Abstract

The self-organized nanograting manufactured by irradiating the transparent materials with the femtosecond laser has aroused wide interests in photonic applications in recent years. Although the mechanism of nanograting formatting has not yet been fully understood, the essential property of the optical birefringence can be precisely acquired by controlling the energy fluence of the femtosecond laser. In this paper, we proposed a novel application of the self-organized nanograting in a division-of-focal-plane polarimeter. Based on the rigid-coupled-wave algorithm, the optical characteristics of the nanograting and the polarimeter were comprehensively analyzed and discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The techniques of imaging polarimeter are capable of recording light polarization of a scene, which contains unique information related to surface features, shapes, shadows and roughness. Therefore it improves the ability of target recognition in a complex background, and also provides valuable information in environmental monitoring, remote sensing, biomedical imaging and military target detection [1–6]. After extensive research, several techniques of imaging polarimeter including division-of-time, division-of-amplitude, division-of-aperture and division-of-focal- plane (DoFP) have emerged in the past decades [7–11]. Among them, DoFP polarimeters adopt four independent micro-polarizers on the top of neighboring pixels of the image sensor to assess the four components of a Stokes vector. This approach has significant advantages in terms of manufacturing cost, volume, weight, power dissipation and system integration. As early as in 1994, reactive-ion-etching (RIE) was used to pattern dichroic polymer film and form a micropolarimeter array capable of extracting (S0, S1, S2) for partial-linear polarization imaging [12–14]. Subsequent approaches include using evaporated aluminum or gold film to form the birefringent micropolarizer array for the polarization image [15,16]. But the birefringence of metallic film originating from absorbing the light polarization is parallel to the grating stripe, which cannot distinguish the phase information of light. The first full-Stokes DoFP polarimeter emerged in 2006 [17] and adopted sub-wavelength gratings in fused silica as the micro polarization elements. However, it was difficult to control the morphology and depth of the grating in fused silica by the technology of electron beam direct writing. Substantial errors existed in the experimental results. In addition, by patterning a liquid crystal layer on top of a visible-regime metal-wire-grid polarizer, X. Zhao et al. demonstrated the full-Stokes measurement in principle in 2010 [18]. However, until 2012, first practical full-Stokes DoFP imaging was presented in experiments by using patterned liquid crystal polymer (LCP) polarizers and retarders [19]. But this approach was limited in a handful of research fields and applications owing to the complicated fabrication of the LCP polarizers and retarders [20,21].

On the other hand, with the rapid development of ultra-fast laser technology, the femtosecond laser processing of inorganic non-metallic materials has grown up to be a hot research field [22,23]. Depending on the amount of deposited energy, three distinct types of modifications can be induced in the bulk of transparent materials. In particular, moderate fluence results in the spontaneous formation of gratings with sub-wavelength refractive index distribution [24–26], dubbed nanogratings, which have the characteristics of high transmittance, rewritability and thermal stability. More importantly, the gratings exhibit an obvious optical birefringence effect, which can be exactly obtained by empirically controlling the optical fluence of the femtosecond laser. On the processing area, the optical slow and fast axes align parallel and perpendicular to the nanograting corrugation, respectively. Therefore, both the optical axis and phase delay induced by the self-organized nanograting are designable [27,28]. Although the mechanism of nanograting formatting is not fully understood, many applications based on the self-organized nanogratings have been developed in recent years [29–31].

In this paper, we proposed a novel DoFP polarization imaging technique based on the self-organized nanograting array in fused silica. With the periodical arrangement of four independent self-organized nanogratings on the focal plane of an imaging camera, polarization information can be retrieved from the light intensity pattern after a subsequent polarizer. To investigate the optical properties of the DoFP polarimeter, we firstly modeled the phase delay of the nanograting based on the Rigorous Coupled-Wave Analysis (RCWA). Secondly, the incident angle, spectral and thermal dependencies of the nanograting were discussed. At last, the calculation of the determinant of the Müller matrix puts forward a promising approach for a broadband polarimeter in the visible range.

