Abstract

Black phosphorus (BP), a promising new two-dimensional (2D) material, has drawn a lot of attentions in academia and industry due to its extraordinary physical and chemical properties. In this paper, we theoretically demonstrate a monolayer BP that achieves coherent perfect absorption (CPA) at the THz/infrared band. It is found that quasi-CPA point does exist at the THz/infrared band. The CPA, which has a relative bandwidth of 141.3% and a coherent absorptivity of more than 90%, can be implemented at the quasi-CPA wavelength through a proper phase modulation. Moreover, the coherent absorptivity can be modulated with a high modulation depth by means of the phase difference between the two coherent counter-propagating beams. The angular selectivity of the monolayer BP is also investigated. The CPA wavelength is divided into two wavelength branches for TE and TM polarization at oblique incidence. In addition, the CPA wavelength can be tuned from THz to infrared band by adjusting the electron doping of the BP while maintaining the modulation depth of 104. Hence, our results may be potentially used for coherent modulations in terahertz/infrared detections and signal processing with 2D materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the past few years, two dimensional (2D) materials, such as graphene, h-BN, MoS2 and so on, have been a popular research area due to its distinctive electrical and optical properties [1]. They are widely applied in chemical and biological sensors, solar cells, optical storage, and optoelectronic devices [1, 2]. Perfect absorber based on 2D materials has also been developed for its extensive applications in photodetectors and photovoltaics [3, 4]. The realizations of the perfect absorption using different kinds of routes have been proposed recently. For example, a graphene-based hyperbolic metamaterial structure was proposed by Xiang et al. in which a tunable perfect absorption based on critical coupling phenomenon is demonstrated [5]. Wu et al. presented the perfect absorption phenomena in the hexagonal boron nitride (h-BN) crystals by means of critical coupling using one dimensional photonic crystals spaced by the air [6]. Guo et al. investigated the enhanced and perfect absorption in a graphene/planar waveguide hybrid structure [7]. Jiang et al. studied the perfect absorption in THz in the modified Otto configuration based on graphene surface plasmons [8]. Wang et al. designed a graphene-DBR structure to realize tunable and multi-channel terahertz perfect absorber based on Tamm surface plasmons [9]. Fan et al proposed tunable terahertz meta-surface with graphene cut-wires to achieve absorption enhancement [10,11]. Sundry structures based on 2D materials have been proposed to achieve perfect absorption. However, its absorptivity can hardly be changed once the structure has been designed. In general, most of the absorbers are based on one input channel only and the perfect absorption occurs under the unilateral incident light. It is preferable to make the absorption tunable without changing the inherent parameters of the structure. One example is to use another beam.

Coherent perfect absorption (CPA), thanks to its destructive interference of two incident lights, has become a popular research topic. It provides an effective and flexible way to manipulate the absorption by changing the phase difference of two counter-propagating beams [12, 13]. CPA was first demonstrated experimentally with a simple silicon-resonator [14], and recently, it has been realized in composite medium, metasurface structure, waveguides, etc [15–18]. Gupta et al. studied CPA under the oblique incidence with a two-component metal-dielectric heterogeneous medium structure [19]. Zhu et al. designed an all-dielectric metasurface structure made of Ba0.5Sr0.5TiO3 (BST) ceramic to realize CPA and manipulated the output signals by adjusting the intensity and phase delay of the two incident beams [20]. For 2D materials whose thickness is much smaller than the wavelength of light, it is difficult to realize CPA as the light-matter coupling at nanoscale is inefficient. Therefore, it is interesting to study the possibility of the perfect absorption in 2D materials. Recently, several typical coherent perfect absorbers based 2D materials have been studied. Fan et al. realized tunable terahertz coherent perfect absorption in a monolayer graphene and proposed a coherent perfect absorber composed of non-resonant 2D carbon material-graphene [21, 22]. Shraddha et al. realized the application by applying the unstructured multilayer graphene films [23]. Zhang et al. studied the manipulation of the coherent absorption in a monolayer nanostructured graphene by adjusting the structural design and the relative phase difference of the input coherent beams [24]. Hu et al. exploited a split-ring graphene to realize high efficiency tunable CPA in the terahertz regime [25]. As an alternative of graphene, molybdenum disulfide (MoS2) has also been extensively investigated for its distinctive physical, electronic, and optical properties. Zhu et al. proposed a broadband coherent perfect absorber with bulky MoS2 crystal slab in terahertz regime [26].

