF

4. Results and discussions

The dependences of output powers on the pump powers for the fiber lasers with and without ReS2 SA were firstly studied, as shown in Fig. 4(a). When ReS2 SA was inserted, the threshold for oscillation and slope efficiency were found to be 45.2 mW and 6.04%, respectively. The fiber laser ran into mode-locking regime at the pump power of 120 mW. By carefully adjusting the PC, stable bright-dark pulse pair could be observed. However, once the pump power exceeded 270 mW, the pulse trains collapsed suddenly, and the stable pulses still could not be reconstructed by decreasing the pump power, which was attributed to the thermally induced damage to the ReS2-SA under high power intensity. According to 20%-output-couple and 8.2-μm-core-diameter, the damage threshold of ReS2-SA in our experiment can be calculated to be 7.7 × 103 MW/cm2.

 figure: Fig. 4

Fig. 4 Laser performance of the bright-dark pulse pair at the pump power of 270 mW. (a) Output power versus the pump power, with ReS2 (yellow square) and without ReS2 (blue dot). (b) Typical pulse train. The inset shows the corresponding single pulse profile. (c) The output optical spectrum. (d) The corresponding RF spectrum with a span of 3 MHz. Upper inset: fine structure of RF spectrum with a span of 7 kHz.

Download Full Size | PPT Slide | PDF

At the pump power of 270 mW, as described in Fig. 4(b), a bright pulse together with a dark pulse was observed simultaneously, which was called bright-dark pulse pair [2]. The interval of pulse train was 74.6 ns, exactly corresponding to the round-trip time of the cavity. The single pulse profile depicted in the inset of Fig. 4(b) clearly shows the asymmetric outline of the bright-dark pulse pair. The pulse shapes and amplitudes of the bright pulse and dark pulse were all different, which made them support each other through the XPM coupling [2]. The output optical spectrum with a multi-wavelength emission is shown in Fig. 4(c). Three spectral peaks were located at 1573.6, 1591.1 and 1592.6 nm, respectively. The spectral interval of 17.5 nm was much larger than those based on the other nanomaterials, such as black phosphorus (BP) [13], topological insulator (TI) [17] and the other TMD (MoS2, WS2) [18, 19]. Besides, the spectrum of CW state (without ReS2-SA) showed only laser at 1594.1 and 1595.5 nm oscillated, which indicated the 17.5-nm large wavelength interval caused by ReS2-SA, not the filtering effect. The results proved the outstanding performance of ReS2 as SA for generating multi-wavelength pulsed laser. Figure 4(d) shows the RF spectrum with a resolution bandwidth (RBW) of 3.6 kHz at the pump power of 270 mW. The pulse repetition frequency was 13.39 MHz and the single-to-noise ratio (S/N) exceeded 55 dB. The results indicated good stability of the mode-locked fiber laser with bright-dark pulse pair. To further investigate the multiwavelength operation, an ultrafine RF spectrum with a RBW of 22 Hz and a span range of 7 kHz was also recorded as shown in the inset of Fig. 4(d). The RF peaks were separated by 744 Hz and 80 Hz, respectively, for different wavelengths. In theory, the relationship between the RF separation interval Δf and wavelength difference dλ is described as follows [20]:

Δf=c2Ddλn2(L+LDdλc/n)
where c and n are the velocity of light in vacuum and the refractive index of fiber, D and L are the cavity dispersion and cavity length, respectively. The RF separations were calculated to be 764.8 Hz and 72.6 Hz, respectively, which were in good agreement with the experimental results. The results well verified that multiwavelength pulsed laser was realized based on ReS2 successfully. Moreover, the pulse duration of bright-dark pulse pair was measured by an optical autocorrelator (APE Pulse Check). However, there is no autocorrelation trace, which is similar to previous reports [7]. The phenomenon may be caused by inherent feature of bright-dark pulse pair in fiber laser.