2. Theory of the DoFP polarimeter

In a DoFP polarimeter, the combination of the wave-plates and polarizers are integrated on the focal plane of the imaging objective. Because of the sub-wavelength structure, only zero-order diffraction exists in the transmitted light of the self-organized nanograting. The optical properties of the nanograting are similar to a wave-plate with specific phase delay and optical axis direction. At least four independent measurements are required for full-Stokes’ vector detection in theory. The scheme based on the self-organized nanograting array is illustrated in Fig. 1. Four nanogratings with the same phase delay and different optical axis orientations form a combination, which is arranged periodically on the two-dimensional focal plane of the imaging objective. Moreover, the subsequent linear polarizer transfers the transmitted light to the intensity pattern recorded by an adjacent camera. The size of the nanogratings is as same as the single pixel of the camera to provide maximum imaging resolution.

 figure: Fig. 1

Fig. 1 The schematic diagram of a DoFP polarimeter based on the self-organized nanograting array.

Download Full Size | PPT Slide | PDF

In theory, the detected polarization S(in) is transferred to S(out) by a combination of the nanogratings and polarizer. The measurements can be expressed as Eq. (1).

[S0(out)S1(out)S2(out)S3(out)]=Mi(Δ,θ,ϕ)[S0(in)S1(in)S2(in)S3(in)]

Here M is the Müller matrix for the detection light path. Superscript i = 1,2,3,4, represents different independent measurement. Δ,θ denote the phase delay and the optical axis of the nanograting, and φ is the axis angle of the polarizer. Müller matrix has 4 × 4 components as follows:

Mi(Δ,θ,ϕ)=[M11iM12iM13iM14iM21iM22iM23iM24iM31iM32iM33iM34iM41iM42iM43iM44i]

Only the light intensity (i.e., S0) can be detected by the image sensor, so we rewrite the first line of Eq. (2) of four measurements as Eq. (3):

[S01(out)S02(out)S03(out)S04(out)]=[M111M121M131M141M112M122M132M142M113M123M133M143M114M124M134M144][S0(in)S1(in)S2(in)S3(in)]=MdetS(in)

In the experiments, light intensities of four measurements were recorded and used to calculate the input polarization with Eq. (3). Mdet contains the contributions of the nanograting and polarizer:

Mdet=MpolarizerMgrating

Retarder-similar optical properties of the nanogratings were reported at various visible wavelengths [28–32]. A single nanograting can be modeled by a retarder with phase delay Δ and optic axis angle of θ as Eq. (5). Usually, microscopic inhomogeneities and induced defect absorption cause scattering loss in nanograting, which can be described with a polarization-independent transmissivity T in Eq. (5). However, scattering loss can be easily calibrated in experiments, and has limited influence on optical properties of polarization imaging, T = 1 was adopted in our simulations.

Mgrating(Δ,θ)=T[100001(1cosΔ)sin22θ(1cosΔ)sin2θcos2θsinΔsin2θ0(1cosΔ)sin2θcos2θ1(1cosΔ)cos22θsinΔcos2θ0sinΔsin2θsinΔcos2θcosΔ]

The Müller matrix for the polarizer can be given by:

Mpolarizor(ϕ)=12[1cos2ϕsin2ϕ0cos2ϕcos22ϕsin2ϕcos2ϕ0sin2ϕsin2ϕcos2ϕsin22ϕ00000]

The necessary condition for the existence of solution for Eq. (3) is that the determinant of Mdet is nonzero. This condition can also be used to estimate the independence of four measurements. If |Mdet| 0, the solution of Eq. (3) is:

S(in)=Mdet1S0i(out)=Mdet*|Mdet|S0i(out)

Here Mdet* the adjoint matrix of Mdet.

3. Model of the self-organized nanograting

Typically, three regimes of structural changes can be observed with the tightly focusing ultrafast lasers into fused silica. A homogeneous refractive index increase, birefringent index change and permanent voids occur with the increase of the laser energy. The self-organized nanograting accompanied with birefringent index emerges at intermediate energies, which usually has two sub-wavelength refractive index periods in the directions along light propagation and polarization, respectively. Because the depth of nanograting is much larger than the refractive index period in the direction along light propagation, we used an effective depth instead in the simulations. Therefore, the structure of nanograting can be simplified as shown in Fig. 2. The refractive index of the gray area is modified from n1, the value of bulk fused silica, to n2 by the ultrafast laser. In experiments, by cutting or grinding the dielectric to the modified zone as well as polishing and etching the surface, the nanostructure can be observed with an atomic force microscope or a scanning electron microscope [24,27]. The results showed that the modified planes were ≤ 10 nm in thickness. The period can be roughly described as T = λ/2n, and it decreases with the increase of ultrafast laser fluence [24,27,28]. For a Ti:sapphire laser with 800 nm wavelength, the nanograting period is about 267 nm, a sub-wavelength grating for the visible and infrared light.

 figure: Fig. 2

Fig. 2 The nanostructure of the self-organized nanograting in the simulations.