However, since black phosphorus (BP) joined the 2D material family in 2014, it has drawn much attention due to its tunable bandgap and anisotropic properties [27]. Unlike other 2D materials, the monolayer BP has a direct bandgap of ∼2 eV and its bandgap value is closely related to the thickness. Such characteristic makes BP a good candidate for the photodetection. Moreover, the monolayer BP can provide in-plane anisotropic features due to the hexagonal lattice with a puckered structure formed by phosphorus atoms [27, 28]. Recently, BP-based perfect absorber has been reported. Xiong et al. proposed an anisotropy nanostructure based on BP to realize polarization dependent absorption [29]. However, the CPA of BP has not been investigated thoroughly and the BP-based coherent perfect absorbers may have more potentials in the applications of signal processing and optical devices.

In this paper, the perfect absorption at THz/infrared is realized based on the theory of coherent absorption within a non-resonant monolayer BP. It is shown that the necessary formation condition of the coherent absorption can be well achieved at quasi-CPA wavelength by proper selection of the BP parameters. The CPA can be obtained at the quasi-CPA wavelength with an appropriate initial phase difference between the two coherent beams. It is found that the quasi-CPA wavelength can be manipulated from infrared to THz by changing the doped electron concentration. In addition, the absorptivity can be manipulated continuously by changing the relative phase of the input beams. Moreover, this work shows that the CPA can be realized for both TM and TE polarization with the incident angle varying from 0° to 70°. We believe that this work has potential applications in tunable terahertz/infrared detections and signal modulations.

2. Theoretical model and method

It is known that the coherent characteristic of the laser light enables to realize CPA in a sub-wavelength film. In this work, we employ a monolayer BP which has a much thinner thickness than the sub-wavelength film to achieve CPA in terahertz/infrared regime. As shown in Fig. 1, a monolayer BP is placed on the x-o-y plane, I+ and I- are the two counter-propagating coherent input beams illuminated on the monolayer BP, O+ and O- stand for the output beams respectively. This structure can be considered as a standing wave system. The realization of the CPA depends on the position of the BP in the standing wave system. Since the BP is placed at a node of the standing wave, the amplitude of the electromagnetic field remains zero. Most of the energy will be scattered due to the weak interaction between BP and the incident light. At the antinode, however, perfect absorption can be achieved for the intense interaction of BP and light [23].

 figure: Fig. 1

Fig. 1 Schematic of a monolayer BP illustrated by two counter-propagating beams, I+ and I- are the coherent input light, O+ and O- are the corresponding output beams, the thickness of monolayer BP is chosen as 1nm.

Download Full Size | PPT Slide | PDF

To describe the propagation of light in the proposed structure, a transfer matrix can be derived. The relationship between the complex scattering coefficients (O ± ) and input beams (I ± ) can be expressed as [21]

(O+O)=Sg(I+I)=(t+rr+t)(Aeiφ+Beiφ),
where (r/t)+ and (r/t)- are scattering elements along the z+ direction for I+ and along the z- direction for I-, respectively. A = |I+| and B = |I-|are the amplitude of the forward and backward incident light. For simplification, here we only consider the phase modulation of CPA. As a result, the amplitude of coherent beams can be considered the same (A = B = I). φ+ and φ- stand for the phase of the input coherent beams, and ∆φ = φ+-φ- is the initial phase difference between the two beams. The scattering matrix can be simplified by assuming t = t ± and r = r ± due to the symmetry of the structure. Finally, the amplitude of the scattering coefficients can be derived as [22]:

|O+|=|O|=|tIeiφ++rIeiφ|.