For further investigation, an external cavity PC and a tunable filter were used to survey the change of the pulse pair. First, the filter has been tuned with the transmission spectrum of 1586 – 1596 nm. Due to the spectra of 1591.1 and 1592.6 nm are too near to filter, an external cavity PC was applied. Through adjusting the PC, separate bright pulse and dark pulse could be realized, as shown in Fig. 5(a). The corresponding output spectrum for the bright pulse and dark pulse are shown in Fig. 5(b). Obviously, in the case of bright pulse generation, the peak at 1591.1 nm kept fixed, while peak at 1592.6 nm appeared again when the dark soliton was observed. The results showed the bright pulse and the dark pulse had different wavebands and different polarization state. Then tuned the transmission spectrum range to 1567 – 1577 nm, the bright-dark pulse pair was observed. The intensity of the bright pulse or the dark pulse could be changed, not disappeared by adjusting the external cavity PC, which indicated that only changing the polarization state was unable to separate the bright pulse and the dark pulse. Therefore, it could be concluded that the bright pulse and the dark pulse are polarized-dependent, but not linearly polarized light. As we know, the polarization effect and XPM effect may be beneficial for the formation of bright-dark pulse pair [2]. The different wavebands of bright pulse and dark pulse may cause the XPM effect when laser propagated in fiber. Based on the experimental results, the XPM effect was regarded as the reason for the coexisting of pulse pairs [21, 22]. Generally, the saturable absorbing ability of the ReS2 is attributed to the formation of the bright pulses and the dark pulses. While the cross-phase modulation (XPM) caused by different wavebands of bright pulse and dark pulse support the coexisting of the bright-dark pulse pair. Besides, the stability of the multi-wavelength soliton pair was also observed over 2 hours by monitoring the output spectrum at the pump power of 270 mW, as shown in Fig. 6. Indeed, after one week, the soliton mode-locking operation could also run stably when the pump power was set as 270 mW, which well indicated the excellent environmental stability of ReS2.

 figure: Fig. 5

Fig. 5 Separation of the bright-dark soliton pair. (a) The bright pulse and the dark pulse. (c) Corresponding output spectrum of the bright pulse and the dark pulse.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 Long-term stability of the multi-wavelength bright-dark soliton pair fiber laser over 2 hours.

Download Full Size | PPT Slide | PDF

To eliminate the possibility of mode-locked laser caused by the self-pulsing effect, the fiber laser characteristics without ReS2 were also investigated. Only CW operation was found, without any sign of mode-locking operation with the angle of PC tuned in the total range of 360° or the pump power increased from the oscillation threshold (38 mW) to the maximum (500 mW). The phenomenon verified the vital function of ReS2 in forming the bright-dark pulse pairs. The saturable absorption and nonlinear effect are attributed to the generation of bright pulse and dark pulse. The output power for CW operation as a function of pump power with a slope efficiency of 6.85% is illustrated in Fig. 4(a). In addition, the photon energy at the wavelength of 1.5 μm (0.8 eV) is much less than the bandgap of ReS2 (1.35 eV), which theoretically determines that the incident photons would not be absorbed. However, the saturable absorption properties of ReS2 at 1.5 and 2.8 μm have been presented [11, 23], as the results shown in this work. According to the previous report, the defects, such as edges or vacancies, are proposed as the reason for the change of bandgap [24, 25]. More detailed investigation will also be necessary.

5. Conclusion

In conclusion, a multi-wavelength bright-dark pulse pair has been experimentally achieved in a passively mode-locked erbium doped fiber laser based on ReS2-SA. Using the liquid exfoliation and optically driven deposition methods, the ReS2-SA was fabricated with modulation depth and saturation fluence of 6.9% and 27.5 μJ/cm2, respectively. By carefully adjusting the polarization state and pump power, the bright-dark pulse pair was observed easily with a multiwavelength emission due to the nonlinearity of ReS2. The output spectrum showed the peaks located at 1573.5, 1591.1 and 1592.6 nm, corresponding to the RF frequency separations of 744 Hz and 80 Hz. The XPM effect caused by different wavebands of bright pulse and dark pulse may support the coexisting of the bright-dark pulse pair.

Funding

National Key Research and Development Program of China (2017YFB0405204).

Acknowledgments

The authors wish to thank Dr. Kejian Yang, School of Information Science and Engineering, Shandong University for the assistance in English writing.

References and links

1. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996). [CrossRef]  

2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

3. V. V. Afanasyev, Y. S. Kivshar, V. V. Konotop, and V. N. Serkin, “Dynamics of coupled dark and bright optical solitons,” Opt. Lett. 14(15), 805–807 (1989). [CrossRef]   [PubMed]  

4. Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012). [CrossRef]  

5. H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011). [CrossRef]  

6. Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012). [CrossRef]  

7. B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015). [CrossRef]  

8. E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015). [CrossRef]   [PubMed]  

9. H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016). [CrossRef]  

10. Y. Cui, F. Lu, and X. Liu, “Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide,” Sci. Rep. 7, 40080 (2017). [CrossRef]   [PubMed]  

11. D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

12. F. Lu, “Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber,” Mod. Phys. Lett. B 31(18), 1750206 (2017). [CrossRef]  

13. R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016). [CrossRef]  

14. Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015). [CrossRef]  

15. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014). [CrossRef]   [PubMed]  

16. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]  

17. B. Guo, Y. Yao, Y.-F. Yang, Y.-J. Yuan, L. Jin, B. Yan, and J.-Y. Zhang, “Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber,” Photon. Res. 3(3), 94–99 (2015). [CrossRef]  

18. Z. C. Tiu, H. Ahmad, A. Zarei, and S. W. Harun, “Generation of multi-wavelength erbium-doped fiber laser by using MoSe2 thin film as nonlinear medium and stabilizer,” Chin. Opt. Lett. 14(4), 041901 (2016). [CrossRef]  

19. B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016). [CrossRef]  

20. D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012). [CrossRef]  

21. V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, “Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,” IEEE J. Quantum Electron. 25(12), 2656–2664 (1989). [CrossRef]  

22. M. Lisak, A. Höök, and D. Anderson, “Symbiotic solitary-wave pairs sustained by cross-phase modulation in optical fibers,” J. Opt. Soc. Am. B 7(5), 810–814 (1990). [CrossRef]  

23. X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017). [CrossRef]   [PubMed]  

24. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014). [CrossRef]   [PubMed]  

25. D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
    [Crossref]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  3. V. V. Afanasyev, Y. S. Kivshar, V. V. Konotop, and V. N. Serkin, “Dynamics of coupled dark and bright optical solitons,” Opt. Lett. 14(15), 805–807 (1989).
    [Crossref] [PubMed]
  4. Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012).
    [Crossref]
  5. H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011).
    [Crossref]
  6. Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
    [Crossref]
  7. B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
    [Crossref]
  8. E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
    [Crossref] [PubMed]
  9. H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
    [Crossref]
  10. Y. Cui, F. Lu, and X. Liu, “Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide,” Sci. Rep. 7, 40080 (2017).
    [Crossref] [PubMed]
  11. D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).
  12. F. Lu, “Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber,” Mod. Phys. Lett. B 31(18), 1750206 (2017).
    [Crossref]
  13. R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
    [Crossref]
  14. Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
    [Crossref]
  15. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
    [Crossref] [PubMed]
  16. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  17. B. Guo, Y. Yao, Y.-F. Yang, Y.-J. Yuan, L. Jin, B. Yan, and J.-Y. Zhang, “Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber,” Photon. Res. 3(3), 94–99 (2015).
    [Crossref]
  18. Z. C. Tiu, H. Ahmad, A. Zarei, and S. W. Harun, “Generation of multi-wavelength erbium-doped fiber laser by using MoSe2 thin film as nonlinear medium and stabilizer,” Chin. Opt. Lett. 14(4), 041901 (2016).
    [Crossref]
  19. B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
    [Crossref]
  20. D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012).
    [Crossref]
  21. V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, “Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,” IEEE J. Quantum Electron. 25(12), 2656–2664 (1989).
    [Crossref]
  22. M. Lisak, A. Höök, and D. Anderson, “Symbiotic solitary-wave pairs sustained by cross-phase modulation in optical fibers,” J. Opt. Soc. Am. B 7(5), 810–814 (1990).
    [Crossref]
  23. X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
    [Crossref] [PubMed]
  24. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
    [Crossref] [PubMed]
  25. D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015).
    [Crossref] [PubMed]

2017 (4)

Y. Cui, F. Lu, and X. Liu, “Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref] [PubMed]

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

F. Lu, “Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber,” Mod. Phys. Lett. B 31(18), 1750206 (2017).
[Crossref]

X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref] [PubMed]

2016 (4)

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Z. C. Tiu, H. Ahmad, A. Zarei, and S. W. Harun, “Generation of multi-wavelength erbium-doped fiber laser by using MoSe2 thin film as nonlinear medium and stabilizer,” Chin. Opt. Lett. 14(4), 041901 (2016).
[Crossref]

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

2015 (5)

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

B. Guo, Y. Yao, Y.-F. Yang, Y.-J. Yuan, L. Jin, B. Yan, and J.-Y. Zhang, “Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber,” Photon. Res. 3(3), 94–99 (2015).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

2014 (2)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

2012 (3)

D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012).
[Crossref]

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
[Crossref]

Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012).
[Crossref]

2011 (1)

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011).
[Crossref]

1996 (1)

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
[Crossref]

1990 (2)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Lisak, A. Höök, and D. Anderson, “Symbiotic solitary-wave pairs sustained by cross-phase modulation in optical fibers,” J. Opt. Soc. Am. B 7(5), 810–814 (1990).
[Crossref]

1989 (2)

V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, “Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,” IEEE J. Quantum Electron. 25(12), 2656–2664 (1989).
[Crossref]

V. V. Afanasyev, Y. S. Kivshar, V. V. Konotop, and V. N. Serkin, “Dynamics of coupled dark and bright optical solitons,” Opt. Lett. 14(15), 805–807 (1989).
[Crossref] [PubMed]

Afanasjev, V. V.