Download Full Size | PPT Slide | PDF

The phase delay induced by the self-organized nanograting is related to its micro refractive index structure. In this article, RCWA was introduced to simulate the sub-wavelength grating instead of the traditional optical diffraction theory. This method was founded by M. Moharma et al. in 1982 [33,34], and its stability, convergence and computing efficiency were improved greatly in 1990s [35–37]. It was extensively used to improve the polarization characteristics of sub-wavelength gratings [38–40]. In general, the RCWA can be implemented in several steps [41]. Firstly, the permittivity and the electromagnetic field are expressed by the Fourier series of the grating period:

E(x)=memexp(j2πΔm)

Here the grating period is supposed to be along the x-direction, and mis an integer. Then the Fourier series are used in Maxwell’s equations to get equations of the discrete coefficients of the reflected and transmitted field. Furthermore, the boundary condition is applied to solve the equations. Finally, the reflectivity and transmittance of the field are calculated by the Poynting vector S=E×H. The diffraction efficiencies (DE) of the TE, TM wave are:

DETE,i=Re(kII,zik0nIcosθ)|TTE,i|2
DETM,i=Re(kII,zinIk0cosθnII2)|TTM,i|2

Here i is the order of the grating diffraction. TTE,i and TTM,i denote the transmission coefficient of TE and TM waves. k0 is the wave vector of the incident field, and kII,zi is the component of the transmitted wave vector in the normal direction. nI and nII are the refraction indexes of the materials in the input and output region. θ is the incident angle. Accuracy of RCWA calculation depends on the truncation error of Fourier series. According to the analysis in [35], the truncation error is less than 1% in a RCWA using 25 Fourier orders. In this study, 40 Fourier orders are adopted, the truncation error can be estimated to be less than 0.5%.

For a subwavelength grating, the threshold period under which only the transmitted and the reflected zero orders are non-evanescent [42] is Δth=λ0k/(n±sinθ), where λ0is the wavelength of the incident light. kis the order of diffraction and only the zero order diffraction exists when k=1. For example, the threshold period is 364 nm for the fused silica at 532 nm incident light. In order to calculate the light field distributions in the nanograting, assuming a grating with the period of 300 nm and a duty cycle of 10/300. The grating thickness of 3000 nm is chosen for the clear display of the simulated light field. The refractive index modification in Fig. 3(a) is set as n2-n1 = 0.19 corresponding to an 800nm wavelength processing laser with 0.65 μJ and 150-fs pulses according to the literature [28]. The absorption in the modified areas usually induces a slight decrease of the grating transmittance, which means that a complex refractive index exists in these areas. Because we only concern the phase delay of the self-organized grating, an imaginary part of the refractive index κ=0is adopted in our simulations. The amplitudes of Ey field of TE wave (with polarization perpendicular to the grating walls) and the Hy field of TM was (with polarization paralleled to the grating walls) were plotted in Fig. 3(b) and Fig. 3(c), respectively. Both fields are partly confined in the modified areas with higher refractive index. And the phase delay between two waves due to the propagation speed difference can be seen in Fig. 3.

 figure: Fig. 3

Fig. 3 The refractive index map of the nanograting(a), and the simulated field distribution of TM wave (b) and TE wave (c) in the nanograting.

Download Full Size | PPT Slide | PDF

The transmitted amplitudes and phases of TE and TM waves can be calculated by Eqs. (9) and (10). Diffraction waves of ±20 orders were presented in Fig. 4, where more than 97% transmitted amplitude converges on the zero-order diffraction. The horizontal ordinate is the order of diffraction. The phase delay at the high order diffraction is meaningless due to the near-zero transmittance, but the value between zero-order TE and TM waves is about 2.44 degrees for a grating of 3000 nm depth in our simulation. It originates the propagation speed difference between two waves as mentioned above and is linearly proportional to the grating depth. So a specific phase delay can be obtained by adjusting the grating depth in our simulation.

 figure: Fig. 4

Fig. 4 Calculation of the amplitude and phase of the transmitted TE and TM wave of a subwavelength dielectric grating.