To demonstrate a CPA, the scattering beams have to be eliminated, i.e. |O+| = |O-| = 0. According to Eq. (2), the necessary condition for CPA phenomenon can be obtained: tIeiφ+ = - rIeiφ- [21, 22], namely,

|r|=|t|.

The complex surface conductivity (σjj) of a monolayer BP can be described using a simple semi-classical Drude model [26, 27]:

σjj=iDjπ(ω+iη),Dj=πe2nmj,
where j = x, y indicates the direction of conductivity, ω and ħ are the frequency of incident light and reduced Planck’s constant, respectively. In this paper, the electron doping and relaxation rate are chosen as n = 4*1013cm−2 and ƞ = 10 meV. Dj and mj present the Drude weight and the electron’s effective mass along the x and y direction, respectively [29,30]. As a result, the electron’s effective mass can be described as:

mcx=22γ2Δ+ηc,mcy=22νc.

For a monolayer BP, we choose ∆ = 2eV, ƞc = ħ/(0.4m0), νc = ħ/(1.4m0), γ = 4a/π eVm, where m0 is the static electron mass, a is thickness of the BP and π/a is the width of the Brillouin Zone.

It is well known, the surface current can be excited while the BP is irradiated by an incident light, and it only depends on the dynamic surface conductivity [28–31]. Therefore, the scattering coefficients of a normal incident light can be obtained using the surface conductivities for the negligence of the high-order scatterings in deep-subwavelength BP [22, 32], namely,

r=σjjη02+σjjη0,
t=22+σjjη0,
where ƞ0 is the wave impedance of free space. So far, the scattering coefficients r and t of a monolayer BP have been derived, and hence the necessary condition for CPA in a monolayer BP can be calculated based on Eqs. (3), (6) and (7).

3. Results and discussions

To better illustrate the formation condition of the CPA with a monolayer BP, Fig. 2 shows the reflection coefficients and transmission coefficients with a monolayer BP illuminated by a single-propagated beam. Considering the in-plane anisotropic features of BP, the normal incident light should be decomposed into two states in the x-o-y plane, corresponding to x direction and y direction, respectively. In Fig. 2(a), as to the electric vector (E) along x direction, we can see a cross point at 39μm, namely quasi-CPA point, which indicates the necessary condition of CPA according to Eq. (3). For y direction, however, the quasi-CPA does not occur even with the optimal BP parameter is optimized, indicating that realizing CPA in y-direction is difficult. Therefore, in the following paragraphs we will only discuss the coherent absorption for the electric vector (E) along x direction. Once the monolayer BP is irradiated by two coherent input beams, which have the same intensity and no phase difference, the scattering fields can be suppressed due to the enhanced interaction between light and the BP, which leads to an enhanced absorption of the monolayer BP. Furthermore, as shown in Fig. 2(b), the scattering fields will be suppressed completely at the quasi-CPA wavelength after the phase difference is modulated to ∆φ = 1.402π, where a CPA is achieved. It can be seen that the CPA wavelength is well matched with the analysis of the formation condition of CPA based on Eq. (3). Moreover, the CPA in monolayer BP remains higher than 90% with the wavelength ranging from 18.5 to 107.5 μm. The relative bandwidth is defined as (λmaxλmin)/λ0, where λmax, λmin, and λ0 are the maximum, minimal, and center wavelength, respectively. The relative bandwidth of the CPA in a monolayer BP is as high as 141.3%, which is greatly improved as compared to the coherent absorption in a typical metasurface [14, 33]. It is shown that the BP with phase modulation achieves a better absorption performance as compared to the ones without phase modulation. Therefore, it can be concluded that the phase modulation plays an important role in the CPA and can offer great advantages for coherent perfect absorber to modulate the absorptivity with flexibility.

 figure: Fig. 2

Fig. 2 (a) The reflection and transmission spectra for the electric vector(E)along x (solid line) and y (dash dot line) direction under normal incidence, respectively. The electron doping of monolayer BP is n = 4*1013cm−2; (b) the coherent absorption of monolayer BP at the quasi-CPA wavelength with the phase difference of two coherent input beams modulated and not modulated, respectively.