V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, “Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,” IEEE J. Quantum Electron. 25(12), 2656–2664 (1989).
[Crossref]

Afanasyev, V. V.

Ahmad, H.

Aloni, S.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Anderson, D.

Cao, W. J.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011).
[Crossref]

Cao, Z.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Chen, Y.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Chin, M. L.

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

Cui, X.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

Cui, Y.

Y. Cui, F. Lu, and X. Liu, “Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref] [PubMed]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Dianov, E. M.

V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, “Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,” IEEE J. Quantum Electron. 25(12), 2656–2664 (1989).
[Crossref]

Dong, J. L.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011).
[Crossref]

Du, J.

Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012).
[Crossref]

Dubey, M.

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

Fan, W.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Feng, Y.

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Fu, Y.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Gan, X.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

Guo, B.

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

B. Guo, Y. Yao, Y.-F. Yang, Y.-J. Yuan, L. Jin, B. Yan, and J.-Y. Zhang, “Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber,” Photon. Res. 3(3), 94–99 (2015).
[Crossref]

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

Guo, Q.

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hao, Y.

Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012).
[Crossref]

Harun, S. W.

Haus, H. A.

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
[Crossref]

He, J.

X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref] [PubMed]

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Ho, C. H.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Ho, C.-H.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Höök, A.

Huang, Y. S.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Huang, Y.-S.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Hwang, H. Y.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Ji, J.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Jin, L.

Kivshar, Y. S.

Ko, C.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Konotop, V. V.

Li, A.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Li, G.

Li, H.

Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012).
[Crossref]

Li, J.

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Li, M.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

Li, S.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Li, X.

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012).
[Crossref]

Li, Y.

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

Lin, Z. B.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
[Crossref]

Lisak, M.

Liu, E.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Liu, H.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Liu, J.-J.

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

Liu, K.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Liu, S.

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

Liu, X.

Y. Cui, F. Lu, and X. Liu, “Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref] [PubMed]

Lou, F.

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Lu, F.

F. Lu, “Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber,” Mod. Phys. Lett. B 31(18), 1750206 (2017).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref] [PubMed]

Lu, H.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012).
[Crossref]

Luce, A.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Luo, A. P.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
[Crossref]

Luo, Z. C.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
[Crossref]

Mao, D.

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Mei, T.

Meng, Y.

Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012).
[Crossref]

Miao, F.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Najmaei, S.

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

Ni, Z.

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Nie, H.

Ning, Q. Y.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
[Crossref]

Ogletree, D. F.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Peeters, F. M.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Quan, M. R.

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

Sahin, H.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Serkin, V. N.

V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, “Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,” IEEE J. Quantum Electron. 25(12), 2656–2664 (1989).
[Crossref]

V. V. Afanasyev, Y. S. Kivshar, V. V. Konotop, and V. N. Serkin, “Dynamics of coupled dark and bright optical solitons,” Opt. Lett. 14(15), 805–807 (1989).
[Crossref] [PubMed]

Shao, L.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shi, Y.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Song, F.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Su, X.

X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref] [PubMed]

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Tian, H.

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

Tian, J. J.

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

Tiu, Z. C.

Tongay, S.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Wan, X.

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Wang, B.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Wang, H.

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

Wang, H. Y.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011).
[Crossref]

Wang, J.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Wang, L.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Wang, L. Y.

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011).
[Crossref]

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Wang, S. K.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
[Crossref]

Wang, S.-G.

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

Wang, X.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Wang, Y.

X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref] [PubMed]

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wong, W. S.

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
[Crossref]

Wu, J.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Wu, X.

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Xia, F.

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

Xing, D.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Xu, K.

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

Xu, W. C.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
[Crossref]

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011).
[Crossref]

Yan, B.

Yan, J.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Yan, P.-G.

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

Yang, K.

Yang, Y.-F.

Yao, Y.

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

B. Guo, Y. Yao, Y.-F. Yang, Y.-J. Yuan, L. Jin, B. Yan, and J.-Y. Zhang, “Dual-wavelength rectangular pulse erbium-doped fiber laser based on topological insulator saturable absorber,” Photon. Res. 3(3), 94–99 (2015).
[Crossref]

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Yuan, H.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Yuan, Y.-J.