Download Full Size | PPT Slide | PDF

Well-known results on the optimization of the retardance for a complete Stokes polarimeter were presented by D. S. Sabatke in 2000 [43]. A retardance of 132 degrees and retarder orientation angles of ±51.7 degrees and ±15.1 degrees were found to be optimal when four measurements were used. This combination corresponds to maximum |Mdet| in Eq. (7) and a minimum signal-to-noise ratio. Therefore our simulations were implemented around the phase delay of 132 degrees induced by the nanograting. The phase delay induced by the nanograting can be written as:

R=2π(nTenTm)L/λ

Here nTe and nTm are the effective refractive index for TE and TM waves, respectively. λ is the wavelength of incident light. L is the depth of the nanograting. Based on the linear relation of the phase delay and grating depth, a depth of 162 μm is chosen to access a phase delay of 132 degrees in the 300 nm period and 10/300 duty cycle grating, at 532 nm incident light in further simulations.

Experiments showed that the period was roughly equal to λ/2n. And it was inversely proportional to the number of processing laser pulses per second, i.e. the writing velocity. However, the thickness of the grating wall was kept unchanged during the ultrafast processing [24]. So the thickness of the grating wall was fixed at 10 nm and the refractive index modification was 0.19 in our simulations. The period and wavelength dependence of the grating phase delay were analyzed and presented in Fig. 5. The phase delay decreases rapidly with the wavelength of incident light. Considering the material dispersion in fused silica [44]:

 figure: Fig. 5

Fig. 5 The wavelength and period dependence of the self-organized grating.

Download Full Size | PPT Slide | PDF

n=1+0.6961663λ2λ20.06840432+0.4079426λ2λ20.11624142+0.8974794λ2λ29.8961612

The wavelength λ is in the unit of μm. The simulated results agree with the definition of the phase delay 2πn/λ. The phase delay of a normal wave-plate made of fused silica was calculated as a comparison. It can be seen from Fig. 5(a) that only slight difference exists at the longer wavelengths. As shown in Fig. 5(b), even the period varying from 100 to 400 nm, less than 9% phase delay changes at 400 nm and less than 2% at 800 nm. Because the thickness of the grating wall is much less than the period, the phase delay is not sensitive to the period. The modification increases in the shorter wavelength due to the larger overall phase delay.

As a polarization component mounted in the focal plane of the imaging objective, the acceptance angle is an interesting parameter for most applications. We calculated the phase delay modification while the incident angles change from zero to 40 degrees. The results were plotted in Fig. 6(a). The phase delay varies −7.7%, −6.7%, −4.4%, 1.9% and 90% with the incident angle at the wavelengths of 800, 700, 600, 500 and 400 nm, respectively. The most stable phase delay appears near 520 nm, which has the best response for a detector in the visible range. In the blue end, the phase delay increased fastly with the incident angle, so an acceptance angle smaller than 20 degrees is expected in this bandwidth. The temperature dependence of the phase delay also can be estimated in our model. The refractive index of fused silica varies with the temperature as [45]:

 figure: Fig. 6

Fig. 6 The incident angle and temperature dependence of the self-organized grating.

Download Full Size | PPT Slide | PDF

n=12.84×10-6×(T300)+1.4574

Here T is the temperature in the unit of Kelvin. As an approximation, the refractive index modification was kept as 0.19 for various temperature. The thermal expansion of the grating structure was neglected because of the insensitivity of the phase delay to the grating period. Simulated results in Fig. 6(b) show that smaller than −0.012 degree/°C is found from −50 to 800°C in the whole visible range. The phase delay declines linearly with the temperature, but only a small influence induced by the temperature. It indicates that the self-organized grating has a remarkable thermal stability for most applications.

4. Broadband DoFP polarimeter based on self-organized nanogratings

Above analyses indicate that the self-organized grating has an excellent thermal stability and large acceptance angle in the visible range. The properties are in favor of a practical polarimeter based on the self-organized grating array. In a DoFP polarimeter, a cell for the polarization detection is composed of four identical nanogratings oriented in different directions and a linear polarizer. Because the linear polarizer usually has the high extinction ratio spanning the whole visible range, the spectral property of the polarimeter is only limited by the gratings. In theory, the systematic Müller matrix Mdet in Eq. (4) can be calibrated in a polarimeter using several light sources with standard polarization, and the measured Stokes vector can be retrieved with Eq. (7). However, the error of inversion calculation depends on the determinant of Mdet. Fixing the directions of gratings on the optimized ±51.7 degrees and ±15.1 degrees, the variation of |Mdet| with the phase delay was calculated by Eqs. (4-6) and shown in Fig. 7. The maximum determinant of 0.2 appears at the phase delay of 132 degrees, which agrees with Sabatke’s theory. Half width of the determinant contains the phase delay ranging from 92 to 164 degrees. According to Eq. (7), the error of Stoke vector retrieval is smaller than twice of the optimized one at 132 degrees in this region. In the view of spectral bandwidth, we found that the small error was kept even with the incident wavelength ranging from 438 nm to 741 nm in Fig. 5(a), i.e., the whole visible range.

 figure: Fig. 7

Fig. 7 Variation of the Müller matrix determinant with the phase delay of the self-organized gratings.