Download Full Size | PPT Slide | PDF

The modulation of the CPA is a fundamental and important property in applications where the intensity of the output signal can be selected with flexibility. It is known that a standing wave system can be formed with two coherent beams illuminating from both sides of a monolayer BP. The enhanced absorption or transmission depends on the position of the BP in the standing wave system, where the enhanced absorption at an antinode and enhanced transmission at a node. In fact, the changing in BP position is another form of phase modulation because the adjustment of the position will lead to a change in optical path difference, which has a direct relationship to phase difference. To further investigate the phase modulation of the CPA with a monolayer BP, the normalized total absorbed intensity spectra as a function of phase difference and wavelength is plotted in Fig. 3(a). It is shown that the CPA has a strong dependence on the phase difference of the two input coherent beams. The normalized total coherent absorption (Ac) is obtained by Ac = 1-SI, where SI is the normalized total output intensity, given by the square of the scattering amplitudes (SA) denoted by SA = |r + t|. It can be seen that the CPA phenomenon at the quasi-CPA wavelength (λ = 39μm) occurs with a proper phase modulation (∆φ = 1.402π). The corresponding normalized absorption at quasi-CPA wavelength as a function of phase modulation (∆φ) is shown in Fig. 3(b). A substantial modulation of absorbed intensity can be demonstrated by the phase difference tuned from 0 to 2π. The realization of CPA for ∆φ = 1.402π indicates that the input beams are prevented to escape from the monolayer BP due to the destructive interference. Normally, the modulation depth is used to weigh the performance of modulation in a CPA, which is defined as M(λ) = max(SI)/min(SI) to. According to the result in Fig. 3(b), an excellent modulation can be realized with M(λ = 39μm) = 105, where the destructive suppression of the fields is achieved in the monolayer BP.

 figure: Fig. 3

Fig. 3 (a) The normalized coherent absorption as a function of wavelength and phase difference, and the maximal coherent absorption is at the wavelength of 39μm with 1.402π phase difference of two incident beams; (b) coherent absorption as a function of phase difference at 39μm.

Download Full Size | PPT Slide | PDF

To further study the coherent absorption performance of the monolayer BP under oblique incidence, the coherent absorption peak and the CPA wavelengths of the monolayer BP at various angles of oblique incidence for both TE and TM polarizations are plotted in Fig. 4. As shown in Fig. 4(a), the CPA wavelengths of the coherent absorption peak show opposite variations and can split into two wavelength branches ranging from THz to infrared for TE and TM polarizations, respectively. The CPA wavelength shows a red shift from 39μm to 107.1μm for TM polarization while the incident angle increases from 0° to 70°, and TE polarization shows a blue shift from 13.75μm to 39μm. This means that the proposed monolayer BP can be utilized for the realization of the broadband coherent modulation with angular tunability. More importantly, it can be seen in Fig. 4(b) that the peak absorptivity for both polarizations keep being more than 96.5% as the incident angle increases. Especially, the coherent absorption reaches up to 99.9% while the incident angle ranging from 0° to 30°. Such feature makes it more efficient in the application of optical switching and signal processing.

 figure: Fig. 4

Fig. 4 (a) The wavelength dispersion at oblique incidence for TE polarization and TM polarization and (b) the corresponding maximal coherent absorptivity, the charge-carrier density is 4*1013cm−2 and the phase difference is ∆φ = 1.402π.