Zarei, A.

Zeng, H.

Zeng, J.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Zhang, B.

X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, and J. He, “Few-layered ReS2as saturable absorber for 2.8 μm solid state laser,” Opt. Lett. 42(17), 3502–3505 (2017).
[Crossref] [PubMed]

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Zhang, H.

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Zhang, J.-Y.

Zhang, S.

Zhang, W.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

Zhao, J.

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref] [PubMed]

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Zhao, R.

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Zhao, Y. F.

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

Zhou, J.

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Zhou, W.

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref] [PubMed]

Appl. Phys. Express (1)

R. Zhao, J. Li, B. Zhang, X. Li, X. Su, Y. Wang, F. Lou, H. Zhang, and J. He, “Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus,” Appl. Phys. Express 9(9), 092701 (2016).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (2)

V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, “Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,” IEEE J. Quantum Electron. 25(12), 2656–2664 (1989).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Mao, X. Cui, X. Gan, M. Li, W. Zhang, H. Lu, and J. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1100406 (2017).

IEEE Photonics J. (1)

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright-Dark Pulse Pair in a Figure-Eight Dispersion-Managed Passively Mode-Locked Fiber Laser,” IEEE Photonics J. 4(5), 1647–1652 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. Guo, Y. Yao, J. J. Tian, Y. F. Zhao, S. Liu, M. Li, and M. R. Quan, “Observation of Bright-Dark Soliton Pair in a Fiber Laser with Topological Insulator,” IEEE Photonics Technol. Lett. 27(7), 701–704 (2015).
[Crossref]

B. Guo, Y. Yao, P.-G. Yan, K. Xu, J.-J. Liu, S.-G. Wang, and Y. Li, “Dual-Wavelength Soliton Mode-Locked Fiber Laser With a WS2-Based Fiber Taper,” IEEE Photonics Technol. Lett. 28(3), 323–326 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

H. Y. Wang, W. C. Xu, W. J. Cao, L. Y. Wang, and J. L. Dong, “Experimental observation of bright-dark pulse emitting in an all-fiber ring cavity laser,” Laser Phys. 22(1), 282–285 (2011).
[Crossref]

Mod. Phys. Lett. B (1)

F. Lu, “Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber,” Mod. Phys. Lett. B 31(18), 1750206 (2017).
[Crossref]

Nano Res. (1)

H. Tian, M. L. Chin, S. Najmaei, Q. Guo, F. Xia, H. Wang, and M. Dubey, “Optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Nano Res. 9(6), 1543–1560 (2016).
[Crossref]

Nat. Commun. (2)

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6(1), 6991 (2015).
[Crossref] [PubMed]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y. S. Huang, C. H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

Y. Meng, S. Zhang, H. Li, J. Du, Y. Hao, and X. Li, “Bright-dark soliton pairs in a self-mode locking fiber laser,” Opt. Eng. 51(6), 064302 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. B (1)

Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, “Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry,” Phys. Rev. B 92(5), 054110 (2015).
[Crossref]

Rev. Mod. Phys. (1)

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68(2), 423–444 (1996).
[Crossref]

Sci. Rep. (1)

Y. Cui, F. Lu, and X. Liu, “Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Raman spectrum of ReS2-sample. (b) AFM image of ReS2-sample. (c) Linear transmittance of ReS2-sample in comparison with bare sapphire. (d) The corresponding height profiles of ReS2-sample.
Fig. 2
Fig. 2 (a) Schematic diagram of I-scanning measurement. (b) Corresponding nonlinear saturable absorption of ReS2. The inset is the open-aperture data of I-scan.
Fig. 3
Fig. 3 The experimental setup of mode-locked fiber laser.
Fig. 4
Fig. 4 Laser performance of the bright-dark pulse pair at the pump power of 270 mW. (a) Output power versus the pump power, with ReS2 (yellow square) and without ReS2 (blue dot). (b) Typical pulse train. The inset shows the corresponding single pulse profile. (c) The output optical spectrum. (d) The corresponding RF spectrum with a span of 3 MHz. Upper inset: fine structure of RF spectrum with a span of 7 kHz.
Fig. 5
Fig. 5 Separation of the bright-dark soliton pair. (a) The bright pulse and the dark pulse. (c) Corresponding output spectrum of the bright pulse and the dark pulse.
Fig. 6
Fig. 6 Long-term stability of the multi-wavelength bright-dark soliton pair fiber laser over 2 hours.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ f = c 2 D d λ n 2 ( L + L D d λ c / n )

Metrics