Download Full Size | PPT Slide | PDF

Based on Sabatke’s theory, the four rows of the measurement matrix specify the four vertices of a tetrahedron inscribed in the sphere. Furthermore, the volume of this tetrahedron is proportional to the determinant of the measurement matrix [43]. Figure 8 shows a regular tetrahedron with the optimized phase delay of 132 degrees in (a), which has the maximum volume on the Poincaré sphere, and two smaller tetrahedrons at phase delay of 92 and 164 degrees in (b) and (c), respectively. The red curve shows the locus of coordinates on the sphere for a given phase delay. Because the tetrahedrons in Fig. 8(b) and (c) correspond to the polarization measurements at wavelength of 741 nm and 438 nm, respectively, half volumes of the tetrahedrons in Fig. 8(b) and (c) validate the small retrieve error and broad spectrum property of the proposed DoFP polarimeter.

 figure: Fig. 8

Fig. 8 Müller matrix shows as a tetrahedron (blue lines) on a Poincaré sphere: (a) for the phase delay of 132 degrees, (b) for the phase delay of 92 degrees, and (c) for the phase delay of 164 degrees. The red curve shows the locus of coordinates on the sphere for a given phase delay.

Download Full Size | PPT Slide | PDF

5. Conclusions

In this article, a numerical study of a DoFP polarimeter based on the self-organized nanograting array was presented. The nanograting array was produced by the ultrafast laser and constructs a two-dimensional phase modulator in the focal plane of the imaging polarimeter. At first, the systemic Müller matrix for the polarimeter composed of the nanograting array and linear polarizer was presented. Secondly, based on the RCWA theory, comprehensive analyses on the incident light spectrum, grating microstructure, incident light angle and temperature dependence of the naogratings were simulated. In the end, the spectral property of the proposed DoFP polarimeter was investigated by the calculation of Müller matrix determinant in the visible range. The thermal stability, large acceptance angle and broadband properties of the DoFP polarimeter based on the self-organized nanograting array were revealed by our simulations.

References and links

1. J. C. Gladish and D. D. Duncan, “Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization,” Appl. Opt. 56(3), 626–635 (2017). [CrossRef]   [PubMed]  

2. G. Dolgos and J. V. Martins, “Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering,” Opt. Express 22(18), 21972–21990 (2014). [CrossRef]   [PubMed]  

3. T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

4. F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

5. E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17(2), 472–493 (2009). [CrossRef]   [PubMed]  

6. B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

7. A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015). [CrossRef]   [PubMed]  

8. T. Mu, C. Zhang, Q. Li, and R. Liang, “Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters,” Opt. Express 23(8), 10822–10835 (2015). [CrossRef]   [PubMed]  

9. J. Li, B. Gao, C. Qi, J. Zhu, and X. Hou, “Tests of a compact static Fourier-transform imaging spectropolarimeter,” Opt. Express 22(11), 13014–13021 (2014). [CrossRef]   [PubMed]  

10. C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016). [CrossRef]   [PubMed]  

11. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012). [CrossRef]   [PubMed]  

12. S. M. Faris, “Methods for manufacturing micropolarizers,” US, US6384971 (2002).

13. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007). [CrossRef]   [PubMed]  

14. V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008). [CrossRef]  

15. M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006). [CrossRef]   [PubMed]  

16. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41(7), 1291–1296 (2002). [CrossRef]   [PubMed]  

17. S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006). [CrossRef]  

18. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010). [CrossRef]   [PubMed]  

19. G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012). [CrossRef]   [PubMed]  

20. W. L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014). [CrossRef]   [PubMed]  

21. W. L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015). [CrossRef]   [PubMed]  

22. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]  

23. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

24. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef]   [PubMed]  

25. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012). [CrossRef]  

26. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017). [CrossRef]   [PubMed]  

27. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006). [CrossRef]   [PubMed]  

28. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010). [CrossRef]  

29. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011). [CrossRef]  