Download Full Size | PPT Slide | PDF

As is well known that the charge-carrier density has a significant influence to the conductivity of graphene, and such an impressive characteristic has been widely used to design tunable optoelectronic devices. Similar to graphene, the electron doping, referred in the introduction of the conductivity in a monolayer BP, also has critical effects to the CPA realization. As shown in Fig. 5(a), CPA can also be achieved at various wavelengths with proper phase difference. As the electron doping increases, the CPA wavelength has a blue shift. The range of achieved CPA wavelengths indicates that the proposed BP-based coherent perfect absorber can operate in both THz and infrared band without changing the intrinsic parameters of the BP. In order to assess the modulation capability, Fig. 5(b) shows the corresponding modulation depth spectra for different electron doping. It is seen that the modulation depth remains more than 104 while the electron doping is changing from 3*1013cm−2 to 6*1013cm−2. Therefore, it is very convenient to realize CPA with high-efficiency modulation at any wavelengths by changing the electron doping.

 figure: Fig. 5

Fig. 5 (a) The manipulation of coherent perfect absorption at normal incidence via changing the electron doping and (b) the corresponding modulation depth at different electron doping.

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we have analyzed and demonstrated in theoretical level of achieving CPA using a monolayer BP at the THz/infrared band. We have shown that the electromagnetic energy of two counter-propagating waves from both sides of the monolayer BP can be absorbed perfectly, and the coherent absorption can also be modulated with high flexibility by changing the phase difference of the two coherent beams. Meanwhile the angular selectivity of the monolayer BP is studied, which shows the feasibility of the CPA under oblique incidence circumstances. Moreover, it is shown that the CPA wavelengths of the coherent absorption peak exhibit opposite variations and can split into two wavelength branches for TE and TM polarizations. Furthermore, the CPA wavelength can be tuned from THz to infrared band by adjusting the electron doping, and the modulation depth can be maintained as more than 104 at the same time. We believe that this work has potential applications for the coherent modulations in terahertz/infrared detections and signal processing with 2D materials.

Funding

National Natural Science Foundation of China (Grant Nos. 61505111, 11604216 and 61505117; the Science and Technology Planning Project of Guangdong Province (Grant No. 2016B050501005); the Guangdong Natural Science Foundation (Grant No. 2015A030313549); Science and Technology Innovation Commission of Shenzhen (Grant No. CYJ20170302153323978); Natural Science Foundation of SZU (Grant No. 2017021).

References and links

1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]  

2. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012). [CrossRef]   [PubMed]  

3. Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016). [CrossRef]  

4. R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014). [CrossRef]   [PubMed]  

5. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014). [CrossRef]   [PubMed]  

6. J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016). [CrossRef]  

7. J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017). [CrossRef]  

8. L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017). [CrossRef]  

9. X. Wang, X. Jing, Q. You, J. Guo, X. Y. Dai, and Y. J. Xing, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017). [CrossRef]  

10. Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015). [CrossRef]  

11. Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016). [CrossRef]  

12. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013). [CrossRef]   [PubMed]  

13. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010). [CrossRef]   [PubMed]  

14. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011). [CrossRef]   [PubMed]  

15. S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011). [CrossRef]  

16. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012). [CrossRef]   [PubMed]  

17. N. Gutman, A. A. Sukhorukov, Y. D. Chong, and C. M. de Sterke, “Coherent perfect absorption and reflection in slow-light waveguides,” Opt. Lett. 38(23), 4970–4973 (2013). [CrossRef]   [PubMed]  

18. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21(23), 27652–27661 (2013). [CrossRef]   [PubMed]  

19. S. Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012). [CrossRef]   [PubMed]  

20. W. R. Zhu, F. J. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metassurface,” Appl. Phys. Lett. 108(12), 121901 (2016). [CrossRef]  

21. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014). [CrossRef]   [PubMed]  

22. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015). [CrossRef]   [PubMed]  

23. S. M. Rao, J. J. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014). [CrossRef]   [PubMed]  

24. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014). [CrossRef]   [PubMed]  

25. X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015). [CrossRef]   [PubMed]  

26. W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016). [CrossRef]  

27. L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017). [CrossRef]  

28. V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical reflection, transmission and absorption properties of single-layer black phosphorus from a model calculation,” J. Opt. 18(5), 055102 (2016). [CrossRef]  

29. F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017). [CrossRef]  

30. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016). [CrossRef]   [PubMed]  

31. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014). [CrossRef]   [PubMed]  

32. K. Khaliji, A. Fallahi, L. Martin-Moreno and T. Low, “Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials,” Phys. Rev. B 95(20), 201401(R) (2017). [CrossRef]  

33. G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  2. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref] [PubMed]
  3. Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
    [Crossref]
  4. R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22(25), 31113–31122 (2014).
    [Crossref] [PubMed]
  5. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014).
    [Crossref] [PubMed]
  6. J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
    [Crossref]
  7. J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
    [Crossref]
  8. L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017).
    [Crossref]
  9. X. Wang, X. Jing, Q. You, J. Guo, X. Y. Dai, and Y. J. Xing, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
    [Crossref]
  10. Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  11. Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
    [Crossref]
  12. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
    [Crossref] [PubMed]
  13. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [Crossref] [PubMed]
  14. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
    [Crossref] [PubMed]
  15. S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011).
    [Crossref]
  16. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20(3), 2246–2254 (2012).
    [Crossref] [PubMed]
  17. N. Gutman, A. A. Sukhorukov, Y. D. Chong, and C. M. de Sterke, “Coherent perfect absorption and reflection in slow-light waveguides,” Opt. Lett. 38(23), 4970–4973 (2013).
    [Crossref] [PubMed]
  18. R. Bruck and O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches,” Opt. Express 21(23), 27652–27661 (2013).
    [Crossref] [PubMed]
  19. S. Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20(2), 1330–1336 (2012).
    [Crossref] [PubMed]
  20. W. R. Zhu, F. J. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metassurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
    [Crossref]
  21. Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
    [Crossref] [PubMed]
  22. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
    [Crossref] [PubMed]
  23. S. M. Rao, J. J. Heitz, T. Roger, N. Westerberg, and D. Faccio, “Coherent control of light interaction with graphene,” Opt. Lett. 39(18), 5345–5347 (2014).
    [Crossref] [PubMed]
  24. J. Zhang, C. Guo, K. Liu, Z. Zhu, W. Ye, X. Yuan, and S. Qin, “Coherent perfect absorption and transparency in a nanostructured graphene film,” Opt. Express 22(10), 12524–12532 (2014).
    [Crossref] [PubMed]
  25. X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015).
    [Crossref] [PubMed]
  26. W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
    [Crossref]
  27. L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
    [Crossref]
  28. V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical reflection, transmission and absorption properties of single-layer black phosphorus from a model calculation,” J. Opt. 18(5), 055102 (2016).
    [Crossref]
  29. F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
    [Crossref]
  30. Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
    [Crossref] [PubMed]
  31. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
    [Crossref] [PubMed]
  32. K. Khaliji, A. Fallahi, L. Martin-Moreno and T. Low, “Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials,” Phys. Rev. B 95(20), 201401(R) (2017).
    [Crossref]
  33. G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
    [Crossref]

2017 (5)

J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

X. Wang, X. Jing, Q. You, J. Guo, X. Y. Dai, and Y. J. Xing, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

2016 (7)

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical reflection, transmission and absorption properties of single-layer black phosphorus from a model calculation,” J. Opt. 18(5), 055102 (2016).
[Crossref]

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

W. R. Zhu, F. J. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metassurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

2015 (3)

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

X. Hu and J. Wang, “High-speed gate-tunable terahertz coherent perfect absorption using a split-ring graphene,” Opt. Lett. 40(23), 5538–5541 (2015).
[Crossref] [PubMed]

2014 (7)

2013 (3)

2012 (3)

2011 (2)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011).
[Crossref]

2010 (2)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Agarwal, G. S.

Avouris, P.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Aydin, K.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Bruck, R.

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Dai, X.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014).
[Crossref] [PubMed]

Dai, X. Y.

J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

X. Wang, X. Jing, Q. You, J. Guo, X. Y. Dai, and Y. J. Xing, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

de Sterke, C. M.