30. M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013). [CrossRef]   [PubMed]  

31. T. Ohfuchi, M. Sakakura, Y. Yamada, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass,” Opt. Express 25(20), 23738–23754 (2017). [CrossRef]   [PubMed]  

32. C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

33. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982). [CrossRef]  

34. M. G. Moharam and T. K. Gaylord, “Rigorous couple-wave analysis of grating diffraction-E-mode polorization losses,” J. Opt. Soc. Am. 73(4), 451–455 (1983). [CrossRef]  

35. B. Guizal and G. Grane, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13(13), 1019–1023 (1996).

36. G. M. Morris and P. Lalanne, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996). [CrossRef]  

37. M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996). [CrossRef]  

38. D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006). [CrossRef]  

39. J. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18(15), 15893–15900 (2010). [CrossRef]   [PubMed]  

40. Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013). [CrossRef]   [PubMed]  

41. D. A. Pommet, E. B. Grann, M. G. Moharam, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]  

42. N. Bokor, R. Shechter, N. Davidson, A. A. Friesem, and E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” Appl. Opt. 40(13), 2076–2080 (2001). [CrossRef]   [PubMed]  

43. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000). [CrossRef]   [PubMed]  

44. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1208 (1965). [CrossRef]  

45. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. C. Gladish and D. D. Duncan, “Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization,” Appl. Opt. 56(3), 626–635 (2017).
    [Crossref] [PubMed]
  2. G. Dolgos and J. V. Martins, “Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering,” Opt. Express 22(18), 21972–21990 (2014).
    [Crossref] [PubMed]
  3. T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.
  4. F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).
  5. E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17(2), 472–493 (2009).
    [Crossref] [PubMed]
  6. B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.
  7. A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
    [Crossref] [PubMed]
  8. T. Mu, C. Zhang, Q. Li, and R. Liang, “Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters,” Opt. Express 23(8), 10822–10835 (2015).
    [Crossref] [PubMed]
  9. J. Li, B. Gao, C. Qi, J. Zhu, and X. Hou, “Tests of a compact static Fourier-transform imaging spectropolarimeter,” Opt. Express 22(11), 13014–13021 (2014).
    [Crossref] [PubMed]
  10. C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
    [Crossref] [PubMed]
  11. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
    [Crossref] [PubMed]
  12. S. M. Faris, “Methods for manufacturing micropolarizers,” US, US6384971 (2002).
  13. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
    [Crossref] [PubMed]
  14. V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008).
    [Crossref]
  15. M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
    [Crossref] [PubMed]
  16. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41(7), 1291–1296 (2002).
    [Crossref] [PubMed]
  17. S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
    [Crossref]
  18. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [Crossref] [PubMed]
  19. G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
    [Crossref] [PubMed]
  20. W. L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
    [Crossref] [PubMed]
  21. W. L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
    [Crossref] [PubMed]
  22. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  23. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
  24. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  25. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
    [Crossref]
  26. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
    [Crossref] [PubMed]
  27. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  28. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
    [Crossref]
  29. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
    [Crossref]
  30. M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
    [Crossref] [PubMed]
  31. T. Ohfuchi, M. Sakakura, Y. Yamada, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass,” Opt. Express 25(20), 23738–23754 (2017).
    [Crossref] [PubMed]
  32. C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).
  33. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
    [Crossref]
  34. M. G. Moharam and T. K. Gaylord, “Rigorous couple-wave analysis of grating diffraction-E-mode polorization losses,” J. Opt. Soc. Am. 73(4), 451–455 (1983).
    [Crossref]
  35. B. Guizal and G. Grane, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13(13), 1019–1023 (1996).
  36. G. M. Morris and P. Lalanne, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  37. M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
    [Crossref]
  38. D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
    [Crossref]
  39. J. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18(15), 15893–15900 (2010).
    [Crossref] [PubMed]
  40. Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013).
    [Crossref] [PubMed]
  41. D. A. Pommet, E. B. Grann, M. G. Moharam, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  42. N. Bokor, R. Shechter, N. Davidson, A. A. Friesem, and E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” Appl. Opt. 40(13), 2076–2080 (2001).
    [Crossref] [PubMed]
  43. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
    [Crossref] [PubMed]
  44. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1208 (1965).
    [Crossref]
  45. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
    [Crossref]

2017 (3)

2016 (2)

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

2015 (3)

2014 (3)

2013 (2)

2012 (3)

2011 (1)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

2010 (3)

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

J. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18(15), 15893–15900 (2010).
[Crossref] [PubMed]

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

2006 (4)

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[Crossref] [PubMed]

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (2)

2000 (2)

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
[Crossref]

1996 (3)

1995 (1)

1983 (1)

1982 (1)

1965 (1)

I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1208 (1965).
[Crossref]

Balakrishnan, K.

Benali, A.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Beresna, M.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Bermak, A.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Bokor, N.

Boussaid, F.

Bragheri, F.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Bräuer, R.

M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
[Crossref]

Brock, N.

Bryngdahl, O.

M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
[Crossref]

Chigrinov, V. G.

Chipman, R. A.

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Craighead, H. G.

Cremer, F.

F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

Davidson, N.

Davis, J.

Deby, S.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Deng, Y.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Dereniak, E. L.

Descour, M. R.

Dolgos, G.

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

Dreisow, F.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Drévillon, B.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Duncan, D. D.

Engheta, N.

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
[Crossref] [PubMed]

V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008).
[Crossref]

Friesem, A. A.

Fukuda, N.

Gamaly, E. G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Gao, B.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gayet, B.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Gaylord, T. K.

Gecevicius, M.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Gladish, J. C.

Grane, G.

Grann, E. B.

Gruev, V.

Guizal, B.

Haddad, H.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Harnett, C. K.

Hasman, E.

Hegyi, A.

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Hou, X.

Hsu, W. L.

Hu, R.

Huang, W. P.

Huang, Y.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Ibn-Elhaj, M.

Jiao, X.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Jong, W. D.

F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

Juodkazis, S.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Kazansky, P. G.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Ke, C.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Keil, R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Kemme, S. A.

Kikuta, H.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

Korovin, A. V.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Kroto, S.

LaCasse, C.

Lalanne, P.

Lazarus, N.

Lemaster, D. A.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Li, J.

Li, Q.

Li, X.

Liang, R.

Liang, Y.

Liu, W.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Ma, J.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Mack, R. T.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Malitson, I. H.

I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1208 (1965).
[Crossref]

Martini, J.

Martino, A. D.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Martins, J. V.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Middendorf, J. R.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Min, C.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Ming, H.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Miura, K.

Moharam, M. G.

Momeni, M.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[Crossref] [PubMed]

Moreau, F.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Moriwaki, K.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

Morris, G. M.

Mu, J.

Mu, T.

Myhre, G.

Namer, E.

Nazac, A.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Nolte, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Novikova, T.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Ohfuchi, T.

Ortu, A.

Osellame, R.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Pau, S.

Peinado, A.

Peng, W.

Pesche, U.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

Peschel, U.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Phipps, G. S.

Pierangelo, A.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Pommet, D. A.

Qi, C.

Qiu, J.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Raciukaitis, G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Ramirez, L. P. R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Ratliff, B. M.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Rehbinder, J.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Richter, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Sabatke, D. S.

Sakakura, M.

Schechner, Y. Y.

Schmitz, M.

M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
[Crossref]

Schutte, K.

F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Shechter, R.

Shimotsuma, Y.

Shwartz, S.

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Spiegel, J. V. D.

V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008).
[Crossref]

Stankevic, V.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Sweatt, W. C.

Takiya, T.

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Teig, B.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Titus, A. H.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[Crossref] [PubMed]

Toyoda, T.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
[Crossref]

Tünnermann, A.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Validire, P.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Van der Spiegel, J.

Villeneuve, P. V.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Vizet, J.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Wang, P.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Wang, X.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Wei, Y.

Weinheimer, J. J.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Xu, C.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Yabe, M.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
[Crossref]

Yamada, Y.

Yan, T.

Yoneyama, S.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

York, T.

Yuan, G.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Yue, Y.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Zeng, Z.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Zhang, C.

Zhang, D.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Zhang, L.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Zhao, X.

Zhu, J.

Zou, H.