Dutta Gupta, S.

Dutta-Gupta, S.

Faccio, D.

Fan, D. Y.

J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Fan, Y.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Fan, Y. C.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Feng, Q.

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Fu, Q. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Gaiduk, E. A.

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical reflection, transmission and absorption properties of single-layer black phosphorus from a model calculation,” J. Opt. 18(5), 055102 (2016).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Geng, J. P.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

Gómez Rivas, J.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Guo, C.

Guo, J.

X. Wang, X. Jing, Q. You, J. Guo, X. Y. Dai, and Y. J. Xing, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014).
[Crossref] [PubMed]

Gutman, N.

Hasan, T.

Heitz, J. J.

Howe, R. C. T.

Hu, C.

Hu, G.

Hu, X.

Huang, C.

Jiang, L. Y.

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Jin, R. H.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

Jing, X.

Kang, M.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

W. R. Zhu, F. J. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metassurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Kelleher, E. J. R.

Koschny, T.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Li, H. Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Li, X.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Liang, X. L.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

Liu, K.

Liu, Z.

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Longhi, S.

S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011).
[Crossref]

Low, T.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Lozano, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Lu, S. B.

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Luo, X.

Ma, X.

Margulis, V. A.

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical reflection, transmission and absorption properties of single-layer black phosphorus from a model calculation,” J. Opt. 18(5), 055102 (2016).
[Crossref]

Martin, O. J. F.

Martín Moreno, L.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Martinez, A.

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Muryumin, E. E.

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical reflection, transmission and absorption properties of single-layer black phosphorus from a model calculation,” J. Opt. 18(5), 055102 (2016).
[Crossref]

Muskens, O. L.

Nie, G.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Pirruccio, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Popov, S. V.

Premaratne, M.

W. R. Zhu, F. J. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metassurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

Pu, M.

Qin, S.

Qin, S. Q.

F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Rao, S. M.

Roger, T.

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Shen, N. H.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Shen, N.-H.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shi, J.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Shi, Q.

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

Sikdar, D.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

Soukouilis, M.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Soukoulis, C. M.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Sukhorukov, A. A.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Sun, Z. P.

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014).
[Crossref] [PubMed]

Taylor, J. R.

Torrisi, F.

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Wang, C.

Wang, F.

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

Wang, H.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Wang, H. L.

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Wang, J.

Wang, M.

Wang, Q. K.

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Wang, X.

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Wei, Z. Y.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Wen, S.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014).
[Crossref] [PubMed]

Wen, S. C.

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Westerberg, N.

Woodward, R. I.

Wu, J. P.

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Wu, L. M.

J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xia, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xiang, Y.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014).
[Crossref] [PubMed]

Xiang, Y. J.

J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

Xiao, F. J.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

W. R. Zhu, F. J. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metassurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Xing, Y. J.

Xiong, F.

F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Yan, H.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Ye, W.

You, Q.

Yuan, X.

Yuan, X. D.

F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Zhang, F. L.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014).
[Crossref] [PubMed]

Zhang, J.

Zhang, J. F.

F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Zhang, P.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Zhao, Q.

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Y. Fan, F. Zhang, Q. Zhao, Z. Wei, and H. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39(21), 6269–6272 (2014).
[Crossref] [PubMed]

Zhao, Z.

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Zhu, W. R.

W. R. Zhu, F. J. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metassurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

Zhu, Z.

Zhu, Z. H.