Appl. Opt. (4)

Appl. Phys. B (1)

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

IEEE Trans. Neural Netw. (1)

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[Crossref] [PubMed]

J. Laser Appl. (1)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Phys. D (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
[Crossref]

Opt. Eng. (1)

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

Opt. Express (14)

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref] [PubMed]

G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
[Crossref] [PubMed]

W. L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
[Crossref] [PubMed]

W. L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
[Crossref] [PubMed]

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
[Crossref] [PubMed]

G. Dolgos and J. V. Martins, “Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering,” Opt. Express 22(18), 21972–21990 (2014).
[Crossref] [PubMed]

E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17(2), 472–493 (2009).
[Crossref] [PubMed]

A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
[Crossref] [PubMed]

T. Mu, C. Zhang, Q. Li, and R. Liang, “Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters,” Opt. Express 23(8), 10822–10835 (2015).
[Crossref] [PubMed]

J. Li, B. Gao, C. Qi, J. Zhu, and X. Hou, “Tests of a compact static Fourier-transform imaging spectropolarimeter,” Opt. Express 22(11), 13014–13021 (2014).
[Crossref] [PubMed]

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

T. Ohfuchi, M. Sakakura, Y. Yamada, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass,” Opt. Express 25(20), 23738–23754 (2017).
[Crossref] [PubMed]

J. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18(15), 15893–15900 (2010).
[Crossref] [PubMed]

Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

Prog. Mater. Sci. (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Sci. Rep. (1)

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Other (5)

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008).
[Crossref]

S. M. Faris, “Methods for manufacturing micropolarizers,” US, US6384971 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic diagram of a DoFP polarimeter based on the self-organized nanograting array.
Fig. 2
Fig. 2 The nanostructure of the self-organized nanograting in the simulations.
Fig. 3
Fig. 3 The refractive index map of the nanograting(a), and the simulated field distribution of TM wave (b) and TE wave (c) in the nanograting.
Fig. 4
Fig. 4 Calculation of the amplitude and phase of the transmitted TE and TM wave of a subwavelength dielectric grating.
Fig. 5
Fig. 5 The wavelength and period dependence of the self-organized grating.
Fig. 6
Fig. 6 The incident angle and temperature dependence of the self-organized grating.
Fig. 7
Fig. 7 Variation of the Müller matrix determinant with the phase delay of the self-organized gratings.
Fig. 8
Fig. 8 Müller matrix shows as a tetrahedron (blue lines) on a Poincaré sphere: (a) for the phase delay of 132 degrees, (b) for the phase delay of 92 degrees, and (c) for the phase delay of 164 degrees. The red curve shows the locus of coordinates on the sphere for a given phase delay.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

[ S 0 ( out ) S 1 ( out ) S 2 ( out ) S 3 ( out ) ]= M i ( Δ,θ,ϕ )[ S 0 ( in ) S 1 ( in ) S 2 ( in ) S 3 ( in ) ]
M i ( Δ,θ,ϕ )=[ M 11 i M 12 i M 13 i M 14 i M 21 i M 22 i M 23 i M 24 i M 31 i M 32 i M 33 i M 34 i M 41 i M 42 i M 43 i M 44 i ]
[ S 0 1 ( out ) S 0 2 ( out ) S 0 3 ( out ) S 0 4 ( out ) ]=[ M 11 1 M 12 1 M 13 1 M 14 1 M 11 2 M 12 2 M 13 2 M 14 2 M 11 3 M 12 3 M 13 3 M 14 3 M 11 4 M 12 4 M 13 4 M 14 4 ][ S 0 ( in ) S 1 ( in ) S 2 ( in ) S 3 ( in ) ]= M det S( in )
M det = M polarizer M grating
M grating ( Δ,θ )=T[ 1 0 0 0 0 1(1cosΔ) sin 2 2θ (1cosΔ)sin2θcos2θ sinΔsin2θ 0 (1cosΔ)sin2θcos2θ 1(1cosΔ) cos 2 2θ sinΔcos2θ 0 sinΔsin2θ sinΔcos2θ cosΔ ]
M polarizor ( ϕ )= 1 2 [ 1 cos2ϕ sin2ϕ 0 cos2ϕ cos 2 2ϕ sin2ϕcos2ϕ 0 sin2ϕ sin2ϕcos2ϕ sin 2 2ϕ 0 0 0 0 0 ]
S(in)= M det 1 S 0 i ( out )= M det * | M det | S 0 i ( out )
E( x )= m e m exp( j 2π Δ m )
D E TE,i =Re( k II,zi k 0 n I cosθ ) | T TE,i | 2
D E TM,i =Re( k II,zi n I k 0 cosθ n II 2 ) | T TM,i | 2
R=2π( n Te n Tm )L/λ
n= 1+ 0.6961663 λ 2 λ 2 0.0684043 2 + 0.4079426 λ 2 λ 2 0.1162414 2 + 0.8974794 λ 2 λ 2 9.896161 2
n=12.84× 10 -6 ×(T300)+1.4574

Metrics