F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

ACS Nano (1)

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Y. C. Fan, N. H. Shen, F. L. Zhang, Z. Y. Wei, H. Q. Li, Q. Zhao, Q. H. Fu, P. Zhang, T. Koschny, and M. Soukouilis, “Electrically tunable goos–hänchen effect with graphene in the terahertz regime,” Adv. Opt. Mater. 4(11), 1824–1828 (2016).
[Crossref]

AIP Adv. (1)

J. Guo, L. M. Wu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Absorption enhancement and total absorption in a graphene-waveguide hybrid structure,” AIP Adv. 7(2), 025101 (2017).
[Crossref]

Appl. Phys. Lett. (2)

W. R. Zhu, F. J. Xiao, M. Kang, and M. Premaratne, “Coherent perfect absorption in an all-dielectric metassurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

G. Nie, Q. Shi, Z. Zhu, and J. Shi, “Selective coherent perfect absorption in metamaterials,” Appl. Phys. Lett. 105(20), 201909 (2014).
[Crossref]

IEEE Photonics J. (1)

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 broadband coherent perfect absorber for terahertz waves,” IEEE Photonics J. 8(6), 5502207 (2016).
[Crossref]

J. Appl. Phys. (1)

J. P. Wu, H. L. Wang, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range,” J. Appl. Phys. 119(20), 203107 (2016).
[Crossref]

J. Opt. (2)

V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, “Optical reflection, transmission and absorption properties of single-layer black phosphorus from a model calculation,” J. Opt. 18(5), 055102 (2016).
[Crossref]

F. Xiong, J. F. Zhang, Z. H. Zhu, X. D. Yuan, and S. Q. Qin, “Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer,” J. Opt. 19(7), 075002 (2017).
[Crossref]

Nano Lett. (1)

Z. Liu and K. Aydin, “Localized surface plasmons in nanostructured monolayer black phosphorus,” Nano Lett. 16(6), 3457–3462 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

Z. P. Sun, A. Martinez, and F. Wang, “Optical modulators with 2D layered materials,” Nat. Photonics 10(4), 227–238 (2016).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Photon. Res. (1)

Phys. Rev. A (1)

S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83(5), 055804 (2011).
[Crossref]

Phys. Rev. Lett. (2)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref] [PubMed]

Plasmonics (1)

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect terahertz absorption with graphene surface plasmons in the modified Otto configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

Sci. Rep. (2)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4(1), 5483 (2014).
[Crossref] [PubMed]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5(1), 13956 (2015).
[Crossref] [PubMed]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer blackphosphorus-graphene/TMDCs heterostructure in surface plasmonresonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Other (1)

K. Khaliji, A. Fallahi, L. Martin-Moreno and T. Low, “Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials,” Phys. Rev. B 95(20), 201401(R) (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of a monolayer BP illustrated by two counter-propagating beams, I+ and I- are the coherent input light, O+ and O- are the corresponding output beams, the thickness of monolayer BP is chosen as 1nm.
Fig. 2
Fig. 2 (a) The reflection and transmission spectra for the electric vector ( E ) along x (solid line) and y (dash dot line) direction under normal incidence, respectively. The electron doping of monolayer BP is n = 4*1013cm−2; (b) the coherent absorption of monolayer BP at the quasi-CPA wavelength with the phase difference of two coherent input beams modulated and not modulated, respectively.
Fig. 3
Fig. 3 (a) The normalized coherent absorption as a function of wavelength and phase difference, and the maximal coherent absorption is at the wavelength of 39μm with 1.402π phase difference of two incident beams; (b) coherent absorption as a function of phase difference at 39μm.
Fig. 4
Fig. 4 (a) The wavelength dispersion at oblique incidence for TE polarization and TM polarization and (b) the corresponding maximal coherent absorptivity, the charge-carrier density is 4*1013cm−2 and the phase difference is ∆φ = 1.402π.
Fig. 5
Fig. 5 (a) The manipulation of coherent perfect absorption at normal incidence via changing the electron doping and (b) the corresponding modulation depth at different electron doping.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( O + O ) = S g ( I + I ) = ( t + r r + t ) ( A e i φ + B e i φ ) ,
| O + | = | O | = | t I e i φ + + r I e i φ | .
| r | = | t | .
σ j j = i D j π ( ω + i η ) , D j = π e 2 n m j ,
m c x = 2 2 γ 2 Δ + η c , m c y = 2 2 ν c .
r = σ j j η 0 2 + σ j j η 0 ,
t = 2 2 + σ j j η 0 ,

Metrics